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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease involving the alteration of gene expression at the
whole genome level. Genome-wide transcriptional profiling of AD has been conducted by many groups on several relevant
brain regions. However, identifying the most critical dys-regulated genes has been challenging. In this work, we addressed
this issue by deriving critical genes from perturbed subnetworks. Using a recent microarray dataset on six brain regions, we
applied a heaviest induced subgraph algorithm with a modular scoring function to reveal the significantly perturbed
subnetwork in each brain region. These perturbed subnetworks were found to be significantly overlapped with each other.
Furthermore, the hub genes from these perturbed subnetworks formed a connected hub network consisting of 136 genes.
Comparison between AD and several related diseases demonstrated that the hub network was robustly and specifically
perturbed in AD. In addition, strong correlation between the expression level of these hub genes and indicators of AD
severity suggested that this hub network can partially reflect AD progression. More importantly, this hub network reflected
the adaptation of neurons to the AD-specific microenvironment through a variety of adjustments, including reduction of
neuronal and synaptic activities and alteration of survival signaling. Therefore, it is potentially useful for the development of
biomarkers and network medicine for AD.
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Introduction

Alzheimer disease (AD) is characterized neuropathologically by

the excessive accumulation of cerebral Ab amyloid plaques and

neurofibrillary tangles (NFTs). Currently, the main-stream theory

regarding the disease mechanism has been the amyloid cascade

hypothesis [1,2]. Particularly, soluble oligomers of Ab have been

found to be more neurotoxic than Ab amyloid [3,4]. Dysfunction

of certain brain regions has been manifested in a variety of

cognitive and behavior symptoms [5,6]. Postmortem expression

profiling of these vulnerable brain regions has revealed important

clues regarding the molecular pathogenesis of AD. To explore

early pathogenesis of AD, Loring et al. conducted a microarray

study on the amygdala and cingulate cortex, two brain regions

affected early in AD [7]. Blalock et al. investigated the disease

progression by gene expression profiling of hippocampus from

subjects diagnosed with incipient, moderate, and severe AD [8].,

Dunckley et al. studied the systematic effect of NFT accumulation

by comparing gene expression profiles of NFT-bearing neurons in

entorhinal cortex with adjacent non-NFT-bearing neurons [9]. In

another study, Nunez-Iglesias et al. jointly profiled mRNA and

miRNA expression in parietal lobe cortex to determine their roles

and the interplay in AD [10]. In a more focused study, Williams et

al. performed gene expression profiling on synaptoneurosomes

from prefrontal cortex of incipient AD, facilitating the un-

derstanding of synaptically localized genes [11]. Recently, in

a comprehensive transcriptome study on multiple brain regions,

Liang et al. examined six anatomically and functionally distinctive

brain regions of AD-afflicted individuals, including the entorhinal

cortex (EC), hippocampus (HIP), middle temporal gyrus (MTG),

posterior cingulate cortex (PC), superior frontal gyrus (SFG), and

primary visual cortex(VCX) [5]. In addition, some other studies

focused on changes of gene expression pattern in single cells,

peripheral blood mononuclear cells and transgenic mice

[12,13,14].

Despite the rich transcriptome data, unveiling disease

mechanism has remained a major challenge to the AD research

community. Inconsistent results have been presented due to

multiple sources of problems, including small sample size,

measurement error, and different statistical methods. The

overlap is very low for the most significantly dys-regulated

genes across multiple studies. To alleviate this problem, pathway

information has been incorporated in some studies. For

instance, Liu et al. constructed a network of pathways to

investigate the dysfunctional crosstalk of pathways in different

brain regions [15]. However, these approaches are severely

hampered by the insufficient pathway knowledge currently

available. Due to the fast growing knowledgebase of human

interactome, network-based approaches have become more

powerful and informative for the study of disease mechanism
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[16]. Along this line, computational methods have been

proposed to detect disease-related networks. Miller et al. applied

weighted gene co-expression network analysis to generate co-

expression subnetworks composed of genes with high topological

overlap in the hippocampus of AD patients [17]. Ray et al.

built an unweighted co-expression network and then used

a spectral based clustering method to identify co-expression

subnetworks in the entorhinal cortex of AD patients [18]. In

a more recent work, they further developed a novel method to

identify genes with a topological difference among co-expression

networks in four AD-relevant brain regions [19].

By integrating gene expression profiles with prior protein-

protein interaction (PPI) network information, others used

various heuristic algorithms and scoring functions to find

subnetworks transcriptionally activated or suppressed in complex

diseases. In particular, Ideker et al. pioneered a method in

which a significance score for each individual gene is defined

based on combining multiple differential expression p-values

and a given network is searched for subnetworks with high

aggregated scores by simulated annealing algorithm [20]. Other

groups extended this method by developing more efficient

heuristic algorithms and improved scoring functions. In one of

these works, greedy search was used together with a scoring

function based on the co-expression information of the edge and

the differential expression of the nodes to detect perturbed

subnetworks in six brain regions from a pre-built AD related

PPI network [21]. Encouragingly, network-based approaches to

study a number of diseases have provided insights into disease

mechanism and network-based biomarkers have been shown to

be superior over single gene-based and pathway-based bio-

markers in both accuracy and robustness [22].

In our previous study, we presented a novel approach in which

a network of functional modules and canonical pathways was

constructed to study the disease progression through different

stages of AD [23]. However, the methodology adopted in our

previous work was inadequate to identify the most critical dys-

regulated genes. In this work, we applied a different approach to

further examine the network perturbation at gene level on

a microarray dataset for six AD-relevant brain regions [5],

including EC, HIP, MTG, PC, SFG, and VCX. Since these brain

region-specific gene expression data were measured in the same

laboratory under the same experimental condition, they can be

directly compared with each other. We shall note that brain tissues

containing dead neurons were used in most of the microarray

studies on AD, making it difficult to separate the cause from the

consequence. This dataset, however, included NFT-free neurons

by laser-capture microdissection and was considered as a key

intermediate state in our previous work. Thus, this dataset

provided a unique opportunity to examine ‘‘healthy’’ neurons

living in the AD-specific microenvironment, and to reveal how

they may have survived the harsh condition and/or how they may

be on their way to cell death.

Combining the gene expression data with protein interactome

data, we applied a heaviest induced subgraph algorithm (Heinz)

with a scoring function based on differential expression p-values

fitted on a beta-uniform mixture (BUM) model to find perturbed

subnetworks in each brain region (a detailed flowchart illustrating

the analysis procedure is provided as Figure S1) [24]. Compared

with the scoring functions of Ideker et al. and the extended

approaches, our approach explicitly separated the signal and the

noise by signal/noise decomposition implemented as a BUM

model which can lead to improved signal/noise ratio. Moreover,

Heinz, which is based on integer-linear programming, provides

exact solutions for maximal-scoring subgraph (MSS) problem,

whereas previous methods can only provide approximate solu-

tions. Based on the perturbed subnetworks, we further identified

142 hub genes, 136 of which formed a connected hub network.

Since these hub genes were extracted from the perturbed

subnetworks, the randomness of the identified gene dys-regulation

was significantly reduced. Hub genes tend to be essential genes

and conserved across species. In addition, they have the potential

to affect many other genes due to higher connectivity. Hence, hub

genes have been regarded as important disease-related candidate

genes [25,26,27]. In the following sections, extensive evidence has

been provided regarding the biological relevance of this hub

network. Potential application of this hub network will also be

discussed.

Results

Gene Overlap Among the Perturbed Subnetworks in
Different Brain Regions
To identify the most significantly perturbed subnetwork in each

brain region, we first calculated the differential expression P-values

for each gene with Linear Models for Microarray Data (LIMMA)

[28]. The distribution of P-values was fitted to a beta-uniform

mixture model since the distribution can be considered as

a mixture of signal and noise components, where the signal

component is assumed to be Beta (a,1) distributed [29]. The good

fitting of the data to the BUM model was demonstrated by the

high consistency between the observed P-values and the expected

densities under the fitted model and further supported by a Q–Q

plot of the fitted distribution versus the observed P-value

distribution (Figure S2), indicating that the signal was well-

captured by the BUM model. Next, we tested the effect of FDR

(false discovery rate) selection on the number of positively scored

genes. When a common relaxed FDR value 0.05 was chosen, the

percentage of positively scored genes was 53.8%, 52.3%, 44.1%,

44.6%, 21.3% and 9.9% for MTG, EC, HIP, PC, SFG and VCX

region, respectively. The percentage of positively scored genes

roughly reflected the degree of perturbation in those six brain

regions, with the most significant perturbation in MTG and least

significant perturbation in VCX, consistent with observation in

previous studies [5].

Although the scale of perturbation was different in different

brain regions, a shared list of perturbed genes may still exist

which may reflect the most significant and reliable perturbation

in AD. The extensive perturbation based on the relaxed FDR

made it difficult to identify the core perturbation. To have

a comparable small number of positively scored genes (,10% of

the PPI network) among the six brain regions, we decided to

use different FDR cutoff for different brain regions, which was

0.00009, 0.0004, 0.0008, 0.002, 0.01 and 0.05 for MTG, EC,

HIP, PC, SFG and VCX region, respectively. The relatively

relaxed FDR cutoff for VCX region was consistent with the

minor perturbation in this brain region [5]. Starting from these

positively scored nodes (genes), Heinz algorithm was applied to

search for the maximal scoring subgraph. From here on, we will

refer to the maximal scoring subgraph in each brain region as

the perturbed subnetwork. Based on Fisher’s test of significant

gene overlap, these perturbed subnetworks identified in the six

brain regions were indeed significantly overlapped with each

other (Figure 1 and Figure S3, an illustration of the

subnetworks is shown in Figure S4). This overall similarity of

the perturbed subnetworks in different brain regions suggests

that they may constitute the core part of the dys-regulated

network in AD.

Perturbation of a Hub Network in AD
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Functional Overlap Among the Perturbed Subnetworks
in Different Brain Regions
We carried out functional enrichment analyses for the

perturbed subnetworks in the six brain regions, including Gene

Ontology (GO) [30], transcription factor binding site (TFBS) and

kinase substrate enrichment. Firstly, significantly enriched GO BP

(biological process) terms (Figure 2) shared among at least four

brain regions were associated with metabolism and biosynthesis,

cytoskeleton organization, protein localization and transport

(synaptic vesicle), transcriptional regulation, protein kinase phos-

phorylation, intracellular signaling, cell cycle, apoptosis, cell

communication, neuron development. This is consistent with

current knowledge on AD which includes elevated apoptosis,

compromised cell integrity, disrupted synaptic transmission, and

abnormal signal transduction and gene expression.

Secondly, we found 19 TFBS motifs enriched in at least 3 brain

regions (Table S1), among which 16 TFBS motifs matched with

known transcription factors and some have been linked to AD.

Previous studies have revealed that SP1 can regulate the

expression of several AD-related genes, including APP, BACE1,

BACE2, and MAPT [31,32,33]. PAX4 variants have also been

found to be associated with AD [34]. YY1 can function as

transcriptional activators of BACE1 and Fe65 to facilitate the

generation of Ab via its precursor APP [35,36,37]. MAZ and

FAC1 have been shown to co-localize to pathologic structures in

AD brain. Co-expression and interaction between these two genes

have biological implications for gene regulation in neurodegenera-

tion [38]. The E2F/DP complex has been claimed to be required

for Ab-evoked neuronal cell death [39]. Loss of NRF1 in the brain

can lead to dys-regulation of proteasome gene and neurodegen-

eration [40]. Ab accumulation can result in suppression of activity-

dependent stimulation of CREB1(CREB) and CREB/CRE-

mediated gene transcription. Because CREB1 is involved in

neuronal plasticity and learning, its down-regulation may contrib-

ute to the cognitive deficit in AD [41]. Both insulin resistance and

oxidative stress may promote the transcriptional activity of FOXO

proteins, resulting in hyperglycemia and a further increased

production of reactive oxygen species (ROS) [42]. Ab can promote

neuronal apoptosis in AD by activating GSK3B, leading to

degradation of b-catenin and inactivation of Wnt signaling. It has

been found that lovastatin could prevent Ab-induced apoptosis,

which was accompanied by the reduction of active GSK3B, and

increased nuclear translocation of b-catenin, TCF-3, and LEF-1

[43]. SOX9 plays critical role in the development of central

nervous system and a regenerative treatment based on SOX9 has

been proposed for AD. In addition, it has been demonstrated that

SRY can exert male-specific effects in tissues other than testis,

including regulating cardiovascular function and neural activity,

both of which may contribute to AD development.

Thirdly, we found 18 kinases whose substrates were enriched in

at least three brain regions (Table S2). Among these 18 kinases,

CHUK and IKBKB, two components of the canonical IKK

complex, are the major kinases involved in the phosphorylation of

IkB proteins and crucial regulators of the canonical NF-kB

pathway involved in immune response [44]. PRKCD can lead to

the phosphorylation and inactivation of GSK3B and subsequent

inhibition of tau phosphorylation [45]. PKMzeta, an N-terminal

truncated form of PRKCZ, can accumulate in NFTs and disrupt

glutamatergic synaptic transmission, leading to memory impair-

ment in AD [46]. AKT1 can phosphorylate and inactivate

GSK3B which is linked to NFT formation [47]. MAPK pathways,

ERK(MAPK3) and JNK(MAPK8), are activated in AD brains and

involved in the pathogenesis of AD including tau phosphorylation

and amyloid deposition [48]. MARK4 is likely involved in

microtubule organization in neurons and may contribute to the

pathological phosphorylation of tau in AD [49]. Abnormal

phosphorylation of CDK5 has also been implicated in the

formation of amyloid and NFT [50]. Increased levels of RAF1

can effectively mediate Ras-dependent signals and play a critical

Figure 1. Pairwise correlation of the perturbed subnetworks in the six brain regions. The diagonal cells (white color) display the number
of genes in the perturbed subnetwork of a specific brain region. Other cells of the table correspond to counts (upper right half) or significance p-
values (lower left half) of overlap between a pair of brain region’s perturbed subnetworks. Coloring of the table encodes significance of overlap (p-
value) by Fisher’s exact test. It is evident that all of the pairwise overlaps are significant.
doi:10.1371/journal.pone.0040498.g001

Perturbation of a Hub Network in AD
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role in the aberrant activation of the MEK/ERK pathway in AD

[51]. BCR [52,53] and CSK [54,55,56] variants have also been

associated with AD. RIPK1, RIPK2 and RIPK3 are implicated in

the regulation of apoptosis and development of AD. In particular,

RIPK2 protein level is increased in the frontal cortex of AD

patient and may regulate apoptosis [57]. Overall, most of these

kinases are known to be associated with amyloid or tau pathology

and other dysfunctions in AD.

Identification of Hub Genes and Discovery of a Hub
Network
With higher connectivity, hub genes in perturbed subnetworks

may play key roles in dys-regulated cellular processes. For each

brain region, a gene was defined as a hub gene when the number

of interactions with other genes was equal to or above the 90%

quantile of the overall distribution of gene interactions in the

perturbed subnetwork. By this criterion, we identified 142 hub

genes from the six brain regions. To examine dys-regulation of the

hub genes, we first ranked them based on their aggregated gene

expression changes in the six brain regions (Figure 3). It was

evident that most of the hub genes were perturbed in multiple

brain regions. Consistent with our earlier enrichment analysis,

many hub genes were functionally related to metabolism and

biosynthesis, cytoskeleton component and organization, synaptic

vesicle-mediated transport, transcriptional regulation, protein

kinase phosphorylation, intracellular signaling, cell cycle and

apoptosis. In particular, protein kinases IKBKB, AKT1, CDK5,

CSK, MAPK3, PRKCZ and RAF1, whose substrates were

enriched in at least three brain regions’ perturbed subnetworks,

were also hub genes, suggesting that they may play vital roles in

the regulation of signal transduction and tau phosphorylation in

AD. Additional functional categories included heat shock protein,

14-3-3 protein family, proteins related to ubiquitin and protein

degradation, learning and memory, and immune response. These

hub genes potentially have an effect on AD pathology in

a cooperative way, because 136 of the 142 hub genes can form

a connected hub network where the pairwise interactions were

present in at least one perturbed subnetwork (Figure 4). Many of

the hub genes have been implicated in AD, and detailed

interpretation of their interplay in the disease mechanism will be

presented in the context of the hub network.

Biological Relevance of the Hub Network
1. The hub network is robustly and specifically perturbed

in AD. We conducted analyses on several datasets to demon-

strate the robust and specific perturbation of the hub network in

AD (Table S3). First, we performed retrospective analysis on the

perturbation of the hub network in the six brain regions. It was

clear that the hub network was significantly perturbed in five brain

regions, suggesting common disease mechanism among these

regions. The insignificant perturbation of the hub network in

VCX again reflected the minimal damage in this region. To

validate the robust perturbation of the hub network in AD, we

chose an independent dataset GSE15222 with the largest sample

size so far for AD studies (364 samples) [58]. The small P-value

indicated that the hub network was indeed robustly perturbed in

AD.

To further test the specificity of the hub network, we collected

microarray data for other neurodegenerative diseases including

Parkinson’s disease (PD) and Huntington’s disease (HD), as well as

a neuropsychological disorder schizophrenia (SZ) to see if the hub

Figure 2. A network map of the enriched GO terms in the perturbed subnetworks. The enrichment analysis was conducted separately in
each brain region’s perturbed subnetwork. Only GO terms (nodes) enriched in at least four brain regions are shown. Edge thickness represents the
degree of overlap between connecting nodes (GO terms) calculated by the genes in the perturbed subnetworks. Nodes with similar functions are
enclosed with red circles. Pos,Neg,Reg, Macro, met, org and MF stand for positive, negative, regulation, macromolecular, metabolism, organization
and molecular function, respectively.
doi:10.1371/journal.pone.0040498.g002

Perturbation of a Hub Network in AD
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network is specifically perturbed in AD. Based on the same P-value

cutoff (0.05), the hub network was not significantly perturbed in

other related disease tissues except for the caudate region in HD.

We shall note that the gene expression data from the caudate of

HD was confounded by several factors, especially the significant

cell loss and change of cell composition. On the other hand, the

use of laser-capture microdissection technique adopted in the

major dataset for AD (GSE5281) avoided these confounding

Figure 3. Stacked bar plots of the expression changes of the hub genes in the six brain regions. Each single colored bar represents the –
log10(p-value) of a hub gene in a specific brain region (plotted above the x-axis for up-regulation, below the x-axis for down-regulation). If a hub
gene is not reliably detected in certain brain regions, the significance of expression change is assigned to 0 and no color bars are displayed in the
corresponding regions. The hub genes are ordered by the aggregated significance of expression change in the six brain regions.
doi:10.1371/journal.pone.0040498.g003

Perturbation of a Hub Network in AD
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factors. Overall, these analyses together demonstrated that the

perturbation of the hub network was robust and in the meantime

specific for AD.

2. Genes constituting amyloid plaques and

neurofibrillary tangles. APP and MAPT, two core genes of

the hub network, were directly associated with amyloid and tau

pathology. According to two independent proteomics study of

laser-dissected amyloid containing plaques [59] and neurofibrillary

tangles [60], 488 and 72 proteins were reported as potential

constituents of plaques and tangles, respectively. From the hub

network, we found 31 genes as the potential constituents of

amyloid containing plaques, 13 genes as the potential constituents

of neurofibrillary tangles, and 11 genes for both (Table S4). More

literature survey revealed that additional genes such as PXN,

APEX1, FN1, EPB41, HMGB1 and SQSTM1, and BRCA1 were

also constituents of plaques and tangles, respectively, and SDC2

was a component of both plaques and tangles. This demonstrated

that many genes in the hub network may be directly responsible

for amyloid and tau pathology.

3. Genes strongly correlated with AD

progression. Among the widely utilized indicators of AD

severity, Mini-Mental Status Examination (MMSE) score de-

creases with the increased severity of AD, and NFT score increases

with the increased AD severity. Both scores can be used to

evaluate AD progression. We tested the correlation of each hub

gene’s expression with MMSE and NFT scores across all 31

subjects in a microarray study of AD progression [8]. Among the

136 hub genes, 72 genes (53%) were significantly correlated with

Figure 4. Graphical representation of the hub network consisting of 136 hub genes identified in the six brain regions. Genes are
represented as nodes using various colors that represent the functional classes, including constituents of plaque or tangle, correlation with AD
progression based on MMSE or NFT score, genetic risk of AD (ALZgene) and aging related genes. If a gene belongs to multiple functional classes, it
will be displayed as a pie chart.
doi:10.1371/journal.pone.0040498.g004

Perturbation of a Hub Network in AD
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either MMSE score or NFT score, and 43 genes (31.6%) were

significantly correlated with both (Table S5). In addition,

important transcription factors and kinases identified in the earlier

enrichment analysis, including LEF1, SOX9, YY1, TCF3,

TFDP1, CDK5, CSK and MAP3K3, were also correlated with

either MMSE score or NFT score. This further suggested their

vital roles in AD. Although the hub network was extracted from

a microarray study at a specific stage of AD, our analysis indicated

that it partially reflected the disease progression through different

stages.

4. Genes reflecting aging and genetic risks of AD. Since

many genetic variations can contribute to AD development, and

aging has been considered as the primary risk factor for AD, we

examined the enrichment of genes related to aging and genetic

risks of AD (Table S6). We used two curated databases: the

ALZgene database [61] which provides a comprehensive, un-

biased field synopsis of genetic association studies performed on

AD, and the GenAge database [62,63] which records 261 genes

possibly related to human aging. We found that the hub network

was enriched with AD-associated gene variants (27 out of 136, p-

value 6.13e-09). Thus in addition to dys-regulation of gene

expression, genetic alteration can also result in perturbation of the

hub network through modification of gene product which can lead

to the development of AD. In addition, we observed that the hub

network was over-represented with aging-related gene (40 out of

136, p-value ,2.2e-16). This suggests that strong interplay

between aging and AD is reflected in this hub network which

will be further discussed later.

5. Potential application in the development of biomarkers

and drugs. Compared with a study on the transcriptome of

blood mononuclear cells by Olivier et al. (60 samples) [64], we

found that hub genes STAT3, GNB2L1, SHC1, UBE2I,

GAPDH, JUN, AKT1, PXN, BAG3 and DVL2 were differen-

tially expressed in the blood of AD patients. We also re-analyzed

another microarray dataset for AD with whole blood(45 samples)

[65]. We found that dys-regulated hub genes including TGFBR2,

NFKBIA, SOS2, HMGB1, TUBA4A, CEBPB, LYN, RAF1,

HNRNPK, SNCA, TDG, TNFRSF1A and FN1. ITGB5 was also

found differentially expressed in another study on the AD

transcriptome of peripheral blood leukocytes [66](only a few

important genes were provided in the original paper). Alternative

splicing of ACTB and UBQLN4 was found in a splicing-dedicated

microarray study of AD [67]. Because the expression patterns of

SHC1, GAPDH, JUN, PXN, NFKBIA, HNRNPK, SNCA,

TDG, TNFRSF1A, FN1 and ITGB5 were also correlated with

AD progression, these genes may be potential diagnostic bio-

markers in monitoring AD progression. Unfortunately these

biomarkers were not reproducible in published studies, partly

due to different blood cell compositions such as PBMC, whole

blood and leukocytes. Further experimental validation on these

potential biomarkers is undergoing in our laboratory with larger

sample size and different AD severity.

Recently, it has been proposed that multi-gene drugs targeting

signature networks may be more effective against complex diseases

than single gene strategies [68,69]. Our drug target enrichment

analysis revealed that rapamycin and curcumin were two of the

drugs with the most enriched targets in the hub network (Table 1).
Rapamycin can rescue cognitive deficits and reduce amyloid-

b Levels in AD by inhibition of mTOR signaling [70]. In the hub

network, PIK3R1(PI3K subunit), AKT1, MAPK1, MAPK3, and

PPPC2A (PP2A subunit) are involved in mTOR signaling.

MAPK1/MAPK3(Erk1/2) and PI3K/AKT are upstream regula-

tor of mTOR. In addition, mTOR together with insulin(IRS1)/

PI3K signaling pathway can regulate PP2A and GSK3B-de-

pendent phosphorylation of tau [71]. Targets of rapamycin also

include proteins involved in progression of cell cycle, such as RB1,

MCM7, PCNA, CDK2 and PCNA, and hyperactive mTOR may

play a role in cell cycle re-entry in AD [72]. Curcumin has

antioxidant, anti-inflammatory, and anti-protein-aggregation ac-

tivities, making it an ideal candidate compound for the prevention

or treatment of AD [73]. Curcumin can induce heat shock

proteins and reduce protein misfolding and aggregation [74].

Target genes of curcumin also include JUN, STAT3, APP and

GSK3B, suggesting a regulatory effect of curcumin in the

formation of amyloid. CEBPB, a C/EBP family member, has

been shown to be involved in astrocytes and microglial activation

[75,76,77]. Translocation of STAT1 from cytosol to nucleus may

also be involved in inflammatory activation in AD brains [78].

Therefore, the interaction of curcumin with CEBPB and STAT1

may have anti-inflammatory effect. Curcumin may also regulate

apoptosis through its interaction with TNFRSF1A, CASP7 and

CASP8. In addition, curcumin has been reported to improve

learning and memory [79]. Curcumin can influence many hub

genes required for memory formation and cognitive function,

including CREBBP, EP300, HDAC1 and NR3C1. Curcumin

targets also include steroid hormone receptor (nuclear receptor

subfamily 3) AR, ESR1, NR3C1, which may protect neurons from

beta-amyloid toxicity and survive a variety of coincidental insults

including AD-associated neurotoxicity (detailed gene functions

discussed later). In summary, our network analysis provides

another layer of evidence on the potential benefits of rapamycin

and curcumin on AD treatment and suggests that the hub network

may be an alternative target for AD drug development.

Discussion

In our previous work, we proposed that the common cause of

Alzheimer’s disease is likely the prolonged low supply of oxygen

and nutrients in the brain [23]. In another word, Alzheimer’s

disease is a complex disorder originated from energy deficiency in

the brain. Brain as the most energy-demanding organ consumes

about 20% of the energy of the whole human body [80].

Therefore, energy deficiency in the brain could have adverse

consequence. Aging is accompanied by gradual decrease of brain

perfusion starting at the age of 22. For most people, this is not

sufficient to lead to AD. Rather, the aging brain can adjust to this

condition by cutting down a portion of the most energy

demanding activity–synaptic transmission. For some people,

however, additional pathological conditions such as vascular

problems will further exacerbate the situation. This will require

further adjustment, trimming down more synaptic transmission,

reducing intra-neuronal activities, and at the extreme case killing

of certain dysfunctional neurons. For people with APOE genotype

e4, increasing evidence suggests that they have some defects in

synaptic protection, including poor brain perfusion, slower re-

covery to anaerobic metabolism, more accumulation of amyloid,

a cytoskeleton more vulnerable to damage, diminished growth and

branching of neurites resulting in poor repair and worse N-methyl-

D-aspartate (NMDA) excitotoxicity, all of which will render APOE

e4 carriers higher vulnerability to AD. Under this energy-centric

adaptation hypothesis, we found that the hub network reflected

the adaptation strategy mainly in two ways, namely reduced

neuronal and synaptic activities (Figure 5) and altered survival

signaling (Figure 6).

Reduced Neuronal and Synaptic Activities
The low energy metabolism state of the neurons was

manifested by the down-regulation of GAPDH, which catalyzes
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an important rate-limiting reaction of glycolysis, and additional

non-hub genes in the perturbed subnetworks including rate-

limiting enzymes of the glycolytic metabolic pathway and genes

belonging to the electron transport chain. Reduction of

neuronal and synaptic activities was in coordination with the

low level of energy metabolism. Down-regulation of spliceosome

(PCBP1 and HNRNPK), nuclear export complex (RAN and

EEF1A) and translation factors (EIF5, EEF1A1 and EEF1G)

suggests slowdown of RNA splicing, RNA transport and

translation. Altered expression of U2AF2 may have an effect

on the brain-specific splicing of APP, MAPT, UBQLN1 and

BIN1 [81]. In addition, down-regulation of non-hub genes in

the perturbed subnetwork related to ribosome and basal

transcription were also observed (data not shown).

Many component proteins of actin and microtubule cytoskel-

eton, including ACTB, TUBB, TUBA4A, MAPT, DYLLN1

and DNM1, were present in the hub network. DYLLN1 is

a light chain isoform of microtubule-based motor protein dynein

which is involved in the impairment of axonal transport in AD

[82]. Cytoskeleton provides tracks for axonal transport, thus its

down-regulation may slow down the transport of lipids, proteins,

mitochondria, synaptic vesicles and other cellular components

such as organelles. Co-localization of MAPT and SNCA was

also demonstrated in axons. It was proposed that the interaction

between SNCA and MAPT could link synaptic vesicles with

microtubules [83]. Down-regulation of genes related to the

regulation of synaptic vesicle cycle, including hub genes CDK5,

SNAP25, DNM1, CLTC and TSG101 and additional non-hub

genes in the perturbed subnetwork indicated decreased pre-

synaptic activities. CDK5 is involved in the regulation of

synaptic vesicle exocytosis via phosphorylation of munc-18 [84].

Increased ERK activity can enhance synaptic transmission [85]

and is necessary for the maintenance of learning-relevant

enhancement in synaptic transmission [86]. Thus, down-

regulation of CDK5 and ERK (MAPK1 and MAPK3) may

reduce synaptic transmission. In addition, alteration of post-

synaptic activity was shown by the dys-regulation of PEBP-1,

DLG4, GNB2L1 and ARRB1. PEBP-1 can regulate choline

acetyltransferase (ChAT) function which may lead to altered

level of acetylcholine [87]. The significant increase of DLG4

expression may indicate a change in NMDA receptor

(ionotropic glutamate receptor (iGluRs)) trafficking [88]. NMDA

receptors interact with FYN through two scaffolding proteins,

DLG4 and GNB2L1, which are both involved in chronic

NMDA receptor hyperactivity in AD [89,90]. ARRB1 can

modulate the endocytosis of metabotropic glutamate receptors

(mGluRs) and affect glutamatergic neurotransmission in AD

[91]. Slow pre-synaptic anterograde transport and synaptic

vesicle cycle can reduce the release of neurotransmitter, which

may reduce the damage by the excessive excitation of these

postsynaptic receptors.

The reduced neuronal activity was also reflected on the altered

cellular recycling strategy. In conjunction with other heat shock

proteins, Hsp70 (HSPA1A and HSPA8) and Hsp90 (HSP90AA1)

function as chaperones to prevent protein aggregation and

facilitate the proper folding of newly synthesized proteins. In

addition, hub genes UBC, UBQLN4, UBE2I, CBL and PSMD11

and a few non-hub genes are recruited into the ubiquitin/

proteasome system. Among these genes, polymorphism of UBE2I

is associated with AD, and UBQLN4 has been found differentially

expressed in AD [67] and may link ATXN1 with the chaperone

and ubiquitin-proteasome pathways [92]. Inconsistent up or

down-regulation of ubiquitin genes and consistent down-regula-

tion of proteasome genes were observed. On the other hand,

BAG3 and SQSTM1 were consistently up-regulated. BAG3 acts

in concert with SQSTM1 to stimulate autophagy-lysosomal

pathway [93]. Under acute stress conditions, when misfolded

proteins accumulate and the aggregation potential increases, the

ubiquitin/proteasome system might not be sufficient for the

complete clearance of defective proteins. In addition, proteasome

cannot degrade insoluble proteins and non-dissociable aggregates

[94], and aggregates might even impair proteasome function

which enhances protein aggregation [95]. Alternatively, such

protein aggregates can be effectively degraded by autophagy [94].

Thus, in pathological condition of AD where increased protein

misfolding and aggregation occurs, neurons may have to in-

creasingly rely on the autophagic degradation system to maintain

proteostasis. This is likely an energy-efficient way for recycling in

the low energy state.

Table 1. Top 5 enriched drugs for the hub network by ToppFun enrichment analysis.

Drug Name Source P-value
Number of
genes Target Genes

Hydrogen
Peroxide

CTD 8.04E-23 38 CALM1,SMAD3,IKBKB,ATXN1,TJP1,RPS6KA5,HSPA1A,ACTB,APP,HDAC1,TNFRSF1A,RAF1,APEX1,SNCA,
JUN,RB1,CASP8,FOXO1,BRCA1,MAP2K1,DYNLL1,GAPDH,HMGB1,ITGB5,FN1,PRKCZ,MAPK3,MAPK1,
NFKBIA,PRKCA,PRKCB,CDK2,AKT1,SQSTM1,EGFR,STAT3,STAT1,SHC1

Rapamycin Stitch 4.00E-21 43 TGFBR1,SMAD3,PSMD11,RPS6KA5,HSP90AA1,ACTB,PDGFRB,HTT,CBL,RAF1,FYN,MCM7,JUN,RB1,FOXO1,
MAP2K1,GAPDH,FN1,PRKCZ,IRS1,MAPK3,MAPK1,NFKBIA,CCNH,PRKCA,PRKCB,BMPR1B,CDK2,AKT1,
SQSTM1,EWSR1,EIF5,PIK3R1,EGFR,GSK3B,CDC42,CSNK2A1,STAT3,STAT1,PCNA,PPP2CA,NR3C1,CLTC

Curcumin CTD 1.45E-20 38 TGFBR2,TGFBR1,SMAD3,IKBKB,SMAD4,CREBBP,APP,PDGFRB,HDAC1,CEBPB,TNFRSF1A,UBC,MCM7,
JUN,RB1,CASP7,AR,CASP8,XRCC6,EP300,FOXO1,DYNLL1,FN1,PRKDC,ESR1,MAPK3,MAPK1,NFKBIA,PRKCA,
AKT1,PTPN11,EGFR,GSK3B,STAT3,STAT1,PCNA,CSK,NR3C1

Doxorubicin CTD 3.85E-20 43 MAPT,SMAD3,IKBKB,SMAD4,HSPA8,HSP90AA1,HSPA1A,CREBBP,APP,HDAC1,CEBPB,TNFRSF1A,JUN,RB1,
CASP7,CASP8,FHL2,EP300,FOXO1,BRCA1,MAP2K1,TUBA4A,GAPDH,FN1,PRKDC,ESR1,HNRNPK,IRS1,MAPK3,
MAPK1,TUBB,NFKBIA,PRKCA,CDK2,AKT1,SQSTM1,EGFR,GSK3B,TDG,STAT3,STAT1,PCNA,NR3C1

Resveratrol CTD 4.46E-20 39 MAPT,IKBKB,RPS6KA5,CREBBP,ACTB,APP,PDGFRB,RAN,CEBPB,APEX1,SUMO1,SNCA,JUN,RB1,CASP7,
AR,CASP8,EP300,YWHAZ,FOXO1,MAP2K1,GAPDH,ESR1,IRS1,MAPK3,MAPK1,TSG101,PLCG1,NFKBIA,
PRKCA,CDK2,AKT1,PIK3R1,PTPN11,EGFR,GSK3B,CDC42,STAT3,PCNA

The P-value was evaluated by the significance of overlap between the hub genes and drug targets. The numbers of hub genes listed in the database (source) as drug
targets as well as the gene symbols are provided.
doi:10.1371/journal.pone.0040498.t001
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Altered Survival Signaling
Many of the hub genes belong to focal adhesion and signaling

pathways mediated by TNF receptor, TGFB, insulin and

neurotrophin, all of which are involved in cell survival and death.

Focal adhesion pathway was significantly activated, because ECM

(FN1), integrin (ITGA5B), adaptor protein (FLNA) and FA unit

(PXN, FYN and CSK) were all up-regulated. The assembly of

FAK/FYN/PXN/p130cas establishes the essential four CAMs

necessary for FA stabilization and integrin signaling. CSK can also

be recruited to FA by FAK and PXN, because FAK and PXN

contain binding sites for CSK. Fibrillar Ab can induce integrin/

FA downstream signaling that mediate cell cycle activation and

cell death through different pathways involving MAPK, PI3-K

and GSK3B. Signaling inputs from ECM and growth factor

receptors to the FA unit in the cytoplasm can also regulate cell

cycle progression. The sum of all these inputs determines the

expression level of genes for cell survival and/or cell cycle

progression through numerous transcriptional regulators including

FOXO(FOXO1, FOXO4) and TCF(TCF3). In addition, some

CAMs have been shown to shuttle between FA and nucleus to

regulate gene expression, including CDK5, ERK, GSK3B and

COPS5 (JAB1) and members of the LIM family of proteins (PXN

and Trip6), many of which have been implicated in the molecular

pathology of neurodegenerative diseases [96].

Some genes in insulin and neurotrophin signaling pathways

were present in the hub network, including IRS-1, PIK3R1,

AKT1, FOXO1, SHC1, SOS2, RAF1, MAP2K1, MAPK1,

MAPK3, RPS6KA5, NFKBIA, GSK3B, CALM1, and PLCG1,

which are involved in glycolysis, cell survival, regulation of

cytoskeleton, and formation of axon and synapse. Genetic variants

of nerve growth factor (NGFB), brain-derived neurotrophic factor

(BDNF) and their receptors have been linked to AD [97]. Genetic

variants of insulin signaling genes (including SOS2) have also been

associated with AD [34]. In this work, several dys-regulated

downstream genes in insulin and neurotrophin signaling pathways

including IRS-1, PIK3R1, SOS2, GRB2, RPS6KA2, BCL2,

NFKBIA, GSK3B and PLCG1 were also genetically associated

with AD. In addition, up-regulation of genes in TGFB signaling

pathway was observed, including BMPR1B, SMAD1, SMAD5,

SMAD9, TGFBR1, TGFBR2, SP1 and EP300, which are

involved in neurogenesis, apoptosis and cell cycle re-entry. Up-

regulation of genes directly involved in apoptosis was also

Figure 5. Mechanistic illustration of the adaptation strategy reflected in the hub network via manual integration of literature and
KEGG pathways (part 1). The ‘‘healthy’’ neurons respond to the AD-specific microenvironment through the reduction of neuronal and synaptic
activities. Relevant functional categories for neuronal and synaptic activities include energy metabolism, RNA splicing, RNA transport and translation,
cellular recycling system, cytoskeleton (axonal transport), pre- and post- synaptic activities. Hub genes are indicated by black color. Closely related
non-hub genes in the perturbed subnetwork are indicated by blue color. Transcription factors and kinases whose targets or substrates were enriched
in the subnetwork are indicated with red color. Cellular functions are indicated by green color.
doi:10.1371/journal.pone.0040498.g005
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observed. In particular, TNF- receptor may be a crucial contrib-

utor to cell death, since a principal caspase pathway from CASP8

to CASP7 can directly contribute to neuron loss in AD brain [98],

and CASP7/8 can also increase Ab production via direct cleavage

of APP [99]. Consequently, Ab can trigger long-term death signals

via CASP7/8. In addition, increased expression of MAP3K14 and

TNFRSF1A can lead to activation of the IKK complex (IKBKB),

which is needed to phosphorylate IkB proteins (NFKBIA) to mark

them for the ubiquitination pathway [100]. Since IkB proteins

inhibit NF-kB, NF-kB will thus have enhanced activation and may

have downstream effects on inflammation, cell proliferation, and

apoptosis [101,102]. Several genes related to cell cycle re-entry

were also dys-regulated, including RB1, MCM7, CDK2, BRAC1

and PCNA, which may provide an alternative pathway for

neuronal cell death.

Recent data suggest that specific HATs and HDACs are

required for memory formation [103]. CREBBP, EP300(p300/

CBP) and KAT2B(p300/CBP-associated factor, PCAF) can

together function as a histone acetyltransferase (HAT) to promote

transcriptional regulation, and defects in their HAT activity

appeared to cause problems in long-term memory formation

[104,105,106]. PCAF homozygous KO (knock out) mice displayed

short-term memory impairment at adolescent age (2 months) and

gradually increasing deficits in long-term memory at later stage (6

to 12 months) [107]. Moreover, learning-induced up-regulation of

CBP, p300, and PCAF has recently been associated with elevated

H2B and H4 acetylation during spatial-memory consolidation

[108]. In addition, HDAC1 activity seems to be neuroprotective

[109]. The Notch (Notch1/2) intracellular domain (NICD)

translocates to the nucleus, where it forms a complex with the

DNA binding protein CSL, displacing a histone deacetylase

(HDAC)-co-repressor (CoR) complex (HDAC1 and CTBP1) from

CSL. HATs (CREBBP, EP300 and KAT2B), components of an

activation complex, are also recruited to the NICD-CSL complex,

leading to the transcriptional activation of Notch target genes

which are important for learning and memory. Overall, up-

regulation of HATs and HDAC1 may play a protective role in the

consolidation of memory. Interestingly, NR3C1, AR and ESR1,

members of steroid hormone receptors (nuclear receptor subfamily

3), are associated with aging and genetic risk of AD. Both estrogen

and androgens can protect neurons from beta-amyloid toxicity via

steroid receptor activation (ESR1, AR) [110]. A high density of

glucocorticoid receptors (NR3C1) are contained in hippocampus

which is important for memory [111,112]. Glucocorticoids are

known to influence cognitive functions and high concentrations of

these steroid hormones can reduce neuron’s ability to survive

a variety of coincidental insults, including AD-associated neuro-

toxicity [113,114]. Thus, genetic variation of these three genes

may contribute to the development of AD by affecting their

protective roles.

Brain Region Specific Perturbation
As stated earlier, the degree of perturbation in gene expression

was different in the six brain regions. Overall, the most significant

Figure 6. Mechanistic illustration of the adaptation strategy reflected in the hub network via manual integration of literature and
KEGG pathways (part 2). The ‘‘healthy’’ neurons respond to the AD-specific microenvironment through alteration of survival signaling. Relevant
functional categories for survival signaling include focal adhesion signaling, insulin and neurotrophin signaling, TGFB signaling, apoptosis (TNF-
receptor signaling), cell cycle re-entry and genes related to amyloid and NFT formation. Hub genes are indicated by black color. Closely related non-
hub genes in the perturbed subnetwork are indicated by blue color. Transcription factors and kinases whose targets or substrates were enriched in
the subnetwork are indicated with red color. (other thanSP1 and YY1, these genes are also hub genes). Cellular functions are indicated by green color.
doi:10.1371/journal.pone.0040498.g006
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perturbation of the hub network was observed in MTG region

(Table S7A). HIP region displayed similar perturbation in several

functional categories, including the down-regulation of synaptic

vesicle cycle, cytoskeleton, NFT related genes and RNA transport

and translation. The dys-regulation of insulin and neurotrophin

signaling and cellular recycling system also displayed high

consistency in these two brain regions. The major difference in

these two regions was the significant up-regulation of focal

adhesion and TGFB signaling only in MTG region. This suggests

that these two brain regions adopt similar response mechanism

while higher level of stress likely exists in MTG region. The aging

related SFG region did not show significant down-regulation in

neuronal and synaptic activities. However, it still displayed certain

level of dys-regulation in the survival signaling pathways,

suggesting the existence of pathological condition in SFG region.

VCX region only displayed significant dys-regulation in synaptic

vesicle cycle, focal adhesion and cellular recycling system,

suggesting marginal pathological condition in this region. In

addition, energy metabolism related gene GAPDH was mainly

down-regulated in MTG, HIP and EC regions, consistent with the

more severe pathological condition in these three regions.

The Interplay between Aging and AD
In order to understand the interplay between aging and AD,

we examined the dys-regulation of the hub network in an aging

related microarray dataset GSE11882 (Table S7. A) [115].

Although gene expression in four brain regions was measured,

the dys-regulation of the hub network was mainly restricted to

SFG region during aging (slightly less perturbation in PCG

region). Interestingly, for most of the hub genes, the direction of

the dys-regulation was consistent in aging and AD, including

down-regulation of synaptic vesicle cycle, cytoskeleton, RNA

transport and translation and NFT related hub genes, up-

regulation of focal adhesion, TGFB signaling, HATs learning

and memory, TNFR signaling and cell cycle re-entry, as well as

dys-regulation of insulin and neurotrophin signaling. This

suggests that the most significant change of microenvironment

is in SFG region during aging, which is switched to MTG

region during the development of AD. The similar neuronal

response suggests similarity exists in the change of microenvi-

ronment, and in some sense, AD can be regarded as aging

spreading to more brain regions. Nevertheless, notable differ-

ence was observed, including the up-regulation of genes

involved in FA and nucleus (FA/N) shuttling and down-

regulation of APP related genes. This suggests that FA/N

shuttling genes are actively involved in neuronal response during

aging, and the low production of APP is part of the response

mechanism. In addition, consistent up-regulation in three brain

regions (SFG, HIP and PCG) was observed for FLNA, PXN,

BAG3, TNFRSF1A, CASP7, BMPR1B, SMAD9, CDK2 and

NFKBIA, suggesting a concerted effort among these signaling

genes on coping with aging-induced change of microenviron-

ment in multiple brain regions. Although some energy

metabolism related genes were not significantly dys-regulated

during aging, the observed similar adaptation is still likely

a response to the deficiency of energy sources. This could be

a common problem for the whole brain during aging. However,

the deficiency level may be less severe in other brain regions so

that systematic adjustment can be avoided. In AD, somehow

other pathological conditions make the deficiency problem more

prominent in MTG, HIP and a few other brain regions, which

triggers systematic response in those brain regions.

Perturbation Related to the Formation of Amyloid and
Tangle
In a recent experimental work, it was found that intra-neuronal

Ab level increased in Braak stages I to III but decreased

significantly in later stages [116]. In this work, we also found an

intriguing pattern of APP expression level (Table S7. A). APP
expression was significantly down-regulated in SFG region during

aging, up-regulated in MTG region at the ‘‘intermediate’’ stage,

and again down-regulated at the late stage. It’s likely that APP

expression level is a critical component of the adaptation strategy.

It has been proposed that Ab can be protective due to its role in

the enhancement of synaptic transmission. However, high

concentration of Ab can trigger the formation of toxic oligomers

and amyloid. Therefore, the purpose of higher APP level at the

‘‘intermediate’’ stage may be to enhance synaptic transmission,

and the purpose of lower APP level at late stage may be to avoid

excessive amyloid accumulation. Nevertheless, exactly how APP

expression is regulated by SP1 and other transcription factors and

how it’s connected to focal adhesion and other signaling pathways

can not be easily deciphered from the microarray data. Beyond

APP expression, RTN4 [117], ATXN1 [118] and PKC [119,120],

which can regulate the proteolytic processing of the APP by BACE

(Figure 5), were also found dys-regulated, adding another layer of

complexity to the understanding amyloid formation. STAT3 can

bind to the promoter region of BACE and increase the expression

of BACE, leading to higher production of Ab [121]. In addition,

differential expression and phosphorylation of JUN has been

observed in AD [122,123], and JUN can participate in the cascade

of events leading to increased APP and b-amyloid deposition in

AD [124].

14-3-3 proteins (YWHAB, YWHAH, YWHAQ, and YWHAZ)

have been found in NFT [125]. Among them, YWHAZ is the

most extensively studied, its polymorphism is associated with AD

[126,127], and it can stimulate tau phosphorylation by GSK3B

[128]. In addition, YWHAB is associated with the development of

the 3-repeat NFT in AD [129], and YWHAQ can mediate tau

phosphorylation by SGK1 [130]. 14-3-3 proteins were signifi-

cantly down-regulated at the ‘‘intermediate’’ and late stages.

Insignificant perturbation of 14-3-3 protein in SFG and VCX

regions may partially explain why VCX is pathologically spared.

The decreased level of CSNK2A1 has been reported to be

associated with the aberrations in tau phosphorylation [131].

Unique up-regulation of CSNK2A1 in the VCX region may be

part of the resistance mechanism against tangle formation.

Another hub gene Syk can also phosphorylate tau [132].

Moreover, an important tau kinase GSK3B was significantly

down-regulated at the ‘‘intermediate’’ stage but up-regulated at

the late stage, suggesting its critical role in NFT formation. To

further examine the events related to NFT formation, we analyzed

gene expression in two additional microarray datasets where

tangle-bearing and tangle-free neurons were compared (Table
S7. B) [9,133]. We observed significant dys-regulation of seven

hub genes in one dataset and two more in the other dataset,

among which two were present in the insulin signaling pathway,

including the up-regulation of IRS1 and FOXO1. This suggests

that the energy sensing pathway is intimately connected to the

accumulation of NFT [71]. This could be a self-killing strategy

when neurons sense a highly stressful microenvironment. The

down-regulation of PPP2CA which can dephosphorylate tau may

also be part of this self-killing strategy. In addition, the dys-

regulation of RAF1 and NFKBIA suggests the involvement of

neurotrophin signaling pathway in tau regulation.

Perturbation of a Hub Network in AD
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Critical Genes in AD Pathogenesis
Based on the above analyses of the hub network, we selected

a few genes that may play more important roles in AD

pathogenesis (Table S7. C). Since the reduction of neuronal

and synaptic activities is likely the consequence of adaptation, we

mainly focused on the upstream genes involved in survival

signaling. Six genes in focal adhesion pathway were significantly

correlated with AD progression, including FN1, ITGB5, FLNA,

PXN, FYN and CSK. In addition, FYN and CSK are Alzgene.

Four genes in insulin signaling pathway were selected, among

which IRS1, PIK3R1, SOS2 are Alzgene and dys-regulated

during aging. FOXO1 were significantly correlated with AD

progression and also dys-regulated during aging. Five genes in

neurotrophin signaling were selected, among which SOS2,

NFKBIA, GSK3B are Alzgenes. SOS2 is an important neuro-

trophin/insulin signal mediator. GSK3B regulates cytoskeleton

and the formation of axon and synapse, and it is likely even more

critical because it’s a major tau kinase. Among the five selected

genes involved in apoptosis, TNFRSF1A, CASP8, NFKBIA were

Alzgene and also dys-regulated during aging, and TNFRSF1A and

NFKBIA were significantly correlated with AD progression.

NFKBIA is of special interest because it’s involved in both TNF-

receptor signaling and neurotrophin signaling. HATs (KAT2B,

CREBBP and EP300) and HDAC (HDAC1) are related to

learning and memory, and all four genes were significantly

correlated with AD progression and also dys-regulated during

aging. Steroid hormone receptors (nuclear receptor subfamily 3)

NR3C1, AR and ESR1 protect neurons from beta-amyloid and

AD-associated neurotoxicity, and all three genes are Alzgene and

dys-regulated during aging. Additionally, PPP2CA can dephos-

phorylate tau and was significantly correlated with AD pro-

gression. Housekeeping gene GAPDH as an Alzgene was

significantly correlated with AD progression and was also found

in amyloid plaques and tangles. Finally, the importance of APP,

MAPT and YWHAZ was also supported by multiple evidences.

Comparison with Previous Studies on AD Co-expression
Network
In a recent work, Liu et al. conducted a study to find active

subnetworks using their novel scoring function based on combin-

ing co-expression information of the edges and the differential

expression of the nodes in these six brain region [21]. They

initiated the search for significant subnetwork from a pre-built AD

related PPI network via prior AD knowledge. Here we attempted

de novo discovery of significant subnetwork in the entire human

protein interactome. In both studies, it was found that perturbed

subnetworks in different brain regions were significantly over-

lapped with each other, suggesting that some important common

features may be shared among different brain regions. However,

Liu et al. mainly focused on their newly developed algorithm, and

they started their search on a pre-built AD related network. In

addition, they interpreted the significant subnetwork by comparing

with known Alzheimer’s pathway in KEGG, which may cause the

loss of information because unknown AD genes may also have

significant effect on AD. On the other hand, our analysis is more

comprehensive and less biased, and our hub network is proven to

be very informative of AD pathogenesis (Table S8).
In another work, Ray et al. constructed an unweighted co-

expression network by using gene expression data for the EC

region to discover important hub genes [134]. They identified 107

hub genes, among which only NFKBIA and LNX1 gene are

shared with the hub genes identified in this work. This low overlap

is primarily due to the difference in the topological structures

between co-expression network and PPI network and heteroge-

neity in transcriptome data. Due to the high noise nature of omics

data, integrating multiple sources of information is generally

preferred over relying on a single source of omics data, which is

why we combined expression information with PPI information to

identify critical genes. Apart from that, different analytical

methods and criteria for the hub gene selection may also

contribute to the low overlap. Compared to the work by Ray et

al., our work provided more extensive evidence on the biological

relevance of the identified hub genes (listed in Table S8).
Nevertheless, when comparing functional enrichment results, the

perturbed subnetworks found in both studies are associated with

metabolism and biosynthesis, transcription, intracellular signal

transduction, protein kinase and phosphorylation, cell organiza-

tion, protein transport and neuron development.

In this work, we conducted comprehensive network analyses on

the dys-regulation of gene expression in six brain regions of

Alzheimer’s disease. We found perturbed subnetworks in these six

brain region which were significantly overlapped with each other.

Based on the perturbed subnetworks, we further identified 142

hub genes, 136 of which formed a connected network. The

biological relevance of the hub network has been supported by

multiple lines of evidence. Many of the genes in the hub network

were components of plaques or tangles based on previous

proteomics studies. In the meanwhile, many of the genes were

linked to aging or genetic risk of AD. By examining the correlation

of each hub gene’s expression with MMSE and NFT scores that

quantifies AD progression, we found that this hub network may

play a vital role in the disease progression. In addition, AD-specific

perturbation of the hub network has been confirmed by

comparing with other related diseases. Most importantly, we here

propose that the hub network reflects the adaptation strategy of

‘‘healthy’’ neurons in AD specific micro-environment.

Methods

Data Processing for Gene Expression and Human Protein-
protein Interaction
All microarray data were downloaded from Gene Expression

Omnibus (GEO). In the major dataset GSE5281 [5], ‘‘healthy’’

neurons were collected by laser-capture microdissection from six

different brain regions which are either histo-pathologically or

metabolically relevant to AD. The study population consisted of

13 normal elderly controls (NED) and 10 AD patients for

entorhinal cortex (EC), 13 NEDs and 10 AD patients for

hippocampus (HIP), 12 NEDs and 16 AD patients for middle

temporal gyrus (MTG), 13 NEDs and 9 AD patients for posterior

cingulate cortex (PC), 12 NEDs and 19 AD patients for primary

visual cortex (VCX), and 11 NEDs and 23 AD patients for

superior frontal gyrus (SFG). Other major datasets included

GSE15222, GSE1297, GSE6613, GSE11882 for late-stage AD

cortex, disease progression of AD in HIP region, AD blood and

aging, respectively. For protein interaction data, we utilized

a dataset of literature-curated human protein-protein interactions

(PPIs) from the Human Protein Reference Database (HPRD)

[135], comprising 36504 interactions among 9386 genes at the

time of download.

Preprocessing of microarray data was performed in R (http://

cran.r-project.org/), a freely available platform, using microarray-

specific packages available through Bioconductor (http://www.

Bioconductor.org/). Raw data (CEL files) were processed with the

‘‘mas5’’ function in the ‘‘affy’’ library of Bioconductor to achieve

global scaling with target intensity of ‘‘150’’ for all probe sets.

Probe sets called in fewer than 10% of total arrays with the

‘‘mas5calls’’ function in the ‘‘affy’’ library were considered
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unreliable. Probe sets not reliably detected in at least three brain

regions were removed from further analysis. Control probe sets

and probe sets not associated with known genes were also removed

from further analysis. If multiple probe sets represented the same

gene, the probe set with the highest variance was used. The

Affymetrix probe set IDs and HPRD gene symbols were mapped

to Entrez Gene IDs. For HPRD, self-loops were removed, and

proteins without expression value were also removed. The

remaining largest connected component was kept as the PPI

network for further analyses. Expression matrix was reduced to

genes present in the PPI network and processed for differential

expression by employing the two class Linear Models for

Microarray Data (LIMMA) with the Limma package in R [28].

Identification of Significantly Perturbed Subnetworks
A network search algorithm is required to find significantly

perturbed subnetworks. We applied a heaviest induced subgraph

algorithm (Heinz) that computes optimal and suboptimal solutions to

the maximal-scoring subgraph (MSS) problem using integer linear

programming [24]. Before searching for significantly perturbed

subnetworkswithmaximalaggregatedscores,each individualgenein

the network was assigned to a differential significance score based on

the rawP-values calculated fromdifferential expressionanalysis.The

distribution of the raw P-values can be considered as a mixture of

signal and noise, where the signal component is assumed to be

Beta(a,1) distributed, and the noise is B(1,1) = uniform (0,1)

distributed (a beta-uniform mixture (BUM) model). Thus, the

differential significance score is given as.

SFDR xð Þ~ log
axa{1

ata{1

� �
~(a{1) log xð Þ{ log t FDRð Þð Þð Þ

where x represents the raw P-values, a is the maximum-likelihood

estimation of the shape parameter for the BUM model, which

indicates the signal component is equal to the B(a,1) density, and t
is the significance threshold, which controls the FDR for the

positively scoring P-values and fine-tunes the discrimination of

signal and noise. P-values below the threshold (signal) will score

positively whereas those above the threshold (noise) will be

assigned negative scores. First, we fitted a beta-uniform mixture

(BUM) model on the entire set of raw P-values of differential

expression, from which the maximum-likelihood estimation of the

fitted parameters for the BUM model can be obtained. For each

brain region, we then scanned a set of FDRs and selected a FDR

that assigns approximately 10% of the nodes on the PPI network

as positively scoring signal component. The resulting FDR was

0.00009, 0.0004, 0.0008, 0.002, 0.01 and 0.05 for MTG, EC,

HIP, PC, SFG and VCX region, respectively. Finally, based on

the differential significance scores and the PPI network, signifi-

cantly perturbed subnetworks were searched with the Heinz

algorithm. An outline of the Heinz algorithm is as follows: First, all

positive and connected nodes are aggregated into meta-nodes.

Then, by defining an edge score based on the scores of nodes

connected by the edge, the node scores are transferred to the

edges. Based on the edge scores, a minimum spanning tree (MST)

is then calculated. Lastly, all paths between positive meta-nodes

are calculated based on the MST to obtain the negative nodes

between the positives. Based on these negative nodes, again a MST

is calculated from which the path with the highest score, regarding

node scores of negative nodes and the positive meta-nodes

connecting them, gives the final approximated subnetwork. All

computational algorithms are implemented in the R BioNet

package. For more detailed information on the algorithm and the

software package please refer to the original paper [136].

Identification of Hub Genes and Discovery of a Hub
Network
For each brain region, the genes at the top of degree distribution

(.=90% quantile) in the significantly perturbed subnetworks

were defined as hub genes. Those hub genes with pairwise

interactions in at least one brain region’s perturbed subnetworks

were connected to form a hub network.

Functional Enrichment Analyses
To identify the biological functions of the significantly perturbed

subnetworks, the genes within the perturbed subnetwork in each

brain region were analyzed by various tools, including Database

for Annotation, Visualization and Integrated Discovery (DAVID)

for Gene Ontology (GO) enrichment [137], WEB-based Gene Set

Analysis Toolkit (WebGestalt) for transcription factor binding sites

(TFBS) enrichment [138], and kinase enrichment analysis (KEA)

for kinase substrate enrichment [139]. In the enrichment analyses,

more than 5 genes present and p,0.01 for a category are required

to be considered significant. For the hub network, we also

performed KEGG (Kyoto Encyclopedia of Genes and Genomes)

pathway enrichment using DAVID, and drug target enrichment

analysis using ToppFun [140], which integrates Stitch, CTD and

Drug Bank databases. Enriched GO-categories were organized

into a network by EnrichmentMap [141] for better visualization,

where the edges were defined by the overlap coefficient between

the GO categories (overlap coefficient cut-off 0.5).

Perturbation of the Hub Network in AD and Other
Related Diseases
We downloaded microarray datasets from GEO for other

related diseases, including GSE20168, GSE20291, GSE20292

[142] and GSE7621 [143] for Parkinson’s disease (PD), GSE3790

[144] for Huntington’s disease (HD), and GSE12654 [145] and

GSE17612 [146] for schizophrenia (SZ). All data were processed

following the same procedure described above. In order to validate

the robust perturbation of the hub network, we chose another AD

dataset GSE15222 with the largest sample size so far (364 subjects

in total) [147]. For this dataset, only series matrix file was

available. Probe sets with negative or missing expression value in

more than 10% of the total array were removed. For probe sets

with negative or missing expression values in less than 10% the

total array, missing values were imputed with the k-nearest

neighbor algorithm (k-NN). 115 genes from the hub network were

found after removal, including 19 genes with negative or missing

values, which were filled in with the imputed values. Differential

expression moderated t-statistics were calculated using LIMMA

and the significance of hub network perturbation was determined

by taking the average of the absolute moderated t-statistics of all

genes within the hub network. Moderated t-statistics lead to P-

values in the same way as ordinary t-statistics do except that the

degrees of freedom are increased, reflecting the greater reliability

associated with the smoothed standard errors.

Correlation between the Hub Network and AD
Progression
To investigate the correlation between the hub network and AD

progression, we used microarray dataset GSE1297 [148], which

studied hippocampal gene expression of subjects with varying AD

severity. Subjects were initially classified into four groups, termed

‘‘Control’’ (MMSE .25), ‘‘Incipient AD’’ (MMSE 20–25),
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‘‘Moderate AD’’ (MMSE 14–19), and ‘‘Severe AD’’ (MMSE

,14). Microarray data (series matrix file) was processed following

the same procedure according to the original paper. Pearson

correlation analysis was performed for each gene of the hub

network against both MMSE and NFT measures of each subject.

When multiple probe sets correspond to the same gene, the probe

set with the most significant correlation with MMSE or NFT

scores was used. Genes were called significant if their expression

values correlates with the MMSE, NFT, or both across all subjects

at P-values ,=0.05 (significance threshold was set according to

the original paper).

Supporting Information

Figure S1 A detailed flowchart for the analysis pro-
cedure. The calculated differential expression p-values were

fitted to a BUM model for noise reduction. Based on the fitted

parameters, nodes in PPI network was scored and maximal scoring

subnetwork was obtained by Heinz algorithm. From these

perturbed subnetworks, the hub genes were extracted, which then

formed a connected hub network. The biological relevance of the

hub network was supported by additional analysis.

(PDF)

Figure S2 An example of the BUM model fitting. For EC
region, the BUM model fits nicely with the empirical P-value

distribution. Left: The histogram of the observed P-values (black

color) shows good consistency with the expected densities under

the fitted model (red line). The blue line indicates the fraction of P-

values derived from the uniform noise model. Right: The good

fitting of the model has also been confirmed by a Q–Q plot of the

fitted distribution versus the observed P-value distribution.

(PDF)

Figure S3 A Venn diagram showing the overlap of
perturbed subnetworks in five brain regions (VCX
region excluded due to technical difficulty in plotting).
The total number of nodes (edges) are 345 (514), 299 (422), 301

(447), 263 (332), 304 (447), and 283 (390) for MTG, EC, HIP, PC,

SFG and VCX, respectively.

(PDF)

Figure S4 An example of the perturbed subnetworks.
The subnetwork perturbed in HIP region is shown. Up-regulated

genes are indicated by red color. Down-regulated genes are

indicated by green color.

(PDF)

Table S1 Enrichment of transcription factor targets in
the perturbed subnetworks. The analysis was performed by

a web tool named WebGestalt. The search for conserved

transcription factor binding sites and anonymous motifs was

restricted to a sequence window corresponding to 62 kb of the

transcription start site. The subnetwork in each of the six brain

regions was submitted to WebGestalt and the enrichment p-values

of the binding motifs were returned. Only motifs with p-values

,0.01 in at least 3 brain regions were selected.

(PDF)

Table S2 Enrichment of kinase substrates in the
perturbed subnetworks. The analysis was performed by

a web tool named KEA (kinase enrichment analysis). The

subnetwork in each of the six brain regions was submitted to

KEA and the enrichment p-values of the kinases were returned.

Only kinases with p-values ,0.01 in at least 3 brain regions were

selected.

(PDF)

Table S3 Perturbation of the hub network in AD and
other related diseases including Parkinson’s disease
(PD), Huntington’s disease (HD) and schizophrenia (SZ).
The numbers of genes with detected expression value in each

microarray dataset are provided. The significance of perturbation

was calculated by taking the average of the absolute t statistics of

all genes in the hub network. A significance threshold of 0.05 was

chosen in this work.

(PDF)

Table S4 Genes in the hub network constituting amy-
loid plaques or neurofibrillary tangles according to
previous proteomics studies. Genes within both categories

are indicated by bold font.

(PDF)

Table S5 Genes in the hub network significantly
correlated with AD progression according to MMSE
sore or NFT score. P,=0.05 is considered significant. Genes

correlated with both MMSE and NFT scores are shown in bold.

(PDF)

Table S6 Genes in the hub network associated with
genetic risk (ALZgene database) and aging (GenAge
database). Genes within both categories are indicated by bold
font.

(PDF)

Table S7 A) Dys-regulation of the hub genes at three stages,

including aging, intermediate stage with ‘‘healthy’’ neurons in AD

specific environment, and late stage AD. Gene dys-regulation is

presented by–log(p-value). Up-regulation is indicated by positive

values and down-regulation is indicated by negative values.

Significantly dys-regulated genes (p,0.01) are marked as red for

up-regulation or green for down-regulation. B) Dys-regulation of

genes in two microarray studies focused on the comparison NFT-

bearing and NFT-free neurons. 63 genes in the perturbed

subnetworks of the six brain regions were found dys-regulated in

the Kramer 2008 study, including 7 hub genes as indicated by

color-filled cells (red for up-regulation and green for down-

regulation), The corresponding dys-regulation of these 63 genes in

the six brain regions is provided as a reference. In another study

(GSE4757), only a small number of dys-regulated genes were

found, and the two dys-regulated hub genes are listed. C) Critical
hub genes involved in survival signaling. The evidence for

supporting the selection is provided, including the constituents of

amyloid or tangle, correlation with AD progression based on

MMSE or NFT score, genetic risk (ALZgene) and aging-related

genes. Genes marked as red are discussed in the main text.

(XLSX)

Table S8 A detailed comparison between this work and
a previous work by Liu et al. on the network analysis of
AD transcriptome.

(PDF)
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