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Integrated digital pathology and transcriptome
analysis identifies molecular mediators of T-cell
exclusion in ovarian cancer
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Close proximity between cytotoxic T lymphocytes and tumour cells is required for effective

immunotherapy. However, what controls the spatial distribution of T cells in the tumour

microenvironment is not well understood. Here we couple digital pathology and tran-

scriptome analysis on a large ovarian tumour cohort and develop a machine learning

approach to molecularly classify and characterize tumour-immune phenotypes. Our study

identifies two important hallmarks characterizing T cell excluded tumours: 1) loss of antigen

presentation on tumour cells and 2) upregulation of TGFβ and activated stroma. Furthermore,

we identify TGFβ as an important mediator of T cell exclusion. TGFβ reduces MHC-I

expression in ovarian cancer cells in vitro. TGFβ also activates fibroblasts and induces

extracellular matrix production as a potential physical barrier to hinder T cell infiltration.

Our findings indicate that targeting TGFβ might be a promising strategy to overcome T cell

exclusion and improve clinical benefits of cancer immunotherapy.
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The clinical success of cancer immunotherapies such as
immune checkpoint inhibitors has revolutionized traditional
cancer treatment1. By targeting the immune checkpoint

regulators including CTLA-4 and the PD-1/PD-L1 axis, these
immunotherapies promote cytotoxic killing of cancer cells by
enhancing the function of effector T cells. Despite impressive
efficacy demonstrated in subsets of patients with melanoma,
NSCLC, urothelial bladder cancer and renal cell cancer2–5, sig-
nificant challenges still exist in this field. Dramatic and durable
responses were mainly observed in subsets of patients with a pre-
existing T-cell immunity in tumours6. As such, other steps in
the tumour immunity cycle may influence the effectiveness of
immunotherapies based on checkpoint blockade. These include
antigen presentation and T-cell priming, the capacity of tumour
infiltration by functional CD8+ T effector cells, as well as accu-
mulation of immunoregulatory mechanisms that evolved to protect
tissue integrity from exuberant immune responses7. Overcoming
mechanisms that impede immune activation may thus enhance the
potential of cancer immunotherapy.

CD8+ T cells are the main players in eradicating cancer cells in
most of the immunotherapy settings. CD8+ T cells recognize
tumour-associated antigens through the major histocompatibility
complex I (MHC-I)/T-cell receptor (TCR) complex and mediate
cytotoxic killing of tumour cells. Given that effective cytotoxic
killing requires direct contact between CD8+ T cells and tumour
cells, it has been increasingly recognized that different CD8+ T-
cell distributions in the tumour microenvironment (TME) may
elicit different responses to immunotherapy8,9. Several studies
have also shown that the numbers of tumour-infiltrating CD8+

T cells are associated with good prognosis in ovarian cancer10–12.
Three basic tumour-immune phenotypes have been described
previously13, including (1) the inflamed/infiltrated phenotype, in
which CD8+ T cells infiltrate the tumour epithelium; (2) the
immune-excluded phenotype, in which infiltrating CD8+ T cells
accumulate in the tumour stroma rather than the tumour epi-
thelium and (3) the immune desert phenotype, in which CD8+

T cells are either absent or present in very low numbers. These
histologically established tumour-immune phenotypes provided a
useful albeit subjective framework to profile immune contexture
in solid tumours. However, it remains challenging to system-
atically define the tumour-immune phenotype of most cancer
patients due to the highly heterogeneous and complex nature
of immune cell infiltration and distribution. More importantly,
the molecular features and mechanisms that shape the spatial
distribution of tumour-infiltrating CD8+ T cells are not well
understood.

In this study, integrating digital pathology with transcriptome
analysis in 370 ovarian tumour tissues from the ICON7 Phase III
clinical trial14, we employ a machine-learning approach to classify
and molecularly characterize tumour-immune phenotypes in
ovarian cancer. Using this approach, we are able to identify
molecular features associated with distinct immune phenotypes.
Further, our work identifies TGFβ as an important molecular
mediator of CD8+ T-cell exclusion in ovarian cancer. Our find-
ings suggest that targeting the TGFβ pathway might be a pro-
mising therapeutic strategy to overcome T-cell exclusion from
tumours and optimize responses to cancer immunotherapy.

Results
Infiltration of CD8+ T cells follows a continuum. In this study,
we first set out to build a set of quantitative metrics for char-
acterizing immune phenotypes in ovarian cancer. CD8 immu-
nohistochemistry (IHC) with a haematoxylin counterstaining was
performed on 370 archival tissues (treatment-naive specimen)
from a subset of patients with ovarian cancer enrolled in the

ICON7 trial14,15. A digital image analysis algorithm was devel-
oped to quantify CD8+ T-cell densities in the tumour epithelium
versus stroma compartment. Specifically, with independent
curations by a pathologist, we designed an algorithm to distin-
guish cells of the ovarian tumour epithelium from those of
the stroma, based on the shape and size of cell nuclei from the
haematoxylin staining. With a robust distinction between the
tumour epithelium areas and stroma areas, this algorithm
quantified the total CD8+ T-cell count as well as CD8+ T-cell
counts per tumour epithelium and stroma area (Fig. 1a, “Meth-
ods”). To better capture and quantify the CD8 infiltration pat-
terns, we converted these CD8 scores into polar coordinates
defining two new quantitative metrics: (1) the quantity of CD8+

T cells and (2) the spatial distribution of CD8+ T cells (“Meth-
ods”). Next, we used these two digitally defined quantitative
metrics to profile the immune phenotype of each tumour using a
two-dimensional map (Fig. 1b). Representative tumours of the
infiltrated, excluded and desert immune phenotypes, manually
defined by a pathologist, were highlighted to validate the two
digital metrics, with desert tumours having low CD8+ T-cell
quantity (R score), and excluded versus infiltrated tumours dif-
fering in the spatial distribution of CD8+ T cells (θ score). The
distinct patterns of CD8+ T-cell distribution in digitally denoted
stroma versus tumour epithelial areas of these selected tumours
from Fig. 1b are illustrated in Fig. 1c. Furthermore, our results
demonstrated that both total CD8+ T-cell quantities and their
spatial distribution in the TME are more on a continuum rather
than discrete entities in the vast majority of tumours (Fig. 1b).
These results highlighted the necessity and advantages of using
our digitally devised two-dimensional quantitative metrics to
define the immune phenotype of individual ovarian tumours.

Immune-excluded tumours are associated with poor prognosis.
We next explored if a gene expression-based molecular classifier
could be developed with a machine-learning approach to char-
acterize tumour-immune phenotypes. Figure 2a summarizes the
development workflow of our analysis. In this approach, tran-
scriptome analysis was integrated with the digital pathology
analysis on the same set of samples from the ICON7 trial. Using a
training set of 155 for which we have digital pathology scores, we
identified 352 genes whose expression can be predicted by the
quantity and/or spatial distribution of CD8+ T cells using a
random forest regression model (“Methods”, Supplementary
Fig. 1a–c and Supplementary Data 1). Among these genes, 103
genes were associated with total CD8+ T-cell quantity, 56 genes
varied in expression by spatial CD8+ T-cell distribution and 193
genes were associated with both total quantity and spatial dis-
tribution (Fig. 2b and Supplementary Fig. 1c). Focusing on the
159 genes that are exclusively associated with either the quantity
or spatial distribution of CD8+ T cells, we performed consensus
clustering on the 155 samples and identified 6 clusters with dis-
tinct molecular profiles (“Methods”, Supplementary Fig. 1d–f).
These six clusters could each be readily assigned to one of the
three previously defined tumour-immune phenotypes, i.e., infil-
trated, excluded and desert, given their association with
low versus moderate-to-high total CD8+ T-cell quantity, or with
CD8+ T-cell enrichment in stroma versus tumour cells. Next, we
built a 157-gene classifier to distinguish these three tumour-
immune phenotypes, by applying the prediction analysis of
microarrays (PAM) approach16 to the training set (Supplemen-
tary Fig. 2, “Methods”). We applied this classifier to the
remaining 215 tumour samples from the ICON7 collection
(Fig. 2c) as an independent testing set. From the ICON7 testing
set, 196 out of the 215 samples (91%) could be confidently
classified, among which 64 tumours as infiltrated (30%), 44 as
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excluded (20%) and 88 as desert (41%) (Fig. 2c). CD8 IHC data
and digital pathology analysis were only available for 122 out
of the 215 tumour samples from the testing set. The two-
dimensional metrics defining CD8+ T-cell quantities and dis-
tribution for these 122 samples confirmed that the classifier
assigned them to an appropriate immune phenotype (Fig. 2d,
right panel). We also selected a subset of 114 samples and
compared the tumour-immune phenotypes predicted by the 157-
gene molecular classifier with those manually annotated by a
pathologist. The results were highly concordant for excluded
tumours, but the concordance dropped for infiltrated and desert
tumours due to the arbitrary nature of the pathologist cut-offs
defining the infiltration based on the number of cells (Supple-
mentary Fig. 2d).

Four clinically and biologically relevant molecular subtypes,
i.e., immunoreactive (IMR), mesenchymal (MES), proliferative
(PRO) and differentiated (DIF), have been previously identified in
ovarian cancer17–19. We next assessed the relationship between
the tumour-immune phenotypes defined in this study and the
predicted molecular subtypes based on previously developed
classifier18,19. As shown in Fig. 2e, strong concordance was
observed between the two classification schemes in both the
training and testing datasets from the ICON7 study. Specifically,
the IMR molecular subtype was highly enriched for the infiltrated
immune phenotype, while MES tumours were highly enriched for
the excluded phenotype. Desert tumours were primarily of the
PRO or DIF molecular subtypes.

Finally, we found a significant association of the tumour-
immune phenotypes with clinical outcome in ovarian cancer. We
performed a Cox proportional hazards analysis on the dataset
from 172 patients enrolled in the chemo-control arm of the
ICON7 clinical trial with uniform follow-up. As shown in Fig. 2f,
patients with the T-cell excluded phenotype showed significant
shorter progression-free survival (PFS) as compared to patients
with the infiltrated or the desert phenotype. Similarly, we
demonstrated that the MES tumours, a molecular subtype that
significantly overlaps with the T-cell excluded immune pheno-
type, also showed significantly worse PFS compared to patients
with a PRO or DIF subtype. On the other hand, we did not

observe a significant difference in PFS between the infiltrated and
desert immune phenotypes in our study (Fig. 2f). This may be
partly due to the mixed intrinsic biology represented by the desert
immune phenotype. Supporting this notion is a trending
difference in PFS between the two molecular subtypes enriched
in the desert immune phenotype, the DIF and the PRO subtype of
ovarian cancer (Fig. 2f). Finally, we performed multivariate
analysis to include in several known prognosis factors in ovarian
cancer such as stage, age and debulking status. We confirmed that
patients with late-stage disease (stage III and IV) and sub-optimal
debulking status were significantly associated with poor prognosis
in the ICON7 cohort. However, the association between excluded
immune phenotype and poor prognosis remained significant even
after correction of the potential effect of these known prognosis
factors (Supplementary Fig. 3).

These findings highlighted the clinical relevance of the tumour-
immune phenotypes and provided insights into their association
with the intrinsic biological processes implicated in the molecular
subtypes.

Molecular features define distinct immune phenotypes. We
next identified key molecular features associated with the two
quantitative metrics defining distinct immune phenotypes.
Among the 159 genes identified in the ICON7 training set, we
found that the 103 genes associated with total CD8+ T-cell
quantities mostly constituted a cytotoxic signature (e.g., GZMA,
GZMB, GMZH, CD40LG) and served as the primary feature to
distinguish the desert tumours from the infiltrated and excluded
tumours (Fig. 3a). On the other hand, multiple distinct molecular
features were enriched among the 56 genes associated with the
CD8+ T-cell spatial distribution, including antigen presentation
(i.e., TAPBP, PSMB10, HLA-DOB), TGFβ/stromal activity (i.e.,
FAP, TDO2), neuroendocrine-like features (i.e., LRRTM3, ASTN1,
SLC4A4) and metabolism (i.e., UGT1A3, UGT1A5, UGT1A6)
(Fig. 3a). Interestingly, the infiltrated and excluded phenotypes
both exhibited a cytotoxic immune cell gene signature with
variable expression from medium to high but differed markedly
in the expression of antigen presentation and stromal genes
(Fig. 3a). Compared to the infiltrated tumours, the excluded
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tumours featured significantly higher expression of the TGFβ-
associated activated stromal genes and downregulation of antigen
presentation genes. Desert tumours, on the other hand, showed a
low cytotoxic gene signature as expected, but uniquely expressed
metabolic genes and genes suggestive of a neuroendocrine-like
state (Fig. 3a).

In order to gain a more comprehensive understanding of the
biology underlying these tumour-immune phenotypes, we next

performed differential pathway enrichment analysis on the full
transcriptome of the 351 ICON7 samples that were classified into
the distinct immune phenotypes (19 were unclassified). Based on
two databases, KEGG and Hallmark, molecular pathways
significantly enriched in each tumour-immune phenotype are
summarized in Fig. 3b and Supplementary Fig. 4. This analysis
confirmed the key biological features associated with the T-cell
excluded phenotype previously identified in Fig. 3a, including the
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downregulation of genes associated with antigen processing and
presentation (Fig. 3c), and a strong signal for TGFβ activity with
an increased expression of TGFβ ligands, a TGFβ response
signature in fibroblasts (F-TBRS8) and an overall increase in
genes indicative of active TGFβ signalling (Fig. 3d). Furthermore,
pathway analysis revealed additional molecular features char-
acterizing the distinct tumour-immune phenotypes. For example,
the infiltrated tumours showed enriched interferon-alpha and
gamma response (Fig. 3b, c), plausibly explaining the higher
expression of antigen presentation genes in this phenotype. We
also observed enrichment for the angiogenesis pathway in the
immune-excluded tumours (Fig. 3b and d). For the immune
desert tumours, we found that this phenotype was not only
featured by the lowest expression in interferon-gamma response
and antigen presentation compared to the other two tumour-
immune phenotypes, it also showed a significantly downregula-
tion of genes involved in chemotaxis (chemokine signalling)
(Fig. 3c), suggesting a defect in T-cell recruitment ability.
Interestingly, we also observed a slight but significant enrichment
for the WNT-β-catenin signalling pathway in the desert tumours
compared to infiltrated tumours. A correlation between the
activation of this pathway and low expression of the T-cell gene
signature has been previously reported in melanoma20.

To evaluate in more detail which specific immune and stromal
cell types are associated with a given immune phenotype, we
performed a cell-type enrichment analysis using xCell21, a gene
signature-based deconvolution method, on the bulk RNA-seq
datasets of ICON7 samples. The results confirmed many findings
from the machine-learning and pathway enrichment analyses,
including a high overall immune score in infiltrated and excluded
tumours, and the highest overall stromal score in the excluded
tumours (Fig. 3e). In addition, the deconvolution analysis was
suggestive of significant enrichment of many immune cell types,
including CD8+ T cells, regulatory T cells (Treg) and macro-
phages were significantly enriched in both of the infiltrated and
excluded tumours compared to the desert tumours. On the other
hand, the excluded tumours were specifically enriched for
fibroblasts (Fig. 3e).

Lastly, genetic components, such as tumour mutation burden
(TMB), neoantigen burden and high genomic instability,
including microsatellite instability-high (MSI-H) and deficient
mismatch repair (dMMR), have been shown to associate with
increased T-cell infiltration and better responses to checkpoint
inhibitors in some cancer types22–25. Due to limited tissue
availability in ICON7 collection for genome-wide mutation
profiling and HRD assessment, we performed targeted sequen-
cing on 88 oncogenes (including both BRCA1 and BRCA2) in
216 samples using a MMP-seq panel26. No significant association
was observed between BRCA mutation status and the tumour-
immune phenotypes (Supplementary Fig. 5a). To further
investigate the impact of genetic components in ovarian cancer
in the context of tumour-immune phenotypes, we took advantage

of the published ovarian cancer TCGA dataset for which both
bulk RNA-seq and whole-exome sequencing data are available.
Based on the RNA-seq data, we first predicted the tumour-
immune phenotypes for 412 high-grade serous (HGS) ovarian
tumour samples in the TCGA dataset by applying our 157-gene
molecular classifier (Supplementary Fig. 5b and Supplementary
Data 2). Our analysis revealed an overall absence of significant
association between tumour-immune phenotypes and TMB,
neoantigen load, dMMR or homologous recombination defi-
ciency (HRD) in HGS ovarian cancer, with an exception that a
slightly lower neoantigen load was observed in the desert
compared to the infiltrated tumours (Fig. 3f). Together, our
results suggest that these genetic alterations may not be a major
driver of the infiltration or exclusion of CD8+ T cells in HGS
ovarian cancer.

Excluded tumours have low MHC-I and high stromal FAP
expression. We next focused our efforts on gaining more
mechanistic insights into the biology underlying immune exclu-
sion. As we have shown earlier, our integrated digital pathology
and transcriptional analysis uncovered several key biological
pathways and immune features underlying the T-cell excluded
phenotype, including the upregulation of FAP, a marker of acti-
vated stroma and downregulation of antigen presentation genes.
To validate these findings and distinguish which cell compart-
ment underwent these molecular changes, we performed in situ
analysis on an independent ovarian tumour collection consisting of
84 ovarian tumour samples procured from a vendor. RNA-seq
transcriptome analysis was performed on these samples, and their
tumour-immune phenotypes were predicted based on the 157-gene
classifier developed in this study (Supplementary Fig. 5c, d).
Interestingly, we observed a much higher prevalence of the excluded
phenotype in the recurrent tumours compared to the primary
tumours (Supplementary Fig. 5c), suggesting immune phenotypes
may evolve post-chemotherapy or along with disease progression.
Further validation in a larger dataset of paired primary versus
recurrent tumours as well as treatment-naive versus post-
chemotherapy samples is needed to confirm these findings.
CD8 IHC, MHC-I IHC and FAP in situ hybridization (ISH)
analyses were performed on whole slides of these tumour sam-
ples. The digital pathology algorithm developed in this study was
applied to the CD8 IHC images to quantify the amount and
spatial distribution of CD8+ T cells. Representative staining
images of these markers from each of the three tumour-immune
phenotypes are shown in Fig. 4a. A summary of all IHC or ISH
scores for all samples is shown in Fig. 4b. Consistent with the
findings from the ICON7 dataset, we showed that the infiltrated
and excluded tumour-immune phenotypes have similar abundant
quantities of CD8+ T cells by in situ analysis (Supplementary
Fig. 5e), and similar CD8 mRNA expression levels by RNAseq
(Fig. 4c, top). However, they differed in their distribution patterns
in the tumour epithelium versus stroma area with a lower

Fig. 2 Molecular classifier for predicting the immune phenotypes in ovarian cancer. a A schematic illustration of the analytical workflow. b Genes
predicting the CD8+ T-cell quantity and/or the spatial distribution metrics as identified by random forest algorithm are filtered for their specificity to each
metrics (i.e., percent increase in MSE for R or θ > 3rd quantile). c Distribution of the predicted immune phenotypes based on gene expression in the training
(n= 155) and testing (n= 215) sets of ovarian tumour samples from the ICON7 study. d The predicted immune phenotypes were consistently
characterized by the two quantitative metrics based on digital pathology on CD8 IHC. Only samples with parallel RNA-seq data and digital pathology score
of CD8 IHC are presented; (left) training (n= 155 samples) and (right) testing sets (n= 122 samples). e Association of the tumour-immune phenotypes
and molecular subtypes in the training (n= 155 samples) and testing sets (n= 196 samples). Each bar displays the percentage of tumours of a particular
molecular subtype classified as infiltrated, excluded or desert. Unclassified tumours (n= 19) were excluded from the analysis. IMR immunoreactive, MES
mesenchymal, PRO proliferative, DIF differentiated. f Kaplan–Meier curve for progression-free survival (PFS) depicting the prognostic value of the tumour-
immune phenotypes (left) and the molecular subtypes (right) in the chemotherapy arm of ICON7 (n= 172 samples). P values are generated from a Cox
proportional hazard model, no multiple testing. c–e Source data are provided as a Source Data file.
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frequency of CD8+ cells found in the tumour epithelium of
excluded tumours (Fig. 4a, b, top).

Because neoantigen presentation and cytolytic T-cell response
is governed by MHC class I molecules, which present endogenous
antigens on the cell surface of almost all nucleated cells including
tumour cells, we hypothesized that the infiltration and distribu-
tion of CD8+ T cells might be more directly impacted by the
neoantigen presenting capability via the MHC class I molecules to
the CD8+ T cells. Indeed, in situ analysis confirmed that the
downregulation of MHC-I was associated with the excluded and a
subset of desert tumours (Fig. 4b, middle row). Additionally, FAP

ISH analyses showed strong enrichment in the stroma of
excluded tumours (Fig. 4b, bottom row). These findings were
consistent with the results from the RNA-seq transcriptome
analysis (Fig. 4c). More importantly, these in situ analyses
identified specific cell compartments contributing to these
observed modulations. For example, the downregulation of
MHC-I in the excluded tumours was restricted to the tumour
compartment. In contrast, the infiltrated tumours exhibited
strong and homogenous MHC-I staining on tumour cells.
On the other hand, the desert tumours exhibited both intra-
tumour and inter-tumour heterogeneity in MHC-I expression.

a

c d

b

f

e

Molecular_subtypes
Six_class
LYZ
EOMES
CD52
TIGIT
NLRC5
IL21R
LCK
ARHGAP30
CD80
AIM2
PTPRC
CCR5
SIRPG
RHOH
GZMA
TRGC1
CD7
PDCD1LG2
STAP1
CST7
GFI1
SLA2
GZMH
GZMB
CYTH1
BCL11B
SELL
MS4A1
FCRL1
CCR7
SCML4
TESPA1
CD40LG
GIMAP7
POU2AF1
NA
FCRL5
LAX1
EAF2
P2RY13
GIMAP6
GIMAP4
GMFG
MPEG1
GAB3
WIPF1
LRRC18
FAM196B
TLR6
CD74
IL12RB1
ZNF683
CRTAM
ADGRG5
VNN2
CECR1
HCST
SLAMF8
MYO1G
KCNAB2
CORO1A
PLCB2
ABI3
CD4
FERMT3
LST1
PIK3R5
SELPLG
CSF2RB
NCF4
SASH3
C1QB
C1QA
C1QC
LILRB4
LILRB1
CCL4
MSR1
FCGR3A
NA
SIGLEC14
ITGAM
SPI1
LAPTM5
HAVCR2
LAIR1
TYROBP
C1orf162
C3AR1
MS4A6A
RNASE6
SLA
SLC37A2
ALOX5AP
ITGAX
ITGB2
NPL
FPR3
CD86
TFEC
ARHGDIB
PLEK
LCP2
NCKAP1L
CD53
FYB
ITGA4
CXorf21
GPR65

Immune_phenotypes

DTX3L
SAMD9
PARP12
MX1
RIPK1
BMP2K
PSMB10
IL15RA
TRIM14
HLA−DOB
NOD2
TAPBP

BLOC1S2
ARMCX6
EFNA4
UGT1A3
UGT1A5
UGT1A6

RCN3
ZCCHC24
BMP4
TNFRSF8
TDO2
INHBA
NTM
FAP

C16orf71
NME9
FXN
SLC4A4
ASTN1
UNC80
LRRTM3
VSTM4
ZSWIM5
PRRT1
PTCH2

CMIP
ICAM3
KLRC2
JAKMIP1
AGAP2
CTSW
JAK3
PLXNC1
ANKRD44
NLRC3
CXCR6
AKNA
MICAL1

GZMH
GZMB
CD40LG

GZMA

HLA-DOB
TAPBP

FAP

Cytotoxic
effector functions 

Antigen presentation

TGFβ/stromal activity

Neuroendocrine like

Metabolism

Immune response

Antigen presentation
TGFβ/stromal activity
Neuroendocrine like

Metabolism

Immune response
Cytotoxic effector functions High/medium

High/medium
High
Low

Medium/low
Medium

High/medium
High/medium

Low
High
Low

Medium

Low
Medium

Low
Low
High
High

DesertExcluded

Z−score

-4
-2
0
2
4

Molecular_subtypes Specificity
R-specific
Theta-specific

DIF
IMR
MES
PRO

Six_class

Excluded_A

Infiltrated_A
Infiltrated_B
Infiltrated_C

Excluded_B
Desert

Immune_phenotypes

Excluded
Infiltrated

Desert

IFNα response
IFNγ  response

Myc targets v2
Oxidative phosphorylation

E2F targets

Myc targets v1
G2M checkpoint

DNA repair
mTORC1 signaling

Peroxisome
Fatty acid metabolism
IL-2 STAT5 signaling

Hypoxia

KRAS signaling up
Apical junction

Coagulation
Hedgehog signaling

TGFβ signaling
UV response DN

Myogenesis

EMT
Angiogenesis

0.00 0.25

Pathway log fold change

Excluded

Desert

Pathway log fold change

Androgen response

mTORC1 signaling

PI3K-AKT_mTOR signaling

Coagulation

G2M checkpoint

E2F targets

Apoptosis

KRAS signaling up

Complement

IL-2 STAT5 signaling

EMT

TNFα signaling via NFKB

TNFα signaling via NFKB

IL-6 JAK STAT3 signaling

IFNγ  response

IFNα response

Inflammatory response

Allograft rejection

P
at

hw
ay

 Z
-s

co
re

IFNγ response 
Antigen processing 

and presentation
Chemokine 

signaling
Wnt-β β catenin

signaling TGFβ β 1,2 and 3 F-TBRS Angiogenesis

Infiltrated/excluded

Infiltrated

TGFβ signaling

P
at

hw
ay

 z
-s

co
re

ICON7 xCELL analysis

TCGA-OV

M
ut

at
io

ns
/M

b

INF EXC DES

TMBNeoantigens

INF EXC DES

0

50

100

150

0.0

2.5

5.0

7.5

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

HRD dMMR

INF EXC DES INF EXC DES

Mutation status
WT
MUT

0.0

0.2

0.4

0.6

0.8

1.0

INF EXC DES

INF EXC DES INF EXC DES INF EXC DES INF EXC DES INF EXC DES INF EXC DES INF EXC DES INF EXC DES

INF EXC DES INF EXC DES INF EXC DES

MacrophagesImmune score TregCD8+ T cells

xC
el

l s
co

re

INF EXC DES

Stroma score

INF EXC DES

Fibroblasts

0.00132

1.06e-05

0.0232

0.00389

7.3e-25
1.17e-11

0.00956

2.78e-05

0.00013
2.07e-09

0.0242
0.0871

1.22e-07

5.95e-05
0.000162

1.07e-46

0.00595

0.000801

0.0368

0.000684

3.61e-08

0.000235

0.00128

6.35e-08

0.0922

Reactive oxygen species pathway

WNT beta catenin signaling

–0.75 –0.50 –0.25 0.50

3.61e-50

0.032

3.01e

0.00812

2.04e-10

8.59e-05

2.27e-08

0.000442

7.86e-08

1.13e-19

2.38e-28

1.99e-31

8.99e-44

1.37e-07

0.00394

0.00598

9.16e-16

–1.00 –0.75 –0.50 –0.25 0.00

vs

vs

P = 0.68
P = 1.1e-09

P = 1.5e-12

0.0

0.2

0.4

0.6

0.8
P = 0.51

P = 1.1e-05

P = 2.5e-05

0.00

0.05

0.10

0.15

0.20

0.25

P = 0.11
P < 2.22e-16

P = 1.4e-12

P = 0.00048

P < 2.22e-16

P < 2.22e-16

P = 1.1e-07
P = 0.00051

P = 0.0094

0.0

0.1

0.2

0.3

0.00

0.05

0.10

0.15

0.20

0.0

0.1

0.2

0.3

0.0

0.2

0.4

P = 2.9e-06
P = 0.011

P = 0.014

P = 3e-08

P < 2.22e-16

P < 2.22e-16

P = 4.5e-09

P < 2.22e-16

P < 2.22e-16

−2

−1

0

1

2

−1

0

1

2

−1.0

−0.5

0.0

0.5

1.0

1.5

−1

0

1

−0.5

0.0

0.5

1.0

−1

0

1
P = 2e-12

P = 1.3e-09

P = 0.18

p < 2.22e-16
P < 2.22e-16

P = 0.39

P = 0.14
P < 2.22e-16

P < 2.22e-16

P = 3.8e-07
P = 0.1

P = 6.7e-11

−2

−1

0

3

1

2
P < 2.22e-16

P = 1.5e-14

P = 0.6

P < 2.22e-16
P = 8.8e-15

P = 0.23

−2

−1

0

1

2

P = 0.19 P = 0.16

P = 0.94

P = 0.37P = 0.58

P = 0.057

(n = 101) (n = 34) (n = 118)(n = 75) (n = 25) (n = 93)

Infiltrated

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19408-2

6 NATURE COMMUNICATIONS |         (2020) 11:5583 | https://doi.org/10.1038/s41467-020-19408-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


This heterogeneity was reflected by intermediate H scores for
MHC-I in the tumour epithelium (Fig. 4b). Together, these findings
provided additional insights into potential mechanisms mediating
immune exclusion, which may involve extensive crosstalk between
the tumour, stroma and immune compartments.

DNA methylation contributes to MHC-I loss in cancer cells.
We then asked what could be the mechanism of downregulation
of MHC-I expression in the ovarian tumour cells. Defects of

antigen presentation machinery in tumour cells by down-
regulation of MHC-I expression via genetic mutations or epige-
netic suppression have been shown to represent an important
mechanism of immune escape in multiple cancers27–31. The
detection of somatic mutations in the HLA genes has been pre-
viously studied in different TCGA cohorts, including the ovarian
cohort. Unlike colon and head and neck cancer, mutations in
HLA genes are rare in ovarian cancer samples32, indicating loss of
MHC-I is not likely due to genetic mutations. Hence, we

Fig. 3 Key molecular features characterizing distinct tumour-immune phenotypes. a The heatmap represents the z-scored expression data of the 159
genes that associate with CD8+ T-cell quantity or CD8 spatial distribution in the ICON7 training dataset (n= 155 samples). Samples are annotated on top
by molecular subtypes, the six-class consensus clustering and the three-class tumour-immune phenotype. Eight genes clusters were identified. Three
clusters exhibit similar biology representing cytotoxic effector functions and hence were manually pooled. The detailed gene list can be found in
Supplementary Data 1. A table summarizing the biological features of the three tumour-immune phenotypes is displayed below the heatmap. b Enrichment
analysis results for the Hallmark pathways in the entire ICON7 dataset (n= 351 samples) are depicted for (top) infiltrated versus excluded tumours, and
(bottom) desert versus excluded/infiltrated tumours. Camera is the statistical method applied. c, d Specific pathways from the Hallmark database (IFNγ
response, WNT-β-catenin signalling, TGFβ signalling and angiogenesis), the KEGG database (antigen processing and presentation and chemokine
signalling) and customized gene signatures (TGFβ ligands and F-TBRS8) are displayed to exhibit the comparison of the three immune phenotypes (n=
351 samples, 129 infiltrated, 94 excluded and 128 desert). The pathways characterizing the infiltrated and desert phenotypes are highlighted in c, and those
characterizing the excluded tumours in d. e Immune and stromal cell-type analysis run with xCell on bulk RNASeq from the ICON7 collection (n=
351 samples). f The tumour-immune phenotypes were predicted for the TCGA-OV collection (n= 378 samples) and genetic components, including
neoantigen, tumour mutational burden (TMB), homologous recombination defect (HRD) and mismatch repair deficiency (dMMR) are presented for each
phenotype. c–f Whiskers ranging from minima to maxima, median and 25–75% interquartile range (IQR) shown by boxplots. The dots are the outlier
samples. Significant differences between groups were evaluated using a two-sided t test corrected for multiplicity, and the exact P values are displayed on
the graphs. Source data are provided as a Source Data file.
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Fig. 4 In situ validation of key features of T-cell excluded tumours. The tumour-immune phenotypes for a vendor-procured collection (including both
primary tumours and recurrent tumours, n= 84 samples) were predicted based on gene expression. The pattern of CD8+ T-cell infiltration and molecular
features associated with excluded tumours were validated using immunohistochemistry and in situ hybridization (ISH) on FFPE tumour tissues. a
Representative images of CD8 IHC (top), MHC-I-IHC (middle) and FAP ISH (bottom) are shown for the three tumour-immune phenotypes. b Percentage
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investigated whether this loss is due to epigenetic regulation. To
specifically detect the methylation on tumour cells, we generated
DNA methylation profiles for a panel of 48 ovarian cancer cell
lines using the Infinium Human Methylation 450 K Chip. A
strong anti-correlation was observed between the methylation
level of the promoter region of the HLA-A gene and its expression
level (Fig. 5a), suggesting that downregulation of HLA-A
expression in ovarian cancer is likely mediated via an epigenetic
mechanism. Indeed, this hypothesis is further supported by
multiple additional lines of evidence. First, we demonstrated that
the observed MHC-I downregulation in ovarian cancer cells is
reversible. Ovarian cancer cell lines with hypermethylation/
MHC-Ilow (OAW42) or hypomethylation/MHC-Ihigh (SK-OV-3
and OVCA-420) treated with IFNγ, a cytokine well established
for inducing MHC-I expression33,34, showed increased MHC-I
protein expression on the tumour cell surface (Fig. 5b and Sup-
plementary Fig. 6a, b), supporting a reversible epigenetic
mechanism rather than a hard-wired irreversible genetic mod-
ulation for MHC-I expression. More specifically, we demon-
strated that in ovarian cancer cell lines with hypermethylation of
HLA-A promoter, treatment with demethylating agent 5-aza-2’-
deoxycytidine (5-Aza), a DNA methyltransferase (DNMT) inhi-
bitor, can induce the expression of MHC-I protein at the tumour
cell surface (Fig. 5c and Supplementary Fig. 6c). Collectively,
these results indicated that epigenetic regulation might represent
one of the important mechanisms of downregulation of antigen
presentation in ovarian cancer cells to promote immune escape.

TGFβ has multi-faceted functions in promoting T-cell exclu-
sion. Parallel to the downregulation of MHC-I in tumour cells,
another primary feature of the T-cell excluded tumours is the
upregulation of TGFβ/reactive stroma. TGFβ has been shown to
downregulate MHC-I on uveal melanoma cells in vitro, and
TGFβ1 null mice exhibited an aberrant expression of MHC-I and
MHC-II in tissues35–37. Based on these reported findings, we
hypothesized that TGFβ might play a direct role in down-
regulation of the expression of MHC-I on ovarian tumour cells.
To test this hypothesis, we treated two MHC-Ihigh-expressing
ovarian cancer cell lines with TGFβ1. Flow-cytometry analysis
revealed that TGFβ1 decreased the surface expression of MHC-I
by 37.7 ± 3.2% in SK-OV-3 and 40.45 ± 14.2% in OVCA-420
compared to the untreated cells (Fig. 5d). Further, in the presence
of Galunisertib, a small-molecule TGFβ inhibitor targeting the
TGFβRI, MHC-I expression was restored to the untreated level
(Fig. 5d).

We next evaluated if TGFβ also has a specific role in
modulating fibroblasts to promote T-cell exclusion. For this, we
analysed the transcriptional responses specifically induced by
TGFβ treatment in primary human fibroblasts from normal
ovaries, bladder and colon. We confirmed the TGFβ pathway
activation by demonstrating increased phospho-SMAD2/3 in a
TGFβ dose-dependent manner and pathway inhibition by
galunisertib treatment (Fig. 5e). We also showed that TGFβ
treatment promoted the proliferation of these primary human
fibroblasts (Fig. 5f). More importantly, we identified a common
77-gene transcriptional programme specifically induced by TGFβ
treatment in these human primary fibroblasts (Fig. 5g and
Supplementary Fig. 6c). This transcriptional programme consists
of various ECM-related genes, including collagens (COL4A4,
COL4A2, COL16A1), ECM glycoproteins (CTGF, TGFBI,
SPARC), proteoglycans (BGN, DCN, VCAN), as well as reactive
stroma markers (ACTA2, TNC, LOX, TIMP3) (Fig. 5g, h). These
findings suggest that TGFβ may mediate T-cell exclusion, at least
in part, by creating a physical barrier via activating fibroblasts
and promoting dense ECM production. In addition, these

TGFβ-activated fibroblasts might contribute to an immunosup-
pressive environment by producing immunomodulatory molecules,
including IL11 and TNFAIP6 (Fig. 5g, h). Furthermore, TGFβ also
increased IL-6 at the mRNA expression level and protein secretion
level in the supernatant (Fig. 5i). Finally, supporting the findings
from the in vitro studies, we demonstrated that many of the TGFβ
induced ECM and immunomodulatory genes in vitro, were also
specifically enriched in the T-cell excluded tumours in the ICON7
dataset (Fig. 5j).

Collectively, our data illuminated a multi-faceted role of TGFβ
in mediating consequential crosstalk between tumour cells and
cancer-associated fibroblasts to shape the tumour-immune
contexture in the TME as summarized by the model presented
in Fig. 5k.

Discussion
Although histology-based tumour classification has been widely
applied in the clinical setting, given the continuous nature of the
distribution of tumour-infiltrating T cells, robustly classifying
tumour-immune phenotypes based on only histological metrics
has been challenging. In this study, we developed a digital image
analysis algorithm to quantify the quantity and spatial distribu-
tion of CD8+ T cells in the TME. Coupling this digital pathology
algorithm with transcriptome analysis in a large cohort of
archival treatment-naive tumour tissues from the ICON7 Phase
III clinical trial, we built a random forest machine-learning
algorithm to classify tumour-immune phenotypes in ovarian
cancer. This approach yielded a set of high-dimensional quanti-
tative metrics to define tumour-immune phenotypes. Our study
also provided the first proof of concept of classifying tumour-
immune phenotypes based on a gene expression classifier. With
additional optimization, validation and prospective testing, the
molecular classifier developed in this study may enable systematic
characterization of tumour-immune phenotypes in large clinical
trials of ovarian cancer and potentially other solid tumour types
as well.

Although a computational framework, tumour-immune dys-
function and exclusion (TIDE), has been reported recently for
identifying factors that predict cancer immunotherapy
response38, our study represents the first study to integrate digital
pathology and machine learning and provide a systematic
characterization of molecular features defining distinct tumour-
immune phenotypes in human cancer. As we introduced earlier,
several studies have reported that a high number of tumour-
infiltrating CD8+ T cells were associated with good prognosis in
ovarian cancer10–12. Most of these studies focused on the infil-
tration of T cells in the tumour epithelium (the equivalent to our
infiltrated immune phenotype) but possibly lumped together the
rest of tumours with T cells in the surrounding stroma (the
equivalent of our excluded immune phenotype) and tumours
with little T cells (equivalent of desert tumours). Indeed, as shown
in Supplementary Fig. 7, we observed similar results as previously
reported when we combined the desert and excluded tumours
(low CD8+ T cell in the tumour epithelium) in opposition to
infiltrated tumours (high CD8+ T-cell infiltration in the tumour
epithelium). We believe our study added an important additional
layer of information, i.e., the spatial distribution of CD8+ T cells
compared to the previous studies and identified that the excluded
phenotype was associated with the worst prognosis in ovarian
cancer. In addition, one of the key conclusions we drew from this
study was that tumour-immune phenotypes should be studied
and interpreted in the context of disease biology. For example, we
observed that the immune desert tumours in ovarian cancer are
heterogeneous and consist of two distinct molecular subtypes, the
differentiated (DIF) and the proliferative (PRO) subtype. These
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two molecular subtypes showed different clinical outcomes in
previous ovarian cancer study19 and in the ICON7 cohort of
this study (Fig. 2f). Our findings call for more attention to
understanding the underlying disease biology to avoid potential
over-simplified classification of TIL+ and TIL- tumours with
distinct biologies lumped together.

Understanding the molecular features and drivers of the T-cell
spatial distribution in the TME is of major importance. There is a
strong unmet need to further broaden and deepen the clinical
efficacy of the immune checkpoint inhibitors. Recently, Thorsson
et al. implemented a pan-cancer classification identifying six
immune subtypes. Similarly, three subtypes are enriched in the

a bHLA-A c
Ovarian cancer cell lines

0

100

200

300

400

500

%
 o

f u
nt

re
at

ed

OAW42

Φ IFNγ

OAW42
r =  –0.85

OAW42

SK-OV-3

0 10 15

0.0

0.2

0.4

0.6

0.8

1.0

HLA-A gene expression

M
et

hy
la

tio
n 

[b
et

av
al

ue
]

5

MHC-I

IFNγΦ

MHC-I

DMSO

Isotype

5-Aza

P = 0.1

DMSO 5-Aza

0

100

200

300

%
 o

f D
M

S
O

MHC-I

Φ

Isotype

TGFβ1

TGFβ1
+ Galu

Isotype

TGFβ1

TGFβ1
+ Galu

d
P = 0.0357 P = 0.1750

Φ

MHC-I

0

50

100

150

%
 o

f u
nt

re
at

ed

SK-OV-3

TGFβ1
Galu

OVCA-420

pSMAD2
(S465/467)

SMAD2/3

0 30 min

TGFβ1 (ng/mL) –
Galunisertib (µM) –

0.1 1 10 10–
10– – – –

MW

75 kDa

50 kDa

52 kDa
60 kDa

Untreated TGFβ1 TGFβ1 + Galu
ge

Ova
ry

Blad
de

r

Colo
n

–50

0

50

100

150

200

250

%
 c

ha
ng

e 
fro

m
 u

nt
re

at
ed

Proliferation

Untreated
TGFβ1
TGFβ1+ galunisertib

f

P = 0.0083

P < 0.0001

P = 0.0973

P < 0.0001 P < 0.0001

P < 0.0001

P = 0.015 P = 0.0018

P = 0.5864

Ova
ry

Blad
de

r

Colo
n

0

200

400

600

800

IL-6
(secreted protein)

IL6
(mRNA)

TGFβ1
Untreated

ng
/m

L

Lo
g2

(R
P

K
M

+1
)

Ova
ry

Blad
de

r

Colo
n

0

2

4

6

COL4A1 ACTA2 VCAN

Ova
ry

Blad
de

r

Colo
n

0

2

4

6

8

10

12

h

Lo
g2

(R
P

K
M

+1
)

Lo
g2

(R
P

K
M

+1
)

Ova
ry

Blad
de

r

Colo
n

0

5

10

15

Ova
ry

Blad
de

r

Colo
n

0

2

4

6

8

10

IL11 TNFAIP6 TGFB1

Ova
ry

Blad
de

r

Colo
n

0

2

4

6

8

10

Ova
ry

Blad
de

r

Colo
n

0

2

4

6

8

10

Ova
ry

Blad
de

r

Colo
n

0

2

4

6

8

-1

0

1

2

z-score

Ovary
Bladder
Colon

Fibroblasts

SPARC
TGFBI
TAGLN
ACTA2
SERPINE1
SERPINE2
TPM1
CTGF
COL4A1
CSRP1
ACTN1
BGN
CNN1
HSPB1
LOX
COL4A2
AMIGO2
CTHRC1
CAP1
THBS2
TIMP3
PLOD2
VCAN
CNN3
ITGA5
FERMT2
MTHFD2
SSR3
IER3
HIF1A
TNFRSF12A
ADAM12
MFAP2
RCN3
TNFAIP6
PALLD
SLC7A5
NPTN
COL16A1
TSPAN2
BHLHE40
LTBP2
NEK7
MSN
GLIPR1
ITGA11
COMP
MICAL2
GADD45B
PFKP
CDKN2B
SH3PXD2A
GLIPR2
LMCD1
LRRC59
MANF
NME1
DNAJB9
VASP
UAP1
TNS1
F3
HSPA13
GALNT10
HYOU1
FSTL3
JUNB
TNC
MRAS
CTPS1
SEMA7A
TGFB1
ACTG2
IL11
FHL3
ELN
KRT7

ICON7 clinical trial

Primary normal fibroblasts

k

0

5

10

15 COL4A1 ACTA2

VCAN

IL11

TNFAIP6 TGFB1

IL6

j

0

1

2

3

4

5

0

5

10

15

P = 0.0065

INF EXC DES INF EXC DES INF EXC DES

P = 0.0095

P = 0.0386

P < 0.0001 P = 0.0142

P = 0.0011

INF EXC DES

INF EXC DES INF EXC DES INF EXC DES

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

P < 0.0001 P < 0.0001

P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001

P = 0.0046

P = 0.0010 P < 0.0001

P < 0.0001

HLA-A

?

HLA-A

Me

Me

TGFβR

Versican

Collagens

Tumour cell
Fibroblast

CD8+ T cell

1

2

TGFβ

3

FAP
TGFβR

4

immunosupressive 
molecules

i

–
–

+
–

+
+

–
–

+
–

+
+

0

50

100

150

Lo
g2

(R
P

K
M

+1
)

Lo
g2

(R
P

K
M

+1
)

P < 0.0001 P = 0.0480

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19408-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5583 | https://doi.org/10.1038/s41467-020-19408-2 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


ovarian cohort Wound healing (C1), IFNɣ dominant (C2) and
lymphocyte depleted (C4) exhibiting analogous features with our
excluded, infiltrated and desert phenotypes, respectively23.
However, our study uncovered two hallmark features character-
izing the T-cell excluded tumours, including (1) loss of antigen
presentation on tumour cells and (2) upregulation of TGFβ and
stromal activation. More importantly, extending our previous
report on the association of TGFβ with lack of response to anti-
PD-L1 therapy in bladder cancer8, this study further dissected the
cell-type-specific functional role of TGFβ in mediating T-cell
exclusion in ovarian cancers.

First, our mechanistic study revealed that the downregulation
of MHC-I in ovarian cancer cells may be regulated by epigenetic
mechanisms. Supporting this finding, we found strong anti-
correlation between the HLA-A gene expression and promoter
methylation levels. Further, we showed that IFNγ treatment as
well as DNMT inhibition may overcome such epigenetic reg-
ulation and increase HLA-A expression in selected ovarian cancer
cells. Loss of MHC-I expression regulated by epigenetic
mechanisms as a result of immune pressure associated with an
absence of CD8+ T-cell infiltration in relapsing tumours has been
previously reported in two patients with metastatic Merkel cell
carcinoma treated with antigen-specific CD8+ T cells and
immune checkpoint inhibitors. In vitro treatment of the primary
tumour cells with 5-Aza restored the expression of the MHC-I
haplotype lost31.

More importantly, we identified TGFβ as a key mediator and
played multi-faceted roles in both tumour and fibroblast cells to
promote T-cell exclusion. We showed that TGFβ may play a
specific role in the downregulation of tumour MHC-I expression.
TGFβ1 treatment decreased the surface expression of MHC-I of
hypomethylated ovarian cancer cells, while TGFβ inhibition
restored its normal expression level. Interestingly, previous stu-
dies have demonstrated a role for TGFβ in promoting DNA
methylation through the induction of DNA methyltransferase
(DNMT) expression and activity in ovarian cancer cells39. The
molecular mechanisms underlying the regulation of tumour
antigen presentation machinery by TGFβ and DNA methylation
warrant additional investigations.

We also characterized another important role of TGFβ in med-
iating crosstalk with cancer stromal cells to promote T-cell exclu-
sion and immunosuppression. Using human primary fibroblasts
as model systems, we showed that TGFβ treatment specifically
activated fibroblasts and promoted the production of ECM, which
may serve as a physical barrier hindering T-cell infiltration. Fur-
thermore, our data also suggested that TGFβ may contribute to an
overall immunosuppressive TME in the T-cell-excluded tumours.

TGFβ1 treatment specifically induced immune-modulatory mole-
cules, such as IL6, IL11, and TNFAIP6 in human primary fibroblasts
(Fig. 5g–i). Secreted in inflammatory conditions, TNFAIP6 has
been reported to inhibit neutrophil migration via binding hyalur-
onan molecules expressed in the TME40. Moreover, TNFAIP6
promotes the anti-inflammatory phenotype of macrophages
(M2-like), thereby contributing to the immunosuppression41,42.
Additionally, many previous studies have reported a direct immune
suppressive role of TGFβ on T cells, NK cells and dendritic cells and
promoting T regulatory cell differentiation43,44. Altogether, our
study provided additional evidence supporting a complex and
multi-faceted role of TGFβ in immune modulation in cancer.

Finally, we believe our findings may have important clinical
implications in the field of cancer immunotherapy. Checkpoint
blockade therapies have demonstrated impressive efficacy only in
subsets of patients with a pre-existing T-cell immunity6, with the
response rate even lower in ovarian cancer45. Therefore, there is a
strong unmet need to further improve the clinical efficacy of the
immune checkpoint inhibitors, and our study highlighted TGFβ
as a promising target to overcome the immune escape mechan-
isms involved in the T-cell excluded tumours. Supporting this
notion, we and colleagues have previously shown that TGFβ is
associated with lack of response to anti-PD-L1 therapy in bladder
cancer, especially within the T-cell excluded tumours8. We have
also demonstrated previously that in primary and metastatic
mouse colorectal cancer models, blocking TGFβ and PD-L1 sig-
nalling pathways triggered a strong T-cell infiltration in the
tumour core and enhanced tumour regression and survival8,46

supporting additional studies in breast and colorectal mouse
cancer models46,47.

It is also worth noting some of the limitations of this study.
First, although we did not restrict our immune phenotyping
study on HGS histology of ovarian cancer, our current study was
underpowered to draw firm conclusions on non-serous histol-
ogy given their relatively lower representation in our study. For
example, while we found several genetic factors, such as TMB,
dMMR and HRD, did not seem to be associated with different
immune phenotypes in the ovarian TCGA study (HGS histology
only), we cannot rule out that there may be tumour-
autonomous genomic/epigenomic drivers of immune infiltra-
tion, which will differ between histological types of ovarian
cancer. Second, while most of the ovarian tumour tissues ana-
lysed in this study are primary tumours, a significant portion
of patients who are diagnosed with ovarian cancer have
disseminated disease. Several recent reports have shown intra-
tumour heterogeneity within the same individual between the
metastatic and primary tissues as well as within the same

Fig. 5 Multi-faceted role of TGFβ on ovarian cancer cells and fibroblasts. a Correlation between HLA-A gene expression and its promoter methylation (beta
value) for 48 ovarian cancer cell lines. b Change in the surface expression of MHC-I after IFNɣ-treatment or c DNA methylation inhibitor 5-Aza treatment
analysed on the OAW42 (MHC-Ilow) ovarian cancer cell line by flow cytometry. d Analysis of surface expression of MHC-I after TGFβ1 or TGFβ1+ galunisertib
(Galu) treatment on SK-OV-3 and OVCA-420 (MHC-Ihigh) ovarian cancer cell lines by flow cytometry. eWestern blot on phosphorylation level of SMAD2/3 in
primary bladder fibroblasts treated with different doses of TGFβ1 and Galunisertib. f–i Three normal human primary fibroblasts from the ovary, colon and
bladder were untreated, treated with TGFβ1 or TGFβ1+ galunisertib. f Proliferation of the primary fibroblasts treated for 72 h. g Heatmap summarizing the top
77 genes specifically induced by TGFβ1. h Examples of genes upregulated by TGFβ1 in the primary fibroblasts. i Cytokines secreted by the normal fibroblasts in
the presence of TGFβ1 were profiled including IL-6 protein (n= 2 technical replicates from one experiment) and IL6mRNA. j Expression of highlighted genes for
each tumour-immune phenotype of the ICON7 collection (n= 351 samples). kModel of the role of TGFβ in promoting the exclusion of T cells in ovarian cancer.
(ϕ) untreated and (MW) for molecular weight. The percentages of change compared to control (untreated or DMSO) are depicted in b–d and f. Data are
represented as mean ± SD in b–d, f, h, and i and as a box and Whiskers plot in j. Whiskers ranging from minima to maxima, median and 25–75% IQR shown by
boxplots. P values by two-tailed Mann–Whitney test in b and c, Kruskal–Wallis followed by Dunn’s multiple comparisons test in d, two-way ANOVA in f and
one-way ANOVA in j followed by Tukey’s multiple comparisons tests. The results are from n= 2 (b) and n= 3 (c, d) independent experiments. Data presented
in e are from one experiment with reproducible observations done after 3-h and 24-h treatment. Data depicted are from n= 2 (g–i) and n= 3 (f) biological
replicates from one experiment. Source data are provided as a Source Data file.
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tissue48–50. While no significant genomic variations seem
depicted between primary tumours and metastases51, the pat-
terns of T-cell infiltration and the composition of the TME can
vary between and within patients. Hence, further investigations
of immune phenotypes in extended non-serous histology and
metastatic cohorts of ovarian cancer are warranted.

In summary, this study provided an in-depth and systemic
characterization of the molecular features and mechanisms
underlying the tumour-immune phenotypes in human ovarian
cancer. This was enabled by developing a novel approach in
which digital pathology was integrated with machine learning and
transcriptome analysis on large ovarian tumour cohorts including
the ICON7 Phase III trial. We illuminated a multi-faceted role of
TGFβ in mediating consequential crosstalk between tumour cells
and cancer-associated fibroblasts to shape the tumour-immune
contexture in the TME. Our study highlighted the promise of
targeting the TGFβ pathway as a therapeutic strategy to overcome
T-cell exclusion and immune suppression and ultimately improve
the patient response to cancer immunotherapy.

Methods
Patient cohorts and tissues. Three hundred seventy treatment-naive patient
samples with epithelial ovarian cancer from mixed histology were collected from
the Phase III ICON7 clinical trial14, and the clinical characteristics of these patients
are summarized in Supplementary Fig. 8. The ICON7 protocol was compliant with
good clinical practice guidelines and the Declaration of Helsinki. Approval by
ethics committees was obtained at each clinical site, nationally, or both. All patients
provided written informed consent. The tumour tissues were subjected to review by
a pathologist to confirm diagnosis and tumour content. The cohort was divided
into two sample sets for the present study: training set (n= 155) and testing set
(n= 215). An independent validation collection (n= 84) was procured from
Cureline, Inc (Brisbane, CA, USA). These include 55 treatment-naive primary
tumours, and 29 paired recurrent tumours collected at disease progression post-
front-line chemotherapy (25 from peritoneal cavity, 4 from the colon, liver or
appendix). The ethical committee from Saint Petersburg City Clinical Oncology
Hospital approved the study under the protocol CU-2010 Oncology 12152009.
All patients provided written informed consent.

Eukaryotic cell lines. The ovarian cancer cell lines (59M, A2780, A2780ADR,
Caov-3, Caov-4, COV318, COV362, COV362.4, COV413A, COV413B, COV434,
COV504, COV644, DOR-13, EFO-27, ES-2, FU-OV-1, HCC630, HCC850, HEY,
Hs38.T, IGROV-1, KURAMOCHI, MCAS, NIH:OVCAR-3, OAW28, OAW42,
ONCO-DG-1, OV56, OV7, OVCA-420, OvCA-429, OvCA-432, OVCAR-8,
OVCAR433, OVISE, OVKATE, OVSAHO, OVTOKO, PA-1, PE01, RKN, RMUG-S,
SK-OV-3, TOV-112D, TOV-21G, TYK-nu, TYK-nu.CP-r) were obtained from the
Genentech Cell Bank where they were authenticated by short tandem repeat profiling
prior to banking and SNP fingerprinting after expansion. The human primary
normal fibroblasts CCD-18-Co (colon, CRL-1459™; ATCC, Manassas, VA), HOF
(ovary, #7336; ScienCell Research Laboratories, Carlsbad, CA) and Primary human
bladder fibroblast (PHBF) (bladder, PCS-420-013™; ATCC) were procured from
ATCC for in vitro TGFβ1 treatment.

Immunohistochemistry and ISH assays. Immunohistochemistry (IHC) and ISH
assays were performed on 4-⌠m FFPE tissue sections. MHC-I IHC staining was
performed as a single batch on the Ventana Discovery XT platform using the
primary antibodies for HLA-A proteins with partial overlap with HLA-B and HLA-
C proteins (Abcam #ab52922, Clone EP1395Y, diluted at 0.05 ⌠g/mL (1:14,000)),
the secondary anti-rabbit HRP antibodies (ThermoFisher, #65-6120, dilution
1:10,000) and a haematoxylin counterstain. CD8 IHC was performed at Histogenex
on Ventana Benchmark using C8/clone 144B anti-CD8a monoclonal antibodies
(Agilent Dako, #GA623). Single-plex FAP RNAscope ISH assay was designed,
implemented and scored at Advanced Cell Diagnostics (Hayward, CA). The single
colour probe for FAP (NM_004460.2, nt 237–1549) was pre-designed and com-
mercially available. RNA ISH was performed using the RNAscope® 2-plex Chro-
mogenic Reagent Kit and RNAscope® 2.0 HD Brown Reagent Kit on 4 μm
formalin-fixed, paraffin-embedded (FFPE) tissue sections according to the manu-
facturer’s instructions. RNA quality was evaluated for each sample with a dual-
coloured probe specific to the housekeeping gene cyclophilin B (PPIB) and RNA
polymerase subunit IIA (PolR2A). Negative control background staining was
evaluated using a probe specific to the bacterial dapB gene. Only samples with an
average of >4 dots per cell with the housekeeping gene probe staining and an
average of <1 dot per ten cells with the negative control staining were assayed with
target probes. To verify technical and scoring accuracy, reference slides consisting
of FFPE HeLa cell pellets were tested for PPIB and dapB together with tissue FFPE
slides. Bright-field images were acquired using a Zeiss Axio Imager M1 microscope

using a ×40 objective. H-score analysis was performed on FAP ISH and MHC-I
IHC. The H-score was calculated by adding up the percentage of cells in each
scoring category multiplied by the corresponding score, resulting in scores on a
scale of 0–400.

Digital pathology. Digital pathology analysis was performed on 277 out of 370
tumours from the ICON7 collection (155 out of 155 samples from the training set
and 122 out of 215 samples from the testing set had digital pathology scores) and
the whole vendor-procured collection. The CD8-DAB IHC slides with a hae-
matoxylin counterstain were scanned at ×20 magnification on a Panoramic
250 scanner (3DHistech) in MIRAX file format with 80% jpeg compression.
Definiens (Munich, Germany) Developer software (v2.7.0) was used to design an
algorithm to distinguish cells of the tumour epithelium from those of the stroma,
using cell nuclei shape and size based on the haematoxylin signal. Once the
tumour cells were identified, the immediate region surrounding those cells was
defined as the tumour compartment and the rest as the stroma compartment.
Within those areas, DAB+ CD8 cells were counted, and the number of CD8+

cells per region classified as tumour compartment, or stromal compartment was
reported as tumour CD8 density, or stroma CD8 density respectively. Definiens
software being discontinued, we provide a pseudo-code in the Supplementary
Methods.

Bulk RNA sequencing. Macrodissection was performed on 370 formalin-fixed,
paraffin-embedded (FFPE) tumour tissues from ICON7 as well as 84 FFPE tissues
from Cureline, Inc. to enrich tumour percentage to >70%. The total RNA was
purified using High Pure FFPE RNA Micro Kit (Roche Diagnostics). RNA
sequencing was performed using TruSeq RNA Access technology (Illumina®).
RNA-seq reads were first aligned to ribosomal RNA sequences to remove ribo-
somal reads. The remaining reads were aligned to the human reference genome
(NCBI Build 38) using GSNAP52,53 version 2013-10-10. To quantify gene
expression levels, the number of reads mapped to the exons of each RefSeq gene
was calculated using the functionality provided by the R/Bioconductor package
GenomicAlignments (v1.24.0)54. For each cohort separately, raw counts were fil-
tered for lowly expressed genes, whereby low expression was defined as counts per
million (CPM) <0.25 in at least 10% of samples, and CPM was calculated with the
cpm function in the edgeR package. Raw counts for the expressed genes were then
TMM normalized based on size factors as calculated with CalcNormFactors in the
edgeR package (v3.30.3). The TMM normalized counts were subsequently voom
transformed with the voom function in the limma package (v3.32.6), resulting in
normalized log2 CPM data. Principal component analysis (PCA) was applied to the
ICON7 cohort using the normalized log2 CPM data to assess and remove any
sample outliers.

Lastly, we employed an additional normalization step based on housekeeping
genes, to broaden the applicability of the immune phenotype classifier to any
expression platform and to tumour types beyond ovarian cancer. Housekeeping
genes were identified from the pan-cancer TCGA cohort as follows: TCGA RNA-
sequencing data from 11 K tumours were TMM normalized based on size factors,
and voom transformed to log2 CPM data as described above. Highly expressed
genes with low variance were identified in this pan-cancer expression dataset,
defined as average expression exceeding 10 and variance below the 25th percentile.
This revealed five candidate housekeeping genes: ACTB, ACTG1, EEF1A1,
HSP90AB1 and UBC. In our ovarian cancer datasets, EEF1A1 had low expression
across most samples. Hence, the ICON7 and validation datasets were each
normalized to the expression of housekeeping genes ACTB, ACTG1, HSP90AB1
and UBC, by dividing the log2 CPM data by the average expression of the four
housekeeping genes.

Random forest regression. The scores for CD8+ T-cell density in tumour and
stroma were strongly correlated with each other (cor= 0.74, P value <2.2e-16).
To better capture and quantify the CD8 infiltration patterns, we converted these
CD8 scores into polar coordinates: CD8+ T-cell quantity= [square root ((CD8
tumour)2+ (CD8 stroma)2)] and CD8+ T-cell spatial distribution= [atan
(CD8 stroma/CD8 tumour)]. To identify the genes associated with these two
metrics, we built a random forest regression model for each gene (gene~quantity+
distribution), with standard resampling of patients but no sampling of the variables
(quantity and distribution) using the randomForest package (v4.6-12). This
revealed the specificity of these two metrics in predicting gene expression, for
16,944 genes in the dataset. We did not consider the bottom 25% of genes whose
expression was not associated with the variables (i.e., average MSE (mean-squared
error) below the first quantile). We selected genes whose expression was predicted
by the quantity metric (i.e., percent increase in MSE for >3rd quantile, referred to
genes associated with CD8+ T-cell quantity) and/or by CD8+ T-cell spatial dis-
tribution (i.e., percent increase in MSE for spatial distribution >3rd quantile). This
resulted in 103 genes associated with CD8+ T-cell quantity, 56 associated with
CD8+ T-cell spatial distribution and 193 genes common for these two metrics.
Correlation analysis of these genes highlighted very similar transcriptional profiles
for the 103 and 193 genes associated with CD8 quantity. For the subsequent
analyses, we focused on the genes specific for these two metrics: 103+ 56= 159
CD8+ T-cell quantity and distribution-associated genes, respectively.
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Consensus clustering. Based on the 157 CD8-associated genes (159 entrez gene
ids, 2 ids do not have associated gene symbol), we performed a consensus clus-
tering on the ICON7 training set (n= 155) using the ConsensusClusterPlus R
package (v1.42.0) with Pearson distance metric and k-means clustering with 80%
patient selection and 100% feature selection. Transcriptional heterogeneity was
captured well with four clusters, yet those clusters were mostly differentiated by
CD8 quantity. To additionally capture CD8 distribution, we set the optimal
number of clusters to six, which differentiated tumours by both CD8 quantity and
distribution. The expression profile of the six clusters revealed that some clusters
only differed in their cytotoxic activity, i.e., level of CD8 quantity (Fig. 3a). We
therefore manually reduced the six clusters to three immune phenotypes that
optimally reflected the distribution of CD8+ T cells while capturing unique bio-
logical features. We labelled the immune phenotypes infiltrated, excluded and
desert, given their association with low versus high CD8 quantity, and with CD8+

T-cell enrichment in stroma versus tumour epithelial cells.

PAM classification. We used the PAMR package in R (v1.55) to derive a classifier
for the prediction of the three immune phenotypes (Supplementary Data 3, R file).
This classifier was built on the 157 CD8-associated genes (159 entrez gene ids, 2 ids
do not have associated gene symbol), the number of necessary classifier genes
ranging from 157 to 1 was evaluated, and the optimal number of genes i.e., 157 was
selected corresponding to a minimal cross-validation error rate at a threshold value
of 0.23. We confidently assigned a tumour to an immune phenotype when the
probability for that phenotype exceeded 0.7 and was below 0.5 for the other two
immune phenotypes. A tumour was otherwise considered unclassifiable.

Gene set enrichment analysis. The multiGSEA function (v0.13.15) with the
Camera enrichment method in the multiGSEA R package was used for gene set
enrichment analysis comparing different immune phenotypes in the full ICON7
collection (n= 351, 19 unclassified samples were excluded from the analysis), with
use of the Hallmark and KEGG gene set collections from the Molecular Signature
Database55. Pathway Z scores were calculated for each of the genesets using scores
function using the multiGSEA package. Immune subset and stromal fraction
enrichment analysis for ICON7 samples were done using the online xCell cell types
enrichment score tool (http://xcell.ucsf.edu/).

Mutation analysis in TCGA dataset. Enrichment of deleterious mutations in 15
homologous recombinant deficiency (HRD)-related genes56 and 4 dMMR genes as
previously reported57 were evaluated in TCGA-OV samples in different tumour-
immune phenotypes. In addition, tumour mutation burden (TMB) and neoantigen
loads were estimated in TCGA-OV samples as previously described58. Enrichment
analysis in each tumour-immune phenotype for above-mentioned genetic features
in TCGA-OV was performed using Fisher’s exact test corrected for multiplicity via
Benjamini–Hochberg method in R.

Molecular subtyping of ovarian tumours. The 100 genes that were reported in the
CLOVAR signature18 were extracted to examine the molecular subtype of a tumour.
Four major clusters were identified in the ICON7 cohort based on hierarchical
clustering with Euclidean distance and Ward’s linkage method. By checking the
testing results and up/down pattern in the original report for each gene, we could
assign the identified clusters to the molecular subtypes (immunoreactive, mesench-
ymal, proliferative and differentiated).

Methylation analysis of ovarian cancer cell lines. In total, 250 ng of genomic
DNA from 48 ovarian cancer cell lines were assayed using the Illumina Human
Methylation 450 BeadChip platform59. The raw methylation data (.idat files) were
read into the R software using illuminaio60 (v0.23.2). Quality control was per-
formed using the methylation R package minfi61 (v1.19.0); all samples passed
quality control. The methylation levels were normalized using the noob back-
ground correction and dye bias equalization methods62 as implemented in minfi.
Both procedures have been shown to perform well and to be appropriate for cancer
samples62,63. Beta values, defined as ratios of the methylated allele intensity over
the total intensity, were calculated for probes targeting CpG sites located between
−1000 bp and +1000 bp from the transcription start site of the HLA-A gene.

In vitro experiments on ovarian cancer cell lines. SK-OV-3 and OVCA-420
(MHC-Ihigh), and OAW42 (MHC-Ilow) ovarian cancer lines were cultured in
complete culture media (RPMI-1640+ 10% FBS). The cells were plated at
12,500–100,000 cells/well in a six-well tissue culture plate and complete culture
media. After 24 h, the cells were starved overnight in DMEM high glucose medium
without FBS. Next, the starving media was replaced with culture media only
(DMEM+ 2% FBS), 10 ng/mL rhTGFβ1 (Cat #PHG9204, ThermoFisher, CA),
10 ng/mL rhTGFβ1+ 10 µM Galunisertib (Cat #S2230, SelleckChem, TX) or
5 ng/mL recombinant IFNɣ (Cat #554617, BD Biosciences, CA) for 96 h at 37 °C.
Cells were then stained and analysed by flow cytometry. The percentage of
untreated was calculated using this formula: [geometric mean fluorescence inten-
sity (IFNɣ-treated cells)/geometric mean fluorescence intensity (untreated cells)] ×
100. In order to see if MHC-I expression can be regulated by methylation,

MHC-Ilow OAW42 cell line was plated at 250,000 cells/dish in a 10-cm dish and
serum-starved as described above for TGFβ1 treatment. In all, 10 µM of 5-Aza-2′-
deoxycytidine (5-Aza, Cat #A2385, Sigma-Aldrich) demethylating agent in culture
media was used to treat OAW42 for 96 h prior to FACS analysis. Media was half-
replenished with fresh 5-Aza 48 h after treatment to keep concentration consistent.

In vitro experiments on normal fibroblasts. The primary normal fibroblast
PHBF (Bladder), CCD-18Co (Colon) and HOF (Ovary) were serum-starved
overnight before treatment with media only (untreated), 10 ng/mL rhTGFβ1 or
10 ng/mL rhTGFβ1+ 10 µM Galunisertib for 24 h, and the total RNA was
extracted for RNA-seq analysis as previously described8. To detect IL-6 protein
in the supernatant, cells were treated for 48 h with recombinant human TGFβ1.
After the 48-h timepoint, the supernatant was collected and analysed by Luminex
using the Millipore kit. For the proliferation assay, PHBF, CCD-18Co, HOF
were plated at 3000 cells/well in a 96-well culture flat bottom plate for immuno-
fluorescence assays (Corning, #3917) overnight. Cells were then cultured for 72 h in
DMEM high glucose+ 1% FBS with the indicated concentration of TGFβ1 with or
without Galunisertib. Next, CellTiter-Glo® reagents (Promega, #G7570) were added
to each well, and the luminescence signal was read with a microplate reader.

p-SMAD2/3 western blot assay. PHBF cells were plated at 100,000 cells/well in a
24-well cell culture plate overnight, serum-starved for 24 h and then cultured in
serum-free DMEM with the indicated concentration of TGFβ1 with or without
Galunisertib for 30 min. Cells were lysed in protein lysis buffer containing T-PER
tissue protein extraction reagent (ThermoFisher, #78510), cOmplete™ Protease
Inhibitor Cocktail (Sigma-Aldrich, #11697498001) and PhosSTOP™ phosphatase
inhibitor cocktails (Sigma-Aldrich, #4906845001). Total protein was diluted and
normalized to 0.5 µg/µL with 4× LDS sample buffer (ThermoFisher, #84788). In
total, 10 µg of total protein was loaded into each well of a NuPAGE 4–12% Bis-Tris
Midi Gel (Invitrogen), followed by protein transfer from the gel to the membrane
using Trans-Blot Turbo (Bio-Rad). The Phospho-Smad2 was first revealed fol-
lowing the general protocol western blot from Bio-Rad. Briefly, the membrane was
blocked for 1 h, incubated with Phospho-Smad2 antibodies overnight at 4 °C
(Ser456/467, 1:200, Cell Signaling #3108, clone 138D4), washed and incubated with
secondary antibodies goat anti-rabbit HRP-linked (Cell Signaling, #7074, dilution:
1:15,000). To analyse the total Smad2/3, the membrane was stripped and then
incubated with Smad2/3 antibodies (Cell Signaling # 8685, clone D7G7, dilution
1:1000).

Flow-cytometry analysis. Before staining, Fc receptors were blocked for 10 min at
room temperature using FcR blocking reagent human (Cat #130-059-901, Miltenyi
Biotec, CA). Cells were stained during the blocking step with the LIVE/DEAD™
Fixable Near-IR Dead Cell (Cat #L10119, Invitrogen, CA). Then, cells were incu-
bated at room temperature for 15 min with anti-human HLA-ABC-PE (Cat
#560168, BD Biosciences, clone DX17, dilution 1:10) or isotype control mouse
IgG1|-PE (Cat #556650, BD Biosciences, dilution 1:10) antibodies, washed and
samples were acquired on BD LSRFortessa™ flow cytometer.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The following datasets generated during and/or analysed during the current study from
ICON7 Phase 3 trial are publicly available: images of CD8 IHC and associated digital
pathology outputs (EMPIAR: https://www.ebi.ac.uk/pdbe/emdb/empiar/, accession
#EMPIAR-10512); raw RNA-sequencing data and clinical data (PFS) (the European
Genome-Phenome Archive, accession number EGAS00001003487). All other data are
available in the article and supplementary information or from the corresponding author
upon reasonable request. The TCGA database is accessible at https://gdc.cancer.gov/ and
the molecular signature database at https://www.gsea-msigdb.org/gsea/msigdb. Source
data are provided with this paper.
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