
Research Article
MAPK Pathway Inhibitors Attenuated Hydrogen
Peroxide Induced Damage in Neural Cells

Zhenwei Fan,1 XuanWang,1 Min Zhang,1 Chunshan Zhao,1 Chunli Mei ,1 and Peng Li 2

1Beihua University, Jilin City 132013, China
2Central Hospital, Jilin City 132013, China

Correspondence should be addressed to Chunli Mei; chunlichina@163.com and Peng Li; pengli1243@163.com

Received 1 March 2019; Accepted 3 June 2019; Published 4 July 2019

Academic Editor: Eberval G. Figueiredo

Copyright © 2019 Zhenwei Fan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Oxidative stress due to reactive oxygen species plays a central role in pathophysiology of neurodegenerative diseases.
Inhibition of mitogen-activated protein kinase (MAPK) cascades attenuates the oxidative induced cell stress and behaves as
potential neuroprotection agent. Materials and Methods. In this study, we evaluate hydrogen peroxide induced neural cell stress
and determine how different MAPK inhibitors restore the cell damage. Results. The results indicated that oxidative stress induced
by neural cell damage commonly exists, andMAPK inhibitors partially and selectively attenuated the cell damage by reducing ROS
production and cell apoptosis. The cultured neurons are more susceptible to hydrogen peroxide than subculture cells. Conclusion.
We conclude that the essential role of different MAPK inhibitors is to attenuate the hydrogen peroxide induced neuronal cell
damage. Those data broaden the implication between individual neural cells and different MAPK inhibitors and give clues for
oxidative stress induced neural diseases.

1. Introduction

Reactive oxygen species (ROS) is a byproduct of oxygen
metabolism. Generation of ROS and the activity of antioxi-
dant defense to scavenge it result in an internal homeostasis
inside the cells. However, the imbalance happens, because
environmental stressors either exacerbate or impair detoxi-
fication mechanisms [1]. Abnormally high concentration of
ROS can induce oxidative stress, which results in accumu-
lated cell damage. Due to the high energy demanding and
consumption activities of neural cells, they cause significant
challenges to free radical scavenging. Thus, the neurons are
postmitotic cells and have poor capacity to regenerate in the
central nervous system (CNS) [2].

Oxidative stress–induced excessive ROS production trig-
gers cellular damage in CNS. Hydrogen peroxide (H

2
O
2
),

one of the commonly generated ROS by mitochondria, is
membrane permeated and may cross cellular compartments
[3]. Many macromolecules, including DNA and proteins,
get damaged inside cells once excessive amount of H

2
O
2

accumulated. The neural cells which are particularly rich in
lipid content have high energy demand, andweak antioxidant

capacity results in the vulnerable target of excessive ROS.
In addition, ROS and the resulting oxidative stress play an
essential role in apoptosis. Several key factors of apoptosis,
including procaspases and cytochrome C, are released into
the cytosol. Thus, there is increasing evidence showing that
oxidative stress and apoptosis are closely linked physiological
phenomena and are implicated in pathophysiology of CNS
related disease [1, 4]. Besides apoptotic signaling, the cell
cycle machinery may also be involved in oxidative stress
induced DNA repair. In neurons, DNA damage and cell cycle
reentry in dying postmitotic neurons give the evidence that
cell cycle and apoptosis are both important components of the
DNA damage response [5]. Indeed, oxidative damage is also
reported in several neurodegenerative diseases, including
notorious Parkinson’s and Alzheimer’s disease, and ROS
accumulation is a threat of significant neuronal damage in
neurodegenerative disorders [6–8].

In addition to cell apoptosis and cell cycle regulation,
H
2
O
2
is also able to trigger various other signaling pathways,

including phosphatases and protein kinases, as well as tran-
scription factors [9]. Here, we focus on one group of the most
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important proteins in the cell that responds to the accumula-
tion of intercellular ROS, mitogen-activated protein kinases
(MAPK). SeveralMAPKgroupmembers share structural and
functional homology with each other. Intense efforts have
been done to identify compounds that target different com-
ponents ofMAPK pathway. Small molecule inhibitors U0126,
SP600125, and SB203580 (Figure 3(a)) target MEK, JNK, and
p38, respectively. These inhibitors proved effective in both
in vitro and in vitro models. In addition, the inhibitors were
used for clinical trials for inflammatory diseases and cancer
and used as pharmacological inhibitors of MAPK pathways
[10, 11]. During the stimulation of H

2
O
2
in neural cells, some

of the MAPK pathways were activated and application of
inhibitors effectively attenuated H

2
O
2
-induced cell damage

[12–16]. However, it is unclear whether H
2
O
2
-induced cell

damage is a common phenomenon among neural cells or cell
line specific and how individual MAPK component inhibitor
restores the cell activity, especially cell apoptosis and cell
cycle changes. To this end, we compare several subculture
neural cell lines, as well as primary cultured neurons, and
investigateMAPK inhibitors attenuating H

2
O
2
-induced ROS

production, cell apoptosis, and cell cycle changes for those
cells.

In this work, we address the above question by using
SH-SY5Y, PC12, and HT22 cell lines and primary neurons.
The cell viability was strongly affected when neural cells
were exposed to H

2
O
2
; nevertheless, the neurons were more

susceptible to H
2
O
2
decreasing cell viability.The flow cytom-

etry results indicated that both ROS positive cells and cell
apoptosiswere significantly increased in all four kinds of cells,
whereas the cell cycle changes were found in SH-SY5Y cells
and neurons. MAPK inhibitor partially attenuated H

2
O
2
-

induced damage too, but cell cycle was rarely changed.Those
data argued that blocking ofMAPKpathway can indeedmore
or less restore neural cell activity, but efficiency was diverse
when individual pathway was inactive. Those results may
broaden clues and implications for the treatment of oxidative
stress induced neural diseases.

2. Materials and Methods

2.1. Materials and Reagents. Dulbecco’s modified Eagle’s
medium (DMEM), Roswell Park Memorial Institute (RPMI)
1640, and fetal bovine serum (FBS) were purchased from
Thermo Fisher Scientific, USA. SH-SY5Y neuroblastoma cell
line (CRL226) and PC12 cell line (CRL172), derived from a
transplantable rat pheochromocytoma, were both purchased
from American Type Culture Collection (ATCC). The HT-
22 mouse hippocampal neuronal cell line was purchased
from EMD Millipore Corporation, USA. alamarBlue cell
viability assay reagent was produced by Thermo Fisher Sci-
entific, USA. 2󸀠,7󸀠-dichlorofluorescin diacetate (DCFDA), a
fluorogenic dye that measures reactive oxygen species (ROS)
activity, was purchased from Sigma-Aldrich, USA. FITC
Annexin V apoptosis detection kit and cell cycle and DNA
content assay kit were produced by BDBiosciences, USA.The
three kinase inhibitors U0126, SP600125, and SB203580 were
obtained from Calbiochem, USA. All other chemicals used
were of analytical grade.

2.2. Cell Culture andCell Viability Assay. SH-SY5Y andHT22
cells were cultured in DMEM medium, and PC12 cells were
incubated in RPMI1640 medium. The cells were supplied
with 10% FBS (v/v), and where appropriate, 100U/ml peni-
cillin and 100 𝜇g/ml streptomycinwere added to themedium.
A humidified atmosphere incubator containing 5% CO

2
was

used to maintain regular cell growth at 37∘C. The medium
was replaced every two days [17]. The neuron cells were
cultured as described before [18]. Briefly, we isolated and
cultured pyramidal neurons from the early postnatal (P0-P1)
mouse cortex and then cultured themonpoly-L-lysine coated
glass substrates. Neurons can be maintained up to four weeks
according to the procedure.

The cell viability was measured using alamarBlue cell via-
bility assay reagent following themanufacturer’s instructions.
Briefly, roughly 10,000 cells or primary neuronswere cultured
into the 96-well plates. When the cell intensity reached 70%-
90% coverage, additional H

2
O
2
was added to the medium to

make a final concentration of 1000 𝜇M, followed by twofold
serial dilution. After dilution, 100𝜇l of medium was left in
individual well. alamarBlue reagent was added directly to
each well after 12 or 24 hours of incubation, and plates were
incubated at 37∘C for additional four hours in the dark, which
allows the cells to convert resazurin to resorufin. Finally,
fluorescence signal was read using excitation wavelength at
570, and emission peak at 585 nm was used to determine
relative cell viability. A control sample without cells seeded
was used as the blank, and cells without H

2
O
2
added were

used as positive control. All the tested concentrations were
performed three times with a minimum of six replicates.
Results were evaluated by normalized fluorescent signal to
positive control group and plotting relative cell viability
versus H

2
O
2
concentration. The concentration of H

2
O
2
that

gives half-maximal response (EC50) was then fitted to a Hill
equation, as appropriate [19].

2.3. Flow Cytometry Analysis. Cellular ROS production was
determined by the cell permeant reagent DCFDA. Cells were
washed or digested by 0.25mg/ml trypsin and then treated
with 10 𝜇M DCFDA in medium at 37∘C for 30min in the
dark. After staining, cells were passed through a 40𝜇m cell
strainer. Without washing, aliquot cells were subjected to
flow cytometry equipped with the Cell Quest software; at
least 10,000 cells were analyzed at excitation and emission
wavelengths of 485 nm and 535 nm, respectively.

Propidium iodide (PI) and Annexin V combination
staining is commonly used to determine if cells are apoptotic
or necrotic through the differences between plasma mem-
brane integrity and permeability [20, 21]. Here, we use flow
cytometry-based assay to identify the effect by appropriate
EC50 concentration of H

2
O
2
in individual cells. Harvested

cells were washed twice with cold PBS and then resuspended
at the concentration of about 1× 106 cells/ml in binding buffer
provided by the kit. 5 𝜇l of FITC Annexin V and PI each
were used per test, with gently stirring to mix the cells and
incubating for 15min at room temperature in the dark. A
minimum o f10,000 cells were analyzed within 1 hour.

Based on cellular DNA content by staining with PI, a
DNA-specific stain, we determined the percentage of the
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subpopulation in G0/G1, S, and G2/M by flow cytometry
[22]. During the cell cycle, the DNA content increases as new
DNA is replicated. As such, cells in different stages of the
cell cycle are tightly regulated with different DNA contents.
The intensity of PI fluorescence inside the cell is directly
proportional to the DNA content. Cells were resuspend in
PBS at the concentration of about 1 × 106 cells/ml and stirred
gently several times in order to minimize cell aggregation.
Cells were fixed by 70% ethanol and kept on ice for at least
2 hours. After a brief washing by PBS twice, cell pellet was
dissolved in 1ml of PI staining solution in the dark at room
temperature for 25min. The cells were transferred to flow
cytometer and fluorescence was measured within 1 hour.

2.4. Statistics. The results were expressed as the average
±standard deviation (SD). Unless otherwise indicated, at least
three biological repeats were performed. Student’s 𝑡-test was
used to evaluate the significance.The significance level cutoff
was 0.05 and 0.01. 𝑃 < 0.05 is considered significant (#);
𝑃 < 0.01 is considered highly significant (∗).

3. Results

3.1. H2O2-Induced Cell Viability Damage in Neural Cells.
ROS production in normal metabolism of oxygen plays an
important role in cell signaling. However, accumulation of
excess ROS is a potent inducer of dysfunction in CNS, which
results in oxidative damage and various neurodegenerative
disorders. Chronically elevated levels of H

2
O
2
have been

implicated in cell viability in multiple neuronal cells [23, 24].
To determine the H

2
O
2
toxicity on neural cells, alamarBlue

reagent was used to assess cell viability. Resazurin, a non-
toxic,membrane permeable nonfluorescent compound, is the
active ingredient in this assay. Living cells continuously con-
vert resazurin to resorufin, a red color and highly fluorescent
compound [25]. Here, the cell viability of SH-SY5Y, PC12,
HT22, and primary neurons was evaluated after 12 and 24
hours. The cells were exposed to different concentrations of
H
2
O
2
when cell intensity covered 70%-90% of growth area.

Cell viability of all tested cells markedly decreased, which
was followed by incubation with H

2
O
2
with dose-dependent

manner (Figures 1(a)–1(d)). The cell viability of SH-SY5Y,
PC12, and HT22 cells was not affected when supplied with up
to 100𝜇MH

2
O
2
, whereas the primary neuron cells weremore

susceptible. Supply with 100 𝜇MH
2
O
2
resulted in a decrease

to about 40% relative cell viability. When cells were exposed
to 1000 𝜇M H

2
O
2
of high concentration, the cell viability

was strongly decreased in all tested cells. It indicated that
H
2
O
2
-induced cell damage existed both in subculture and

primary cultured cells. Notably, the cells exposed to H
2
O
2

at two time points, 12 hours and 24 hours, did not result in
significant difference. This suggests the damage of H

2
O
2
was

accumulated within less period. Further, the EC50 of H
2
O
2

was calculated (Figure 1(e)). Indeed, the EC50 of H
2
O
2
for

SH-SY5Y, PC12, and HT22 at 12 hours was 593.9, 554.1, and
686.6 𝜇M, respectively. There is a dramatically reduction in
primary neurons, of which, the EC50 of H

2
O
2
was 48.4 𝜇M.

The individual EC50 at 24 hourswas a little lower than the one
at 12 hours. Thus, the relative concentration of H

2
O
2
close to

EC50 was used for the following assays. 600 𝜇M H
2
O
2
was

used for subculture cell lines, while 50 𝜇MH
2
O
2
was selected

for primary neurons. Those results indicated that neural cell
viability was strongly affected when cells were exposed to
H
2
O
2
. The neurons were more sensitive to H

2
O
2
damage.

3.2. H2O2-Induced ROS Production, Cell Apoptosis, and Cell
Cycle Changes. Theoxidative stress caused by H

2
O
2
has been

implicated in the pathophysiology of various neurological
disorders. It usually affects intercellular ROS production,
triggers mechanism in neuronal cells, and leads to abnormal
phonotypical changes [26]. To identify the effect of H

2
O
2

on ROS production, the intracellular ROS was determined
by DCFDA-based flow cytometry assay. The cell perme-
ant reagent DCFDA is deacetylated to a nonfluorescent
compound and further oxidized to a highly fluorescent
compound 2󸀠,7󸀠-dichlorofluorescein (DCF) which is pro-
portionally increased with ROS production [27]. Here, the
relative EC50 concentration of H

2
O
2
was used to compare

the ROS production in different neural cells (Figures 1(a)
and 1(b)). The ratio of ROS positive cells was lower than
4%, where no H

2
O
2
was added in all cells. It indicated the

functional balance of ROS and cell ability to detoxify the
resulting damage. The results showed that H

2
O
2
treatment

significantly increased the production of ROS, suggesting
that H

2
O
2
should be radically most responsible for oxidative

neuronal damage.
The ROS-induced oxidative stress in neuronal cells trig-

gers various cell programs.The ensuing dysfunction of mito-
chondria in neural cells has been demonstrated in relation
to neurological diseases. Following oxidative stress, several
proapoptotic molecules are activated, leading to intrinsic
apoptosis [28]. To this end, we determine the cell apoptosis
or necrosis, by taking advantage of the flow cytometry assay
for double staining Annexin V and PI to distinguish these
two cell processes. Addition of H

2
O
2
to neural cells resulted

in both cell apoptosis and necrosis (Figures 2(c)–2(e)). The
results revealed that H

2
O
2
induced a significant increase in

programmed cell death, as well as mechanical damage.
We next investigated how H

2
O
2
-induced ROS produc-

tion modulates cell cycle. The 70% ethanol fixed cells were
used to allow PI permeabilization to cells. This dye will bind
in proportion to the amount of DNA present in the cell [29].
The percentage of cells in S phase increased compared with
control group after incubation with H

2
O
2
for 12 hours in SH-

SY5Y and neurons cells (Figures 2(f) and 2(g)). Accordingly,
the percentage of cells in G2 phase decreased. No significant
cell cycle changes were found in PC12 and HT22 cells. Those
results suggested thatH

2
O
2
inducesmoderate cell cycle arrest

in neural cell, and different mechanism exists in neural cell
lines to compensate for the H

2
O
2
damage. Taken together,

these findings indicated that H
2
O
2
leads to neurological

disorders where neuronal oxidative stress contributes.

3.3. MAPK Pathway Inhibitors Attenuated H2O2-Induced
Cell Damage. Oxidative stress induced by excess ROS has
been implicated in pathologic processes associated with
neurodegenerative diseases. In neuronal cells, various intra-
cellular signaling pathways strictly control cell function.
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Figure 1: H
2
O
2
-induced cell viability changes in various cells for 12 and 24 hours. (a) SH-SY5Y. (b) PC12. (c) HT22. (d) Neuron cell viability

was determined by alamarBlue reagent assay and expressed as indicated concentration of H
2
O
2
. (e) The EC50 of H

2
O
2
was calculated and

shown in the table (n=6).

H
2
O
2
causes activation of the MAPK pathway and this is

followed by reducing the damage of neural cell [30]. Here, we
investigated how individual MAPK inhibitors block effects
of H
2
O
2
-induced neural cell damage. Three well-known

MAPK inhibitors that had highly different structures were
selected (Figure 3(a)).The inhibitors ofMAPK, namely,MEK
inhibitor U0126, JNK inhibitor SP600125, and p38 inhibitor
SB203580, were added to the corresponding wells. We used
10 𝜇M of those inhibitors, which proved effective without
affecting cell viability before [31, 32]. H

2
O
2
with or without

inhibitor was added to the wells, and the cells were cultured
for another 12 h.TheΔEC50 was calculated and plotted as the
heat map (Figures 3(b) and 3(c)). Those inhibitors selectively
attenuated H

2
O
2
-induced cell damage by increasing their

cell viability. Interestingly, the cell viability of SH-SY5Y and
PC12 was increased by supplying all three inhibitors, while
the neurons cell viability was rarely increased. These results
suggest that H

2
O
2
-induced oxidative stress was strongly

associated with activation of MAPK. Inhibition of MAPK
downstream pathways led to increasing the cell viability.
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Figure 2: H
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2
-induced ROS production, cell apoptosis, and cell cycle change by flow cytometry. (a)The ROS positive cells were determined

using ROS-sensitive fluorometric probe. (c) The cell apoptosis and necrosis were measured by Annexin V and PI straining. (e) The cell cycle
change was calculated by PI straining.The percentage of cell portions was further shown in subfigures (b) ROS production, (d) cell apoptosis
and necrosis, and (f) cell cycle changes, respectively (n=10,000 cells in all experiments).
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Figure 3:H
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-induced cell viability was partially restored by blockingMAPKpathway. (a) Chemical structure ofMAPKpathway inhibitors,

including SP600125 and SB203580, targeting MEK, JNK, and p38, respectively. (b) The EC50 increased when cells were supplied with U0126
inhibitor. (c) Relative increase in EC50 by heat map. H

2
O
2
-induced cell viability was partially restored by individual MAPK inhibitor.

3.4.MAPKPathway Inhibitors AttenuatedH2O2-Induced ROS
Production. Next, we determined whether ERK, JNK, and
p38 activation were involved in H

2
O
2
-mediated oxidative

stress. 10 𝜇M of U0126, SP600125, and SB203580 was added
to the corresponding wells. The ROS positive cells were
measured by flow cytometry, and the data indicated that
ROS production was not affected in all cells by adding
those inhibitors separately (Figures 4(a)–4(d)). We took
appropriate EC50 concentration of H

2
O
2
to individual cells

by supplying them with MAPK pathway inhibitors. When
supplied withH

2
O
2
, the ROS positive cells increased dramat-

ically in all the four kinds. Blocking any of MEK, JNK, or p38
pathway resulted in attenuated ROS production in SH-S5Y5
cell and primary neurons (Figures 4(a) and 4(d)). However,
the percentage of PC12 ROS positive cells could only be
rescued by MEK inhibitor U0126 (Figure 4(b)). In addition,
both MEK inhibitor U0126 and JNK inhibitor SP600125
partially inhibit intercellular ROS production, leading to
the significant decrease in ROS positive cells (Figure 4(c)).
Notably, the MEK inhibitor could partially restore H

2
O
2
-

mediated ROS production in all tested cells. These results
demonstrate that oxidative stress-mediatedMAPK activation
plays an essential role in neural cells ROS production. Our
findings suggested that inhibition of MEK activation or
maybe inactivation of a combination of MAPK pathways

might be a potential strategy for oxidative stress induced
neural cell damage.

3.5. MAPK Pathway Inhibitors Attenuated H2O2-Induced
Neural Apoptosis. To determine to how MAPK pathway
inhibitors affect H

2
O
2
-induced neural apoptosis and necro-

sis, we performed Annexin V and PI double straining assay
to neural cells with addition of single inhibitor, and the
results were measured by flow cytometry. The data showed
that EC50 concentration H

2
O
2
induced both cell apoptosis

and cell necrosis, whereas these two events were not affected
when any single inhibitor was added (Figures 5(a) and 5(b)).
The proportion of cell apoptosis was partially reduced when
inhibitor was added, and supply with MEK inhibitor U0126
led to decreased cell apoptosis in all groups. However, the
cell necrosis was hardly affected by blocking any of the
MAPK involved pathways. By using the neural cell model, we
concluded here that apoptotic targets are potently activated
by AMPK. Inactive AMPK pathway, more or less, resulted
in decreasing cell apoptosis. Importantly, these events occur
without affecting cell necrosis at all.

3.6. MAPK Pathway Inhibitors Hardly Restore H2O2-Induced
Cell Cycle Arrest. Both apoptosis and cell cycle are highly
conserved mechanisms. Eukaryotic cells need to adapt the
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Figure 4: H
2
O
2
-induced ROS positive cells were selectively decreased by MAPK inhibitor. (a) SH-SY5Y. (b) PC12. (c) HT22. (d) Neurons

ROS positive cells were determined by flow cytometry with either a combination of inhibitor andH
2
O
2
or the inhibitor itself (n=10,000 cells).

# indicates 𝑃 < 0.05; ∗ indicates 𝑃 < 0.01.

changing stress through the coupling of the cell cycle and
programmed cell death by using or controlling a shared set of
factors [33, 34]. Since cell apoptosis was restored by inhibiting
AMPK pathways when supplying cells with H

2
O
2
, we next

determined whether MAPK inhibitors affect H
2
O
2
-induced

cell cycle arrest. It has been shown that the S phase increased
after incubation with H

2
O in SH-SY5Y and neurons cells

(Figure 2(g)).Therefore, we took those two cellmodels and all
three inhibitors U0126, SP600125, and SB203580 were tested
by incubation with the cells alone or adding H

2
O
2
simul-

taneously. Interestingly, none of MAPK pathway inhibitors

could restore H
2
O
2
-induced cell cycle arrest (Figures 6(a)

and 6(b)). The results suggested regulation of cell cycle arrest
and cell apoptosis can share different mechanism in H

2
O
2
-

induced neural cell damage.

4. Discussion

ROS production in neural organisms is the normal oxy-
gen metabolism, which is tightly controlled by endogenous
respiratory chain and enzymatic reactions. However, high
concentrations of ROS, as H

2
O
2
, can damage intercellular
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Figure 5: H
2
O
2
-induced cell apoptosis was selectively attenuated by MAPK inhibitor. (a) Cell apoptosis and (b) necrosis were measured by

Annexin V and PI straining.The percentage of those two events was shown in histogram (n=10,000 cells). # indicates <0.05; ∗ indicates <0.01.
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Figure 6: H
2
O
2
-induced cell cycle changes were not affected by MAPK inhibitor. (a) SH-SY5Y and (b) neurons ROS cell cycle changes were

determined by PI straining (n=10,000 cells).
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macromolecules like DNA, proteins, and lipids, which results
in enormous cell damage [35]. Therefore, oxidative stress
induced damage to CNS has a strong potential to negatively
impact its normal functions, mainly in neurodegenerative
disorders disease [36, 37].

In this study, the in vitro model results indicated that
H
2
O
2
induced significant damage to neural cells, including

decreasing the cell viability, cellular ROS production, cell
apoptosis, and cell cycle changes. The MAPK inhibitors
selected in this study are essential. Frist, the MAPK is a key
energy sensor and regulator. The interplay between MAPK
andROS is complex inCNS. InactiveMAPKpathway showed
anti-cell damage effects, through the suppression of ROS by
modulating the level or activity of multiple factors [38]. Sec-
ond, MEK, JNK, and p38 pathways were well studied before
and are strongly associated with ROS production. U0126,
SP600125, and SB203580 inhibitors target MEK, JNK, and
p38, respectively, and could effetely block the activation of
their target. Therefore, supplying those inhibitors potentially
acts against ROS damage. On the other hand, when the neu-
ronal cells were supplied with the H

2
O
2
, a strong oxidative

stress was generated. Cell physiology changes significantly
to adapt the change. Many macromolecules get damaged
inside cells once excessive amount of H

2
O
2
accumulated.

Accumulating evidence has shown that cell proliferation was
regulated and achieved, at least partially, by coupling cell
cycle progression and programmed cell death. However, by
blocking MAPK pathway, rescuing H

2
O
2
-induced neural

cell damage was highly diverse. Thus, the cell apoptosis
and cell cycle changes were not well linked by MAPK
pathway.

5. Conclusions

In this study, we compare the cell damage of H
2
O
2
against

both subculture neural cells and primary culture neurons,
and MAPK pathway inhibitors attenuate the damage. The
results indicated that neuronsweremore susceptible, whereas
the EC50 was about 10-fold less than other neural cells.
ROS production and cell apoptosis were severely damaged
when neural cells were supplied with H

2
O
2
; however, cell

cycle change was moderate. Inhibition of MAPK pathway by
adding ERK, JNK, or p38 inhibitor resulted in attenuating
cell damage. The evidence supports the fact that exogenous
addition of H

2
O
2
, one of the ROS, was an important factor

involved in MAPK pathways. The hierarchy of those events
broaden our understanding of the role of MAPK in ROS
signaling among neural cells.
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