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Long developing period and cumbersome evaluation for the lubricating materials performance seriously 
jeopardize the successful development and application of any database system in tribological field. 
Such major setback can be solved effectively by implementing approaches with high throughput 
calculation. However, it often involves with vast number of output files, which are computed on the 
basis of first principle computation, having different data format from that of their experimental 
counterparts. Commonly, the input, storage and management of first principle calculation files and 
their individually test counterparts, implementing fast query and display in the database, adding to the 
use of physical parameters, as predicted with the performance estimated by first principle approach, 
may solve such setbacks. Investigation is thus performed for establishing database website specifically 
for lubricating materials, which satisfies both data: (i) as calculated on the basis of first principles and 
(ii) as obtained by practical experiment. It further explores preliminarily the likely relationship between 
calculated physical parameters of lubricating oil and its respectively tribological and anti-oxidative 
performance as predicted by lubricant machine learning model. Success of the method facilitates in 
instructing the obtainment of optimal design, preparation and application for any new lubricating 
material so that accomplishment of high performance is possible.

Lubrication materials are the essentially key materials to improve the functionality of new energy vehicles, aer-
ospace, marine ships and intelligent machineries1–3, and their further development. Much of research work on 
problems associated with lubricating materials has been carried out, which results in abundant simulation or test 
data4–7. However, these individual data are currently still not being effectively utilized, and difficulty in evaluating 
performance of lubricating materials in various industrial applications is still widely remaining as a major prob-
lem. A way to relieve such problem may be combining technique of first-principles high-throughput calculation 
with the use of database embedding massive research information and analytical tools. This, integrating with the 
possible component of screening or searching, according to specific needs, gears the trend in developing and/or 
exploring new materials8. Commonly, the particularity of analog computation often results in problematic files 
of data structure, and data storage, and its processing of data calculated by first-principles, which are barriers of 
database platform and such problem requires to break through effectively.

Establishment of an effective and efficient data structure generally requires the premise for building up an 
appropriate database platform. This, in turn, inevitably affects the structure and techniques on data storage, data 
retrieval, and machine learning9. In practically operational process, it often needs to adjust/compromise the log-
ical and physical relationship between the real time data. Typically, most simulated data are just stored in local 
hard disks and likely to be erased carelessly. Hence, choosing some storage mode to give a long-term and secure 
storing is thus necessary and recommended. Establishment of a database platform not only can solve the problem 
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of massive simulated data generated by calculation, it also helps to standardize and/or integrate the simulated and 
tested data so as to improve the effective integration and utilization of the data.

Input and output to these files of first principles usually contain large amount of vital information and rather 
complex contents. Major information like energy values, fermi energy values and eigenvalues must be suitably 
and efficiently extracted and re-stored for further viewing, Furthermore, feasibility in displaying information 
such as band structure and spectrum often varies with the capacity of the processing graphics software. Therefore, 
output visualization is also one of the problems to be solved in the procedure of establishing database architecture.

Aiming at solving the problems as stipulated above, some researchers have accomplished partly the work in 
constructing of First Principle database: typically, AFOW10, Materials Project11, MedeA12, MatCloud13, NOMAD14 
and the software associated with Materials Informatics Platform (MIP)15. Among these, the first four platforms 
are known as high-throughput platforms built with the first-principle VASP software packages, which are capable 
providing data to be shared between computing platforms and calculation results. The software is mainly embed-
ded with inorganic crystal structure data, and it has some constraint on the selection of first-principles calculation 
software, moreover, lacks the support of experimental data. Although NOMAD is equipped with the supports to 
the users in uploading and downloading input and output files for various computing software processes, its data 
analysis is not powerful enough. However, Materials Informatics Platform is generally considered as a computing 
platform for thermoelectric materials, a series of consultations suggests that its database platforms are lacking 
of lubrication data of material and its simulated data are unable to combine with their experimental counter-
parts. That is, there does not solve the problems of diverse/sparse data storage and information extraction. It also 
needs conducting associated theoretical study to correlate the calculated physical parameters to the properties of 
materials. Hence, predictive research on material performance becomes critical in accelerating its development. 
Such realization resulted in the launch of Material Genome Project in the United States in 2011. As the research 
methods involve with high throughput experiments, high performance computing and data depth analysis, it has 
drawn many scientific researchers and substantial resources into the project, specifically working in exploring the 
method of data mining and performance prediction16–19. Its nature of massive data accumulation, combining with 
material performance prediction, has led to many new materials to be discovered and developed.

In view of the above mentioned, this paper specifically utilizes Window system to construct an integrated develop-
ment environment of Hypertext Preprocessor (abbreviated as: PHP)/MySQL and PHP/MongoDB. To accomplish such 
purpose, a Structure-Performance database of lubricating materials has been built to store data and analyze the infor-
mation achievable from high throughput calculation and experiment. The functionalities of the preprocessor and the 
database fundamentally consist of: uploading and inputting data (both tested and simulated ones) in different formats; 
searching information by simply keying in keywords or parameters; predicting performance via first principle calculations.  
By adequately studying the relationship of the calculated parameters and their corresponding performance of lubricating 
materials, it allows the establishment a machine learning prediction model preliminarily for tribological and anti-oxidative 
properties of the lubricating oils so that relatively more accurate and meaningful prediction can be achievable.

Architecture of Lubricating Materials Database
Construction of integrated development environment for high-throughput computing.  For the 
data processing requirements of high throughput computing and research and development of lubricants, a sta-
ble integrated development environment for PHP based on Apache service protocol under Windows environment 
(Fig. 1) has thus been built. MySQL (relational database) and MongoDB (non-relational database) are generally 
considered as the integrated environmental platform. In addition, the communication between (i) PHP and MySQL 
database, and between (ii) PHP and MongoDB database can be realized by suitably configuring. The dynamic link 
of such two databases often results in a variety of storage forms on specifically importing the test data and the 
high-throughput calculation results, which commonly has inclination to retain their individually original data20. 
Furthermore, the conversion formats between different data often facilitate the retrieval of these data.

Figure 1.  The integrated development environment of database.
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Construction of front-end and back-end system framework for database website.  Backstage 
management system.  The background management system is a prerequisite module of database and has great 
versatility for its internal users. In this design, the background management system remains the same interface 
as the front-end system interface. Owing to the needs in development stage, background management system is 
effectively categorized into three types, which are typically as data management, user management and system 
management. Such data management system is mainly used in managing data and users, such as: data deletion, 
user addition and deletion, role management, setting user permissions, and so on.

Front-end application system.  The pages of front-end management are in fact interactive interface mainly gear-
ing the communication between users and personalized according to their individually analytical levels. Their 
typical welcome interface of a database website is shown in Fig. 2, which gives a brief illustration of a website, and 
its login page and registration page for its users. Protection for user login and registration can be realized by the 
security functional block in the website data. Moreover, users are restrained to log in repeatedly so as to enhance 
resource saving and to improve the accessing speed.

Construction of functional module system.  Logical relationship of functional module system.  The 
structural layer and functional modules of the system are shown in Fig. 3. Basically, one-to-many tree structure is 
adopted as the logical structure of data, and in its physical structure like order, connection and index. Structures 
with distinct layers are also made conducive so that realization of design schemes is possible. As seen in Fig. 3, its 
functional modules are fundamentally divided into three parts, which typically consist of: (i) Data input module, 
(ii) Search module, and (iii) Prediction module.

Relationship schema/ entity-relationship for the MySQL database.  The MySQL database is established with (i) table 
names, (ii) table Structure, (iii) fields, (iv) field types, and (v) so on. Furthermore, the optimization of database is also 
very important for its acceptability to users. When the structure of MySQL is not well designed, its efficiency in devel-
oping an encoding process is significantly jeopardized. Figure 4 illustrates the relationship schema/entity-relationship 
diagram and the interconnection of individual components within this proposed MySQL database.

Figure 2.  The main front-end interface.

Figure 3.  The structure layer and function module.
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Implementation scheme of functional module system.  Figure 5 shows the interfacial connection of a function 
module in the lubrication material database. The realization of its function of inputting data for both test and 
analog calculation, together with querying components for (i) keyword and parameter, and (ii) prediction of 
material properties can be simply achievable by clicking different module boxes in the system. The remaining 
sections in this paper briefly introduce the specific functions of individual modules.

Data input module: Standardization of data formats is aimed at facilitating data retrieval and improv-
ing utilization efficiency. Diversification of operating software is often derived from series of testers and high 
throughput computing, which recursively leads to type diversification of output files. Data input modules in this 
paper are specifically designed to include inputting data from both experiments and/or those files calculated by 
first-principles, which commonly fuse together the values of physical parameter and service performance of the 
associated materials. As inputting test data is only supported by Excle tables in standard format (Fig. 6(a)), while 
inputting analog data is supported by TXT documents (Fig. 6(b)), the process of importing data can be routed 

Figure 4.  Relationship schema/entity-relationship diagram for the MySQL database.

Figure 5.  The interface of function module of lubrication material database.

a b

Figure 6.  Data entry system of experimental data and analog data.
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orderly as follows: (i) entering name of the compound; (ii) selecting upload file from the personal computer, and 
(iii) clicking “Submit” to complete upload. Thereafter, the system will automatically connect MySQL database and 
MongoDB database in PC, and it stores test tables in MySQL database, and results of high throughput calculation 
in MongoDB database, filtering and retrieving key data in the background of the system, and finally by insert-
ing the associated data into the MySQL database (Fig. 7). Its structural transformation mechanism for filtering, 
extracting and inserting operations basically involves with: (i) converting the obtained string into an array, (ii) 
selecting the variable and value to be extracted from the array, (iii) re-creating a new array with the variable con-
sistently with the inserted table header, and (iv) updating the variable and value on MySQL database. Effectively 
sorting and integrating relational and non-relational databases not only meet the requirements for processing 
special data and for high-throughput computing, it also provides capability for data query and management.

Search module: Query system allows realization of keyword query and physical parameters query, through 
transmitting the database to SQL statements.The statement of keyword query is: select * from search_keyword 
where full_formula = ‘$_POST[keyword]; Queries for performance and physical parameters must be imple-
mented in the form of fuzzy queries, such as queries for lubricating materials that conform to a particular range 
of dipole moments: select * from data entry where $_POST [keyword] between $_POST [a] and $_POST [b]. 

Figure 7.  Structural transformation and input of high-throughput computing data.

(a) The results of test data of PAO queried by keywords 

Query results 

Query results 

(b) The results of the first-principles display of graphene queried by keywords 

Figure 8.  Result display of keyword query.
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Example of the results of test data of PAO and first principles display of graphene query by keywords is as illus-
trated in Fig. 8, whilst Fig. 9 is demonstrating the example in the query results of inputting performance (e.g. 
wear) or physical parameters (e.g. density), and also their corresponding searching range, which allows the find-
ing of corresponding compounds from its possibly variable.

Prediction module: Series of first principle theoretical methods in predicting material properties are mainly 
based on Schrodinger equation. Hence, the target of its database construction needs to have capability in screen-
ing material and predicting material performance. It is thus crucial to establish a relationship model between 
parameters and properties using Python language on the basis of data mining technology. Thereafter, an interface 
connecting Python to PHP has built, and the prediction of performance of lubricating material has been realized 
by suitably transferring the relational model to the prediction group data. Such prediction system should thus be 
equipped with capability in predicting the physical and chemical performance, anti-oxidative performance and 
tribological performance of the associated lubricating materials.

In the operation of this developed database system, the user is expected importing the results of lubricating 
material, initially obtained by first-principles calculation, which are followed by clicking “prediction” button to 
terminate the inputting action. Figure 10 tabulates the predictions of the friction coefficient obtained after intro-
ducing the simulation data of the lubricating oil.

Figure 9.  Results display of performance and physical parameters query.

Figure 10.  Results display of wear spot diameter prediction.

Figure 11.  Six molecular structural diagrams of lubricating oil additives.
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Performance Prediction Method of Lubricating Oil Based on Machine Learning
As material structure always affects its properties and performance, a large number of experiments illustrates that 
the effects of existence of unsaturated bonds in lubricating oil molecules to its low temperature performance21–24. 
Studies also indicated that length and breakage of carbon chain often change its viscosity and viscosity index, and 
the branching of ester carbon chain improves its hydrolytic stability. Fracture failure of O-H bond and N-H bond 
in additives also likely leads to rapid deterioration of lubricating oil performance. In 2016, an article in Nature 
reported a prediction method specifically focusing on simulated physical characteristics (typically like: charge 
mobility, photovoltaic characteristics, etc.), which provides guide to synthesis of target materials having specific 
functions of machine learning25. This serves to demonstrate the important role that machine learning plays in 
discovering the relationship between microstructure and material properties which are normally not revealed in 
a test process.

Implementation of first principles calculations to software like VASP26, Materials Studio27 and CASTEP28 has 
been carried out. It has also used Materials Studio simulation software to calculate physical parameters of the 
lubricating additives in this article, and its outputs are imported into relevant modules in the database, machine 
learning models within Tensorflow for predicting the associated performance.

Calculation of quantum mechanics parameters of lubricating oil.  Molecular model of additives 
can be established in Materials Studio. However, the establishment process requires the performance of structure 
optimization of additives by the firstly use of Forcite package29 and then DeMol 3 package30. After the completion 
of geometry optimization, it uses Demol 3 package to calculate the anticipated parameters. Figure 11 shows six of 
these typical molecular models.

Quantum parameters of molecules (such as: molecule surface area, molecule energy, molecule volume, dipole 
moment, energy orbital, etc.) are subsequently calculateing to the Formula 1, in which X represents the calculated 
values, Xmin and Xmax represents the minimum and the maximum value in calculations, and Xnorm represents 

Importation of data set 

Definition of parameters 

Cost function 

Training model 

Figure 12.  Machine learning model of lubricating oil.

LUMO energy Total dipole Prediction values Actual values Prediction rate

0.133606 0.216264 4.921477 5.273 93.33%

0.216042 0.081183 4.79552 4.8732 98.41%

0.411698 0.810617 5.291024 4.7826 89.37%

0.454471 0.567473 5.094736 4.4681 85.98%

0.578933 0.31082 4.864686 4.833 99.34%

0.604808 0.040659 4.652826 4.526 97.20%

0.646044 0.24328 4.794245 5.1147 93.73%

Table 1.  Prediction of wear and comparison with actual wear (load: 196N).

LUMO energy Total dipole Prediction values Actual values Prediction rate

0.133606 0.216264 4.973328553 5.3326 93.26%

0.216042 0.081183 4.83523244 4.853 99.63%

0.411698 0.810617 5.36052086 4.8413 89.28%

0.454471 0.567473 5.148277255 4.5857 87.73%

0.578933 0.31082 4.896959318 4.876 99.57%

0.604808 0.040659 4.668580358 4.4587 95.29%

0.646044 0.24328 4.819004584 5.0309 95.79%

Table 2.  Prediction of wear and comparison with actual wear (load: 294N).
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the normalized values. Normally, the normalized parameter values are basically used to build the necessarily 
relational model.

= − −Xnorm X Xmin/Xmax Xmin (1)

Construction and importation of machine learning model between feature parameters and 
wear.  Wear data of the 36 groups of lubricants used for constructing the model in Sec. 3.1 are all from the doc-
torate thesis of Junyan Zhang31. Base oil used in the test is liquid paraffin. Friction and wear tests were carried out 
on a standard four-ball tester running at a rotational speed of 1450 rpm with test time of 30 min, and its wear scar 
diameter has been obtained for wear volume estimation32. As mentioned previously, a linear regression machine 
learning model for characteristic parameters (low orbital energy and dipole moment) of lubricating oil and wear 
has been built by using Tensorflow (Fig. 12). Among the 36 groups, 29 groups are classified as training group and 7 
other groups are taken as prediction group. Both training group and other data set are randomly selected from the 
36 groups of data, which have been properly numbered. The data imported to training group is by Excle form and 
with data in the 29 groups, while the other 7 prediction groups are purposefully used for verification there validity.

LUMO energy Total dipole Prediction values Actual values Prediction rate

0.133606 0.216264 4.923744177 5.3027 92.85%

0.216042 0.081183 4.78432243 4.842 98.81%

0.411698 0.810617 5.349034102 4.8642 90.03%

0.454471 0.567473 5.129086755 4.4499 84.74%

0.578933 0.31082 4.873630555 4.8712 99.95%

0.604808 0.040659 4.635601811 4.4027 94.71%

0.646044 0.24328 4.79631669 4.9849 96.22%

Table 3.  Prediction of wear and comparison with actual wear (load: 392N). Remarks: units of variables are: 
LUMO energy/Ha, Total dipole/D, Prediction values/mm, Actual values/mm

Figure 13.  The training and verification loss plots.
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The subsequently obtained training model with data from training groups enables defining weights, building 
cost functions, and adopting gradient descent methods. The model is invoked through the database platform, 
whilst the prediction counterpart is used to substitute the data from model for predicting wear volume. For facil-
itating the analysis, comparison of the predicted wear with its actually practical wear, has also been conducted, 
and their corresponding predicted accuracy is tabulated in Tables 1–3. The loss plot in Fig. 13 compares the dis-
crepancy between training and verification.

Construction and importation of machine learning model between feature parameters and oxi-
dation onset temperature.  The oxidation onset temperature (OOT) data of the 17 groups of lubricants 
used for constructing the model are fundamentally taken from Shengpeng Zhan’s article33. Base oil used in the test 
has been ester oil TMPTO. Thermal oxidation test is carried out on a differential scanning calorimeter (DSC). The 
use of Tensorflow (Fig. 10) allows a linear regression machine learning model simulating characteristic parame-
ters of lubricating oil and wear to be built. The characteristic parameters are basically including molecular energy, 
low orbital energy, LUMO-HOMO energy, dipole moment and fat-water partition coefficient. 13 groups of the 
parameters are nominated as training group and 4 other groups as prediction group. Data in individual sets are 
imported in Excle form, and subsequently their training relationship model is acquired post of many training 
iterations. The model is generally invoked via its database platform, and thereafter the prediction group is sub-
stituted to the model for predicting initial oxidation temperature. Analysis is therefore initiated by the predicted 
initial oxidation temperature which is then compared with its actually experimental values, and their predicted 
accuracy can be seen from Table 4.

Conclusion
Lubrication is a core technology to support the advanced manufacturing, to ensure smooth operation of machin-
ery, and to achieve energy saving. However, its process in developing the technology for accomplishment of 
high-performance lubricating material still relatively slow. It thus needs urgent innovation and concept in 
improving material design revolutionarily so that its practical significance can be achievable in developing effi-
cient lubricating materials.

This paper is initiated on the basis of research idea on material genetic engineering for carrying out performance 
prediction of materials so as to meet extreme service performance. To accomplishing such purpose, technique in 
producing software of database for integrating the simulation calculation and experimental data, composition of 
the lubrication material-structure and physical parameter-lubrication performance is thus proposed. The technique 
combines database, data mining and other machine learning methods together. The anticipated database platform 
for lubricating materials has initially established by considering the following factors and components.

	(1)	 A database platform with high throughput computing results and test counterparts, and high capability to 
store and analyze the relevant data has thus been constructed based on Web, which can effectively realize 
data entry, data query and performance prediction of lubricating materials.

	(2)	 Software combining database with machine learning, the relationship model between calculated physical 
parameters and properties of lubricating materials has been established to facilitate the prediction of mate-
rial properties.

	(3)	 The models of calculated physical parameters and wear rate, calculated physical parameters and oxidation 
onset temperature of lubricating oils were also constructed for predicting tribological properties and an-
ti-oxidative properties of lubricating oils. Comparison of experimental results with the data predicted from 
model has shown its high level of conformability between prediction and test data.
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