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Summary
CFTR F508del (c.1521_1523delCTT, p.Phe508delPhe) is the most common pathogenic allele underlying cystic fibrosis (CF), and its fre-

quency varies in a geographic cline across Europe.We hypothesized that genetic variation associated with this cline is overrepresented in

a large cohort (N > 5,000) of persons with CF who underwent whole-genome sequencing and that this pattern could result in spurious

associations between variants correlated with both the F508del genotype and CF-related outcomes. Using principal-component (PC) an-

alyses, we showed that variation in the CFTR region disproportionately contributes to a PC explaining a relatively high proportion of

genetic variance. Variation near CFTR was correlated with population structure among persons with CF, and this correlation was driven

by a subset of the sample inferred to have European ancestry. We performed genome-wide association studies comparing persons with

CF with one versus two copies of the F508del allele; this allowed us to identify genetic variation associated with the F508del allele and to

determine that standard PC-adjustment strategies eliminated the significant association signals. Our results suggest that PC adjustment

can adequately prevent spurious associations between genetic variants and CF-related traits and are therefore effective tools to control

for population structure even when population structure is confounded with disease severity and a common pathogenic variant.
Introduction

Cystic fibrosis (CF; MIM: 219700) is themost common life-

shortening recessive disorder in people of European

descent, affecting >90,000 people worldwide. CF is mono-

genic, due to mutations in CF transmembrane regulator

(CFTR; MIM: 602421).1,2 Both extensive allelic heterogene-

ity and genetic modifiers across the genome influence the

phenotypic presentation of CF.3 While >2,000 pathogenic

variants in CFTR have been reported and 360 verified as

pathogenic by the Clinical and Functional Translation of

CFTR project (CFTR2), approximately 82% of persons

with CF carry R1 copy of the F508del allele (c.1521_

1523delCTT, p.Phe508delPhe).2 The F508del variant re-

sults in little to no protein function due to impaired traffic

of the protein product to the membrane and reduced sta-
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bility within the membrane. F508del-allele frequency

ranges from 1.4% among those with predominantly non-

Finnish European ancestry to <0.4% among those with

predominantly sub-Saharan African, Asian, or Native

American ancestry.2,4 The F508del allele also follows a

northwest-southeast cline in Europe, with a frequency of

87.2% among Danish people with CF but only 21.3%

among Turkish people with CF.5 This suggests that CFTR

F508del genotypes may be correlated with other genetic

variants exhibiting a similar cline across Europe.

There is no consistent guidance on how genetic associa-

tion studies of CF should account for CFTR genotype.

While phenotypes such as pancreatic insufficiency are

strongly predicted by CFTR genotype, others vary widely

despite a shared CFTR genotype.6 F508del is the most com-

mon pathogenic variant and may cause severe disease,
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particularly in homozygotes and in the absence of modu-

lator therapy. Studies of CF-related traits are sometimes

restricted to F508del homozygotes to minimize pheno-

typic variation explained by CFTR genotype; however,

such restrictions reduce the generalizability of the study

to the larger CF community (H. Ling et al., 2020, N. Am.

Cyst. Fibros. Conf., abstract).

Variants correlated with CFTR F508del because of shared

ancestry may be spuriously associated with CF-related out-

comes despite having no direct effect on the condition.

While genome-wide association studies (GWASs) typically

include principal components (PCs) as covariates to effec-

tively control for population structure,7 subtle population

structure, such as that within Britain, is not always

adequately captured by PCs.8 Because CFTR F508del is

both correlated with geography within Europe and with

clinical outcomes for persons with CF, confidence that

PC covariates eliminate this source of confounding in

GWAS for CF modifiers is required.9

To better understand the relationship between CFTR

F508del and variation across the genome among persons

with CF, we examine population structure within the

Cystic Fibrosis Genome Project (CFGP) using PC analysis

(PCA) and association testing. We identify variants associ-

ated with F508del genotype among persons with CF and

test whether including PCs as covariates can effectively

eliminate these associations. We investigate whether the

loci identified by this GWAS have previously been associ-

ated with population structure in Europe. Finally, we

determine whether variants previously associated with

CF-related phenotypes are also associated with F508del ge-

notype, suggesting inadequate control for population

structure linked to CFTR F508del in the original studies.
Subjects and methods

The CFGP data
The CFGP data consist of whole-genome sequence (WGS) data

from persons with CF enrolled in cohort studies at three sites.

Johns Hopkins University (JHU) contributed samples from the

CF Twin-Sibling Study,10 which includes persons from 95% of

known twins and sibling pairs affected by CF in the Cystic

Fibrosis-Related Diabetes study.11 The University of North

Carolina (UNC) contributed samples from the North American

Cystic Fibrosis Genetic Modifier Study.3,12 The University of

Washington/Seattle Children’s Hospital (UW) contributed sam-

ples from the Early Pseudomonas Infection Control Observational

Study, representing patients who were both younger than 13 years

between 2004 and 2006 and either never had a positive culture for

Pseudomonas aeruginosa (Pa) or had been negative for Pa for at least

2 years (R1 culture/year) prior to enrollment.13 All individuals in

the CFGP were consented and enrolled in one or more of the indi-

vidual studies, which were reviewed and received IRB approval at

their respective institutions.

WGS on 5,199 samples was performed by the Broad Institute

Sequencing Center using their PCR-free Illumina sequencing-by-

synthesis protocol (supplemental methods). Briefly, cluster am-

plification was performed per manufacturer’s protocol by the
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Illumina cBot. Sequencing was performed on HiSeq X machines

to produce 151 bp paired-end reads. These data were processed

by a Picard data-processing pipeline to generate sample-level

BAM14 and variant call format (VCF)15 files aligned to the

GRCh38 reference genome.16 Of the original 5,199 samples,

5,134 passed all of the sequencing center’s quality control (QC) fil-

ters. A multi-sample VCF for these 5,134 samples was provided,

generated using HaplotypeCaller in the Genome Analysis Toolkit

(GATK; v.4.0.9.0)17, containing>120M single-nucleotide variants

(SNVs) and short insertion/deletions (indels).

Samples were excluded from analysis if they showed evidence

for contamination (Freemix estimate R2%)18, high chimera rate

(R5%), low coverage (mean %29.5X, 20X coverage %85%, 10X

coverage %95%), discordant pedigree versus empirical kinship es-

timates,19,20 sample duplication or identity errors, or low support

for CF diagnosis. CFTR genotypes in the WGS data and the na-

tional Cystic Fibrosis Patient Registry data underwent expert re-

view,21 identifying or verifying the pathogenic variants for all

but 26 participants whose data were excluded from further anal-

ysis. A total of 4,966 samples (JHU: 1,643; UNC: 1,706; UW:

1,244) passed all sample-level QC filters. Of the 96 M SNVs and in-

dels passing both the GATK Variant Quality Score Recalibration

and GATK hard filters (QualByDepth [QD] >2; Quality [QUAL]

>30; StrandOddsRatio [SOR] <3; FisherStrand [FS] <60;

RMSMappingQuality [MQ] > 40; ReadPosRankSum > -8), we rest-

ricted analysis to the 5,490,867 (5,483,159 in analyses restricted to

F508del carriers) autosomal biallelic SNVs with minor allele fre-

quency (MAF) >5% and missingness rate <5%.
Relatedness and PCs
We estimated orthogonally partitioned genetic structure in our

sample using the GENESIS22 package in R,23 generating PCs and

a genetic relatedness matrix (GRM) using the 4,966 samples that

passed QC and a subset of 177,718 variants after pruning the

5.5 M SNVs passing QC for linkage disequilibrium (LD; r2 < 0.1).

We estimated empirical relatedness using KING-Robust20 to iden-

tify the ‘‘unrelated’’ set (kinship <2-9/2) for PC-AiR.9 We then

adjusted the KING-Robust estimates for PCs to create a GRM using

PC-Relate.19 With this approach, kinship coefficients are indepen-

dent of the population-level structure captured by PCs, reducing

the likelihood of over-correcting for relatedness or introducing

spurious associations.19,22We repeated the PC-AiR and -Relate pro-

cesses a second time using the results from the first round to

improve precision.22 The percent variance explained drops from

the first to the second PC and so on, then plateaus; we define early

PCs as those preceding and including the inflection point of a

scree plot. For each early PC, we calculated the correlation between

eigenvector values and each of the 5.5 M SNVs passing QC.
Testing for association with CFTR F508del genotype
To identify variants thatmay share similar populationhistorieswith

the CFTR F508del allele, we performed a GWAS comparing persons

withCFwith one versus two copies of the F508del allele. This binary

outcome was tested using the logistic mixed model with orthogo-

nally partitioned structure (LMM-OPS) approach implemented in

the GENESIS22 package in R.23 We excluded an additional 373

unique samples representing one identical twin per pair (n ¼ 27)

and those that did not carry aCFTR F508del allele (n¼ 349), leaving

4,593 samples for the GWAS. We performed single-variant associa-

tion testing for each of the 5.5 M SNVs passing QC using two

LMMs: a baseline model adjusted for site of recruitment as a fixed



effect and theGRMasa randomeffect, andaPC-adjustedmodel that

added the first four PCs as fixed effect covariates to the baseline

model. Genome-wide significance was defined using the threshold

p<5310-8; this value is slightly less stringent than the conservative

Bonferroni-corrected threshold (p< 0.05/5.5M¼ 9.1310-9),which

does not account for LD between variants.

Variants correlated with pathogenic or modifier variants due to

shared population history may appear to be associated with the

outcome if it also varies in frequency by ancestry,8 leading to an

increase in test statistic values and a corresponding decrease in p

values across the genome. We measure evidence of this shift using

the genomic inflation factor (l),7,24 defined as the squaredmedian

test statistic divided by 0.455. A l value >1 indicates genomic

inflation or an inflated ratio of observed-to-expected test statistics

under the null chi-squared distribution.
Secondary-subset analyses
Because the frequency of the CFTR F508del allele varies across Eu-

rope and between populations, we analyzed subsets of the CFGP to

determine whether the correlation between variation near CFTR

and PCs is ancestry dependent. One subset (European) contained

4,567 individuals with >80% estimated European ancestry based

on Somalier25 analysis, while the other (non-European) contained

270 individuals with <20% estimated European ancestry (supple-

mental methods). PCs and GRMs were calculated separately

within each subset using the method described above. Within

the European-ancestry subset, 5,456,627 SNVs passed the same

QC, MAF, and missingness filters as described above, with

173,575 SNVs remaining after LD pruning for PCA and GRM esti-

mations. Similarly, 6,441,286 SNVs passed QC, MAF, and missing-

ness filters in the primarily non-European-ancestry subset, with

240,152 SNVs remaining after LD pruning.

We also performed an analysis of the CFGP Europeans restricted

to a subset of the 5.4 M SNVs passing our QC that were also rare

(MAF%5%) in a non-Finnish European reference panel (gnomAD

v.3.1.1)4; only 37,943 SNVs remained. The CFGP Europeans share

a similar ancestry composition with the non-Finnish Europeans,

making this set over-represent SNVs with observed frequencies

affected by ascertainment bias. New PCA and GRM analyses

were performed using an LD-pruned set of 11,404 SNVs, the

KING-Robust estimates from the original analysis of CFGP Euro-

peans, and the PC-AiR/PC-Relate approach described above.
Trans-Omics for Precision Medicine (TOPMed) analysis
We performed a similar PCA in an independent dataset represent-

ing participants with predominantly European ancestry ascer-

tained for different phenotypes as part of the TOPMed program.

The purpose of this analysis was to differentiate population struc-

ture in the CFGP reflecting European ancestry in general versus

that which is specifically correlated with CFTR variation.26 We

selected samples representing participants who consented to gen-

eral research and were reported as non-HispanicWhite (n¼ 3,199)

from five studies unrelated to CF: Cleveland Clinic Atrial Fibrilla-

tion Study (CCAF; n ¼ 358); Mayo Clinic Venous Thromboembo-

lism Study (Mayo VTE; n ¼ 707); Defining the Time-Dependent

Genetic and Transcriptomic Responses to Cardiac Injury among

Patients with Arrhythmias (miRhythm; n ¼ 67); Severe Asthma

Research Program (SARP; n ¼ 1017); and Vanderbilt Genetic Basis

of Atrial Fibrillation (VU_AF, n ¼ 1052). Samples were sequenced

at one of three sequencing centers: the Broad Institute for Human

Genetics (CCAF, miRhythm, and VU_AF), the Baylor College of
Hu
Medicine Human Genome Sequencing Center (Mayo VTE), or

the New York Genome Center (SARP). These data are available

through the database of Genotypes and Phenotypes (dbGaP) un-

der the following study accession numbers: CCAF (phs001189),

Mayo VTE (phs001402), miRhythm (phs001434), SARP (phs00

1446), and VU_AF (phs001032).

WGS from TOPMed was performed at an average depth of 383

across using Illumina HiSeq X Ten technology. All sequencing cen-

ters used a common pipeline to align reads to human genome

build GRCh38. Read alignment was harmonized, and variants

were jointly called by the TOPMed Informatics Research Center.

Variant QC was performed using a support vector machine

classifier, with additional filtering for variants with excess hetero-

zygosity and Mendelian discordance. Sample QC and identity res-

olution was performed by the TOPMed Data Coordinating Center

using annotated and genetic sex concordance, concordance with

previous genotyping, and expected and observed relatedness

when possible. Details regarding the sequencing methods, variant

calling, and QC can be found on the TOPMed website (https://

topmed.nhlbi.nih.gov), in a common methods document in

each study’s dbGaP directory, and in a published paper.26

We extracted the same 177,718 SNVs from the CFGP PCA in the

TOPMed data then applied the same QC, MAF, and missingness fil-

ters; 166,628 SNVs remained. These 166,628 SNVs were used to es-

timate PCs and a GRM using PC-AiR and PC-Relate as described

above. Finally, we estimated the correlation between the TOPMed

PCs and each of the 6,221,456 autosomal biallelic SNVs passing

the QC and 5% MAF and missingness filters described above.

Regions of interest
Certain regions of the human genome exhibit long-range LD,27,28

defined as the correlation between SNPs that extends across a

physical distance that is atypical of most of the genome (e.g.,

across chromosomes). Long-range LD is explained by limited

recombination, such as that observed at inversion polymor-

phisms, regions under selection, or within recently admixed pop-

ulations. Variation within these regions can be associated with

population structure or cause spurious associations in GWASs.7,28

Variationwithin four regions of the genome exhibiting long-range

LD are strongly correlated with PCs representing participants with

European ancestry,29 which we define using the bounds provided

in the GWASTools R package:30 the 2q21.1-2q22.1 region contain-

ing LCT (MIM: 603202) associated with lactase persistence,31 the

6p22.3-6p21.2 region containing the major histocompatibility

complex (MHC),32 and two inversion polymorphisms at 8p23

and 17q21.31.33 We investigated whether loci correlated with

early PCs or associated with CFTR F508del genotype within the

CFGP fall within these regions.

Prior genetic-modifier studies of CF-related traits may have been

vulnerable to spurious associations due to genotype correlations

with CFTR F508del. We identified 10 autosomal SNVs previously

associated with CF-related traits by GWAS (p < 5 3 10-8)11,34–36

and determined whether they were also associated with F508del

genotype in the CFGP due to confounding with F508del-associ-

ated population structure.
Results

Sample description

The CFGP data represent multiple studies that ascertained

participants based on different clinical criteria and familial
man Genetics and Genomics Advances 3, 100117, July 14, 2022 3
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Table 1. Summary of the Cystic Fibrosis Genome Project participants

Institution John Hopkins University
University of
North Carolina University of Washington

TotalStudy(s)
Cystic fibrosis-related
diabetes, twins and Sibs

Genetic-modifier
study

Early pseudomonas infection
control observational study

Total 1,809 1,783 1,347 4,939

Birth year: mean (range) 1991 (1943–2011) 1982 (1946–2007) 2000 (1992–2006) 1900 (1943–2011)

Age diagnosed, years: mean (SD) 2.4 (5.7) 2.4 (4.5) 0.9 (1.7) 2.0 (4.5)

Genotype: N (%)

CFTR F508del carriersa 1,643 (90.8) 1,706 (95.7) 1,244 (92.4) 4,593 (93.0)

CFTR F508del homozygotes 875 (48.4) 1,282 (71.9) 722 (53.6) 2,879 (58.3)

Male: N (%) 946 (52.3) 1,004 (56.3) 673 (50.0) 2,623 (53.1)

Empirical ancestry: N (%)

African 32 (1.8) 25 (1.4) 33 (2.4) 90 (1.8)

Native American 86 (4.8) 46 (2.6) 64 (4.8) 196 (4.0)

East Asian 4 (0.2) 0 (0) 1 (0.1) 5 (0.1)

European 1,681 (92.9) 1,710 (95.9) 1,247 (92.6) 4,638 (93.9)

South Asian 6 (0.3) 2 (0.1) 2 (0.1) 10 (0.2)

Values are provided for the 4,939 participants passing quality control and included in PCAs. Estimated ancestry defined as the ancestry group with the highest
probability estimated by Somalier analysis. Details limited to carriers are presented in Table S1.
aCFTR F508del homozygotes were included in the count of carriers.
relationships, resulting in varied demographic characteris-

tics and CFTR F508del genotype distributions across study

sites (Table 1). The majority of participants (58%) were

CFTR F508del homozygotes and 93% had at least one

copy of F508del. Participants in the UNC cohort were

more likely to have one copy of F508del (96%) or be

F508del homozygotes (72%) compared with participants

in the UW (92% carriers, 54% homozygotes) or JHU co-

horts (91% carriers, 48% homozygotes). As the F508del

carriers represent the majority of the sample, their descrip-

tive statistics are nearly identical (Table S1). Although the

F508del allele represents 75% of the pathogenic CFTR

allele within the CFGP, dozens of other pathogenic vari-

ants were observed (Table S2).

Genetic structure within the CFGP

PCA identifies orthogonal axes of variation withinmultidi-

mensional data, ranking them by the amount of variance

explained. In human genetic data, these axes of variation

often correspond with historical patterns of migration or

population structure. Among the early PCs estimated in

the CFGP data, PC3 captures variation between partici-

pants in the European subset (Figure 1). PC3 shows a

higher Pearson correlation with variation at CFTR (rmax ¼
0.33) and with two of the four loci known to exhibit

long-range LD in persons with European ancestry: the

2q21 region containing LCT (rmax ¼ 0.32) and the

6p21.32 region containing the MHC locus (rmax ¼ 0.26)

(Figure 2A). Recalculating PCs while excluding variants

within the four loci known to exhibit long-range LD did

not substantially alter the correlations between variants
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at these loci and PC3. In an analysis of the subset of the

CFGP with >80% European ancestry, variation at the

CFTR, 2q21, and 6p21.32 loci is strongly correlated with

PC1 (Figures 2B and S1), with the PC capturing the most

genetic variation within this subset. Sensitivity analyses

excluding variants with MAF >5% in non-Finnish Euro-

peans echoed the signals at CFTR and the MHC but

identified no additional influential loci (Figures S2 and

S3). Similar analyses of the CFGP participants with <20%

European ancestry do not show above-average correlation

between these three loci and the early PCs, although the

overall magnitude of correlation between variations

across the genomes and early PCs is higher in this subset

representing greater ancestral diversity (Figures S4 and

S5). These subset analyses suggest that variation near

CFTR, 2q21, and 6p21.32 have a greater than background

influence on early PCs estimated in a sample of people

with CF with European ancestry. Analysis of the TOPMed

data suggests that PC-correlation peaks at 2q21 and

possibly 6p21.32 and 8p23 are expected from a sample

with primarily European ancestry, while the peak at

CFTR is specific to datasets over-representing persons

with CF (Figures S6 and S7).

Genome-wide association between SNVs and CFTR

F508del genotype

CFTRF508del genotypewas significantly associatedwith10

loci including CFTR (p < 1 3 10-300) under the baseline

model (Figure 3; Table 2), which showed strong evidence

for genomic inflation (l ¼ 1.34; Figure S8). After adding

PCs 1–4 to the baseline model, the evidence for genomic



Figure 1. Population structure within
the entire CFGP (n ¼ 4,939)
Pairwise principal-component (PC) plots
are shown for PCs 1–4 with frequency dis-
tributions and percentage of variance ex-
plained by each PC on the diagonal.
Ancestry estimates indicate the ancestry
with the highest estimated proportion us-
ing Somalier.25 Abbreviations: AFR, sub-Sa-
haran African; AMR, Native American;
EAS, East Asian; EUR, European; SAS,
South Asian.
inflation vanished (l¼ 0.97) as did the significant evidence

of association with F508del genotype outside the CFTR lo-

cus (Figure3; Table S3). The evidenceof associationbetween

F508del and the long-range LD regions in Europeans was

not significant in the PC-adjusted model (p > 0.0001;

Table S4). However, the top 10 peaks in the PC-adjusted

model had similar evidence for associationwith F508del ge-

notype under the baseline model, which suggests that sub-

tle population structure linked toCFTRmaynotbe captured

by early PCs in studies of CF populations. None of the 10

autosomal SNVspreviously associatedwithCF-related traits

were nominally associated with F508del genotype in the

PC-adjusted model, and only one reached nominal signifi-

cance using the baseline model (rs546131 near APIP,

p ¼ 0.0426; Table S5), suggesting that the evidence of asso-

ciation between these 10 SNVs and CF-related phenotypes

is not due to indirect association with CFTR F508del.

Whereas variants across the genome are associated with

F508del genotype under the baseline model, adjusting the

model with early PC covariates adequately controls for the

corresponding population structure.
Discussion

We have shown that PCA and GWAS can identify popula-

tion structure driven by ascertainment for an allele

strongly associated with disease status. Within the CFGP,

PC3 is driven by three genomic loci harboring variants

whose distribution is correlated with geography in Europe.

GWAS reveals significant association between SNVs across

the genome and CFTR F508del genotype, leading to sub-
Human Genetics and Geno
stantial genomic inflation that can

be eliminated by including PC covari-

ates in the analysis. The loci driving

PC3 were also associated with

F508del genotype and include a re-

gion with prior evidence of long-

range LD: rs533344 that falls within

750 KB of LCT (MIM: 603202) and

MCM6 (MIM: 601806), a regulator of

LCT). The frequency of the MCM6 al-

leles associated with greater lactase

persistence is higher in populations

with European ancestry and follows
a similar distribution to CFTR F508del across Europe.2,31

The relatively strong contribution of CFTR variation to

early PCs was only observed in CFGP analyses including

participants with high European-ancestry probabilities;

similar correlations between variations at the CFTR locus

and early PCs were not observed in analyses of the CFGP

non-Europeans or the TOPMed data.

GWAS comparing persons with CF with one versus two

CFTR F508del alleles did not demonstrate genomic infla-

tion or reveal significant association signals when early

PCs were included as covariates. These results suggest

that GWASs for genetic modifiers of CF can be reliably per-

formed in datasets ascertained for CF in general or forCFTR

F508del genotype specifically so long as the PCs included

as covariates capture population structure within Europe.

We suggest that investigators directly assess the association

between PCs and European ancestry and/or CFTR geno-

type to verify that the PCs included as covariates in their

study specifically capture this variation. This is consistent

with the observation that prior GWASs of CF-related

traits,11,34–36 which included PC covariates, did not suffer

from genomic inflation or identify significant associations

with variants correlated with CFTR variation in the CFGP.

Our study has several limitations. This study focused on

the CFTR F508del allele as it is the most common patho-

genic variant within the CFGP and does not investigate

potential cross-chromosomal correlations with other rela-

tively common (>1%) pathogenic variants in CFTR. For

example, non-European populations are not well repre-

sented within the CFGP, preventing similar investigations

of founder alleles including the S549R allele (c.1645A>C,
mics Advances 3, 100117, July 14, 2022 5



Figure 2. Correlation between PCs and
genomic position
(A and B) The correlation between PCs (Y
axis) and genomic position (X axis) are
shown for the (A) CFGP (n ¼ 4,939) and
(B) CFGP participants with estimated Eu-
ropean ancestry >80% (n ¼ 4,567). The
number of PCs shown is the number
used to calculate the genetic relatedness
matrix and, for the total CFGP dataset,
used in the PC-adjusted GWAS analysis.
Color-coded regions include 7q21.31
(CFTR, pink) and three regions that have
previously shown evidence of long-range
LD: 2q21.1-2q22.1 (LCT, teal), 6p22.3-
6p21.2 (themajor histocompatibility com-
plex, orange), and the 8p23 inversion
polymorphism (purple).
p.Ser549Arg) common in the United Arab Emirates or the

Y122X allele (c.366T>A, p.Tyr122X), which is more com-

mon on Réunion Island.37 Participants without a copy of

the CFTR F508del allele were excluded from the GWAS pre-

sented. GWASs including these individuals could identify

other loci correlated with CFTR genotype, but such ana-

lyses were not well powered in the CFGP given the small
Figure 3. GWASs for CFTR F508del heterozygosity versus homozy
(Top) The baseline model adjusted for site and relatedness. (Bott
as -log10(p values). Plot is truncated at p ¼ 1 3 10-10, as the peak a
genome-wide significance level, p < 5 3 10-8, is indicated by the ho
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number of participants (n ¼ 346) without a CFTR F508del

allele. This analysis focuses exclusively on genetic stratifica-

tion, and PCsmay not be able to control for environmental

stratification within the sample. Genuine genetic modifiers

of CF may be correlated with population structure; GWASs

including PCs capturing this structure will have reduced

statistical power to detect such modifiers. Rare variants
gosity
om) The PC-adjusted model. Association signals are measured
t CFTR on chr7 reaches p < 1 3 10-300 under both models. The
rizontal line.



Table 2. Regions of the genome significantly associated with CFTR F508del heterozygosity versus homozygosity under the baseline model

Region Nearest gene rsID REF allele ALT allele AAFNFE AAFCFGP p

1q31.3 AL450352.1 rs2813164 A G 0.33 0.33 1.74 3 10-8

1q41 PROX1-AS1 rs853741 G A 0.95 0.94 2.62 3 10-9

2q14.3 AC062020 rs1911632 A C 0.17 0.20 7.84 3 10-9

2q22.1 THSD7B rs533344 T A 0.72 0.70 5.58 3 10-9

3p14.1 SUCLG2 rs11127729 T C 0.95 0.95 3.28 3 10-8

6q27 AL611929.1 rs9455973 G A 0.08 0.10 4.56 3 10-8

7q31.2 CFTR rs7802924 A G 0.09 0.85 1 3 10-300

9q21.32 SLC28A3 rs6559779 A G 0.10 0.10 4.95 3 10-8

10q25.2 AL136119.1 rs1923653 A G 0.94 0.92 4.47 3 10-8

12p11.1 SYT10 rs949473 G A 0.14 0.16 8.99 3 10-9

Significant p value threshold: 53 10-8. The baseline association model is adjusted for site and a genetic relatedness matrix. Sequence positions of association peaks
are provided on the GRCh38 map. Alternate allele frequencies (AAFs) are given for non-Finnish Europeans in gnomAD v.3.1.14 and within the CFGP.
arose more recently and are limited in their geographic dis-

tribution relative to common variants, and their influence

on association results may not be detected by PCA or

genomic-inflation factors.38 Aggregate association testing

of rare variants and CF-related outcomes may therefore

yield spurious results uncontrolled by PC covariates.

Our approach for identifying loci associated with a

strong genetic predictor of a trait could be extended to

other traits where the frequency of themost commonpath-

ogenic allele varies by ancestry. Similar concerns may arise

in genetic studies of traitsmeeting the following criteria: (1)

there is a relatively common variant underlying a Mende-

lian condition; (2) multiple pathogenic alleles exist; (3)

the severity or expression of the trait varies across these al-

leles; and (4) the frequency of the pathogenic allele varies

by population or with geography. For example, sickle cell

disease results from pathogenic variants in HBB, where ho-

mozygosity for the HbS allele (c.20A>T, p.Glu7Val) leads to

sickle cell disease (MIM: 603903), while other HBB variants

associated with specific geographic regions result in other

hereditary anemias.39 Major-effect alleles for complex traits

can also be correlated with population structure, including

the APOE (MIM: 107741) ε4 allele (c.388T>C, p.Cy-

s130Arg), which is common, varies in frequency across

Europe, and is a major risk allele for late-onset Alzheimer’s

disease (MIM: 104310).4,40 In these situations, we suggest

that the relationship between pathogenic or major-effect

alleles and population structure within Europe be evaluated

to ensure that significant genotype-phenotype associations

are not driven by an indirect relationship with the allele.
Data and code availability

CFGP sequence data and phenotypic information have been

placed in a restricted access database maintained by the Cystic

Fibrosis Foundation and is available to approved researchers (see

https://www.cff.org/researchers/whole-genome-sequencing-proj

ect-data-requests for details). TOPMed data are available to

approved researchers through dbGaP under the following study
Hu
accession numbers: CCAF (phs001189), Mayo VTE (phs00

1402), miRhythm (phs001434), SARP (phs001446), and VU_AF

(phs001032). The analysis pipeline is derived from the TOPMed

analysis pipeline, which is publicly available on GitHub

(https://github.com/UW-GAC/analysis_pipeline). This pipeline

utilizes tools within the GENESIS package, which is publicly

available on Bioconductor (https://bioconductor.org/packages/

release/bioc/html/GENESIS.html).
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.xhgg.2022.100117.
Acknowledgments

We thank the participants and their families for their contribution

to this work. This work was supported by the Cystic Fibrosis Foun-

dation (grant nos. BAMSHA18XX0, CUTTIN18XX1, and KNOWL-

E18XX0]. The authors wish to acknowledge the contributions of

the consortium working on the development of the NHLBI Bio-

Data Catalyst ecosystem and the analysis pipeline support pro-

vided by National Institutes of Health (NIH) National Institute

on Aging R01AG059737. We gratefully acknowledge the studies

and participants who provided biological samples and data for

the TOPMed program and provide detailed acknowledgments by

study in the supplement.
Declaration of interests

M.B. is the editor-in-chief and J.X.C. (member of the Cystic

Fibrosis Genome Project) is the deputy editor of HGG Advances.

The authors declare no other competing interests.

Received: September 20, 2021

Accepted: May 9, 2022
Web resources

Bioconductor: Open Source Software for Bioinformatics,

https://bioconductor.org/.
man Genetics and Genomics Advances 3, 100117, July 14, 2022 7

https://www.cff.org/researchers/whole-genome-sequencing-project-data-requests
https://www.cff.org/researchers/whole-genome-sequencing-project-data-requests
https://github.com/UW-GAC/analysis_pipeline
https://bioconductor.org/packages/release/bioc/html/GENESIS.html
https://bioconductor.org/packages/release/bioc/html/GENESIS.html
https://doi.org/10.1016/j.xhgg.2022.100117
https://doi.org/10.1016/j.xhgg.2022.100117
https://bioconductor.org/


The Broad Institute Whole Genome Sequencing service,

http://genomics.broadinstitute.org/products/

whole-genome-sequencing.

The Clinical and Functional Translation of CFTR

(CFTR2), http://cftr2.org.

The Cystic Fibrosis Foundation Patient Registry, https://

www.cff.org/Research/Researcher-Resources/

Patient-Registry/.

GENetic Estimation and Inference in Structured samples

(GENESIS), https://bioconductor.org/packages/release/bioc/

html/GENESIS.html.

Genome Aggregation Database (gnomAD), https://gno

mad.broadinstitute.org/.

The National Heart, Lung, and Blood Institute Trans-

Omics for Precision Medicine (TOPMed), https://nhlbi

wgs.org.

OMIM, http://www.omim.org/.

R Statistical Software, https://www.r-project.org/.

TOPMed analysis pipeline, https://github.com/UW-

GAC/analysis_pipeline.
References

1. Bell, S.C., Mall, M.A., Gutierrez, H., Macek, M., Madge, S., Da-

vies, J.C., Burgel, P.R., Tullis, E., Castanos, C., Castellani, C.,

et al. (2020). The future of cystic fibrosis care: a global perspec-

tive. Lancet Respir. Med. 8, 65–124. https://doi.org/10.1016/

S2213-2600(19)30337-6.

2. Lopes-Pacheco, M. (2020). CFTR modulators: the changing

face of cystic fibrosis in the era of precision medicine. Front.

Pharmacol. 10, 1662. https://doi.org/10.3389/fphar.2019.

01662.

3. Drumm, M.L., Konstan, M.W., Schluchter, M.D., Handler, A.,

Pace, R., Zou, F., Zariwala, M., Fargo, D., Xu, A., Dunn, J.M.,

et al. (2005). Genetic modifiers of lung disease in cystic

fibrosis. N. Engl. J. Med. 353, 1443–1453. https://doi.org/10.

1056/NEJMoa051469.

4. Karczewski, K.J., Francioli, L.C., MacArthur, D.G., Cummings,
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