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Abstract

Purpose: Osteopenia and skeletal fragility are considered to be the complications associated with type 2 diabetes mellitus
(T2DM). The relationship between glucose metabolism, skeletal quality, and vitamin D have not been completely under-
stood. We aimed to demonstrate a comprehensive bone quality profile in a T2DM model subject and to investigate whether
1, 25-dihydroxy vitamin D3 could prevent osteopenia and skeletal fragility in the diabetes model rats.

Methods: Daily calcitriol (a 1, 25-dihydroxy vitamin D3 formulation, 0.045 pg/kg/day) treatment was administered to 21-
week-old male Goto-Kakizaki (GK) rats (a genetic non-obese and non-insulin-dependent spontaneous diabetes rat model) for
20 weeks and the results were compared with those in untreated GK rats, and wild-type animals.

Results: Micro-computed tomography, histomorphometry, and bone mineral density analysis demonstrated that T2DM
induced significant osteopenia, and impairment of bone microarchitecture and biomechanical properties in GK rats. T2DM
also significantly decreased bone formation and increased bone resorption parameters in three regions of the skeleton
(proximal tibia, mid-shaft of the tibia, and lumbar vertebrae), and increased carboxy-terminal type I collagen crosslinks,
tartrate-resistant acid phosphatase, muscle ubiquitin C, and bone thioredoxin interacting protein (TXNIP) expression.
Calcitriol treatment significantly alleviated bone loss, and improved bone microarchitecture and biomechanical properties
and also decreased serum glucose and glycated serum protein levels. Biomarkers of bone formation were significantly
increased, while muscle ubiquitin C and bone TXNIP expression were significantly decreased following calcitriol treatment.
Conclusions: These results suggest that 1,25-dihydroxy vitamin D3 treatment effectively attenuates osteopenia, and
improves bone and muscle quality in GK type 2 diabetes model rats.
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Introduction

Type 2 diabetes mellitus (T2DM) is becoming an
increasingly prevalent disease worldwide, according to
the 2016 report of the World Health Organization [1], 422
million people worldwide have diabetes, and T2DM
accounts for 90% of the cases [2]. Because of impaired
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complications occur in the middle-aged and elderly indi-
viduals with diabetes. In addition, T2DM not only impairs
bone quality, but also induces a greater decline in the
muscle mass, and muscle strength in elderly patients with
type 2 diabetes when compared to that in age-matched
normoglycemic controls [3, 4]. Age-related loss of muscle
mass and strength is accelerated in type 2 diabetes
patients. The increased type II muscle fiber atrophy in the
elderly diabetic individuals could predispose to a great
loss of muscle strength. Impaired bone quality and
decreased muscle strength couple to induce a high inci-
dence of fragility fractures in type 2 diabetic patients,
which causes an enormous medical and economic burden.
Therefore, the management and prevention of T2DM-
induced bone fragility is a challenging issue. Despite
evidence for increased bone fragility in type 2 diabetes
patients, a comprehensive bone quality profile in a type 2
diabetes model subject has still not been fully presented.
The protective strategy of osteoporosis treatment against
the bone fragility in patients with type 2 diabetes also
needs further investigation.

Vitamin D3 is well-known for its role in the maintenance
of a healthy, mineralized skeleton through the regulation of
calcium and phosphate homeostasis. Moreover, vitamin D
may contribute to improved bone health independent of its
role in calcium homeostasis. Several studies have reported
that vitamin D is associated with several common diseases,
including type 2 diabetes [5]. People with prediabetes and
established diabetes have lower blood vitamin D3 con-
centrations than that in patients with normal glucose toler-
ance. Furthermore, in longitudinal observational studies,
higher levels of vitamin D3 were found to be associated with
lower rates of incident diabetes [6, 7].

The Goto-Kakizaki (GK) rat is a model of type 2 diabetes
mellitus, produced originally by selective inbreeding for a
hyperglycemic trait. These rats are characterized as having
insulin resistance and an insulin secretory defect [8]. In the
present study, we aimed to study a comprehensive bone
quality profile in a type 2 diabetes model-GK rat and also to
investigate whether 1, 25-dihydroxy vitamin D3 could
prevent osteopenia and skeletal fragility and improve
muscle quality in type 2 diabetes model rats.

Methods
Animals

Sixteen 10-week-old male GK rats (289.34 g+ 19.76 g) and
eight age-matched Wistar rats (258.00g+9.95g) were
obtained from Shanghai Slac Laboratory Animal Co. Ltd
(Shanghai, China) and rats were bred to age 21-week-old
before drug intervention experiment.

Experimental protocols

GK rats at the age of 21-weeks were randomly allocated
into two groups with eight rats per group and the eight age-
matched male Wistar rats were used as the healthy control.
The groups were: (1) healthy control (Control, Wistar rats);
(2) Type 2 diabetes model (GK, Goto-Kakizaki Type 2
diabetes rats); (3) Treatment group (GK + Cal, GK rats
were treated with calcitriol (R.P. Scherer GmbH &Co.KG,
Germany, 0.045 pg/kg/day). Calcitriol administration con-
tinued for 20 weeks. The rats were sacrificed at age 41-
weeks (21 + 20).

Rats were weighted and performed oral glucose tolerance
test (OGTT) every 2 weeks. Rats were fasting 12h over
night before OGTT. According to the data from Shanghai
Slac Laboratory Animal Co. Ltd on GK rats, rats with
serum glucose levels above 7.0 mmol/L before glucose
intake or above 11.1 mmol/L after 2 h by OGTT more than
twice were considered to be diabetic. GK rats were all
diagnosed with diabetes by the OGTT confirmation at the
age of 13-weeks (data not shown). In vivo micro-computed
tomography (u-CT) analysis (Viva CT 40, Scanco, Swit-
zerland) confirmed the GK rats began to show osteopenia
compared to age-matched Wistar rats at the age of 18-weeks
(data not shown).

All rats received subcutaneous injections with calcein
(10 mg/kg, Sigma Chemical Co, USA, a bone formation
surface marker) on days 3.4,13, and 14 before sacrifice on
20 weeks post initiated the calcitriol administration. The rats
were sacrificed by cardiac puncture under anesthesia at the
experimental endpoint. Serum was collected for biochem-
ical marker assays. The pancreas and gastrocnemius were
collected for histology analysis. The left proximal tibial
metaphysis (PTM), cross-sections of the tibial shaft (TX),
and the fourth lumbar vertebra (LV 4) were embedded in
methylmethacrylate to obtain undecalcified sections, which
were used for bone histomorphometry analysis. u-CT ana-
lysis was used to analyze the trabecular changes on the
proximal tibia. The right femurs were collected for the
biomechanical properties analysis. The protein expression
of TXNIP was determined with immunohistochemical
analysis on the distal right femur. The expression of the
ubiquitin C in gastrocnemius was detected by real-time
PCR.

Serum biomarker analyzes

Serum was collected and stored at —80 °C until analyzed.
Serum alkaline phosphatase (AKP), carboxy-terminal col-
lagen crosslinks (CTX)-1, calcium(Ca), phosphate (P),
tartrate-resistant acid phosphatase (TRAP), osteocalcin
(OCN), superoxide dismutase(SOD), malondialdehyde
(MDA), glycated serum protein (GSP), and insulin (INS)
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were measured using commercially available assay kits
(Nanjing Jiancheng Bioengineering Institute, Jiangsu,
China) by following the manufacturer’s instruction.

p-CT analysis

p-CT (Viva CT 40, Scanco Medical, Zurich, Switzerland)
analysis was performed on left proximal tibia of the rats at
the endpoint. Briefly, the scanning setting were in high
resolution: X-ray energy 70 kVp, 114 uA, 8 W, integration
time 200 ms. The region of interest (ROI) was in proximal
tibial metaphysis (PTM) located between 1 and 3 mm distal
to the growth plate—epiphyseal junction. Cortical bone was
excluded from the measurement. Three-dimensional (3D)
images were generated using a Gaussian filter (sigma 0.8,
support 1). The 3D analysis was performed to determine
bone volume/ tissue volume (BV/TV), connectivity density
(Conn.D), trabecular number (Tb.N), trabecular separation
(Tb.Sp), trabecular thickness (Tb.Th), and bone mineral
density (vVBMD).

Bone histomorphometry analysis

The right proximal tibia metaphysis and the fourth lumbar
vertebra were processed for undecalcified section and bone
histomorphometric analyses. Frontal sections of 5 and 9 um
were obtained from each sample. The 5 um sections were
stained by Goldner’s trichrome and toluidine blue for static
histomorphometric analyses. The 9 uym unstained sections
were used for dynamic histomorphometric analyses. A
semiautomatic digitizing image analysis system (Osteo-
metrics, Inc., Decatur, GA, USA) was used for quantitative
bone histomorphometric measurements. Briefly, the region
of interest was located between 1 and 4 mm distal to the
growth plate—epiphyseal junction. The quantitative analysis
was performed on one section of each sample. The abbre-
viations of the bone histomorphometric parameters used
were recommended by the American Society for Bone and
Mineral Research Histomorphometric Nomenclature Com-
mittee [9]. All histomorphometric parameters and proce-
dures were in accordance with previously published studies
[10, 11].

Biomechanical properties evaluation

The collected right femurs were isolated at the endpoint
were then tested for mechanical properties (three-point
bending test) using LLOYD LRS5SK Plus material testing
system (Lloyd Instruments, Meerbusch, Germany). Each
femur was placed on two lower supports that were 20 mm
apart. Force was applied at the mid-diaphysis on the anterior
surface so that the anterior surface was in compression and
the posterior surface in tension. Load-displacement diagram
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for each test was recorded to determine structural strength
properties (max load, fracture load, yield load and stiffness)
for each specimen.

Immunohistochemical and histological analysis

The immunohistochemical analysis of TXNIP expression
on the decalcified femur was performed with an immuno-
histochemical kit (ZSGB-Biotechnology, Beijing, People’s
Republic of China) according to manufacturer’s instruction
and quantified by Image-Pro Plus 6.0 software (Media
Cybernetics, Silver Spring, MD, USA) according to TXNIP
staining. The anti-TXNIP antibody was obtained from
Abcam (Cambridge, MA, USA). Gastrocnemius muscle
was collected and weighted at the endpoint. Gastrocnemius
and pancreas were embedded in paraffin and sectioned for
histology analysis.

Quantitative reverse transcription PCR (RT-PCR)
analysis

Total RNA was extracted from the gastrocnemius muscle
samples using TRIzol reagent (Invitrogen Life Technologies,
Shanghai, China). Subsequently, complementary DNA was
generated using a reverse transcriptase kit (Takara Bio, Inc.,
Otsu, Japan) according to the manufacturers’ instructions. The
relative expression levels of ubiquitin C (Ubc) mRNA were
determined using an SYBR Green real-time PCR kit (Takara
Bio, Inc.) and normalized to GAPDH. RT-PCR analysis was
performed using ABI 7500 Fast Real-Time PCR system
(Applied Biosystems Life Technologies, Foster City, CA,
USA) and the following gene-specific primers: Forward, 5'-
AGGCAAGACCATCACTCTGG-3" and reverse, 5'-
CAAACCCAAGAACAAGCACA-3’ for Ubc. The primers
were designed and synthesized by Shanghai Sangon Bio-
technology Co. Ltd. (Shanghai, China).

Statistical analysis

Data were presented as mean + standard deviation. The sta-
tistical differences among groups were evaluated using SPSS
16.0 software (SPSS Inc., Chicago, IL, USA) by analysis of
variance with Fisher’s protected least significant difference. A
value of P <0.05 was considered as statistically significant.

Results

GK diabetic rats developed marked bone loss and
deterioration in bone quality

GK diabetic rats revealed significant lower body weight and
higher serum glucose levels than those of wild-type controls
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(Fig. 1, Table 1, and Table 5). Serum biomarker and bio-
chemical assays indicated that osteocalcin levels were sig-
nificantly decreased whereas TRAP, CTX-I, and AKP
levels were significantly increased in GK diabetic rats
compared with controls. GK diabetic rats also demonstrated
significantly higher levels of INS, GSP, MDA, with a lower
P and SOD level in the serum. When compared with con-
trol, the data from p-CT analysis indicated that the trabe-
cular BV/TV ratio of GK rats decreased by 33% and was
accompanied by significant deterioration in both bone
geometry and microstructure parameters (Conn.D, trabe-
cular number, trabecular thickness, trabecular separation,
and vBMD) (Fig. 2 and Table 2). In the histomorphometry
analysis, bone formation parameters including mineralizing
surface, mineral apposition rate, and bone formation rate all
significantly decreased in GK diabetic rats (Table 3). The
results were found not only in trabecular bone but also in
cortical bone. Bone histomorphometry analysis in the
lumbar vertebra also showed consistent data as PTM (Fig. 3
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Fig. 1 Body weight of GK diabetic rats with calcitriol treatment.
Control, wild-type Wistar rats; GK, Goto-Kakizaki diabetic rats; GK
+ Cal, Goto-Kakizaki diabetic rats with calcitriol treatments

and Table 4). Further, bone histomorphometric analysis
revealed that the osteoblast surface ratio was significantly
decreased whereas the osteoclast surface showed a mild
increased compared to that in the controls. The deteriorated
geometry, microstructure and density of bone directly led to
a decrease in the bone quality of the GK rats. In terms of
bone mechanical properties, apparent material strength
(max load decreased by 18.5%, yield load decreased by
15.6%, and fracture load decreased by 17.1%) and structural
strength (stiffness decreased by 12.3%) were significantly
lower in GK diabetic rats than that in controls (Fig. 4b).
Histological analyses suggested that the GK diabetic rats
also demonstrated significant deteriorating pathological
changes in the gastrocnemius muscle and pancreas. GK
diabetic rats showed lower muscle fiber number and
area, and enlarge pancreas islet with less islet cell density
compared with controls. Ubiquitin C gene expression
of gastrocnemius muscle and TXNIP protein expression
were both significantly increased in GK diabetic rats
(Figs. 4 and 5).

Calcitriol treatment restored bone formation,
suppressed bone resorption, and increased bone
and muscle quality in GK diabetic rats

As observed on p-CT analysis, calcitriol treatment sig-
nificantly increased the mass (trabecular BV/TV, trabecular
number), vBMD, and bone microarchitecture parameters
when compared to those in untreated GK diabetic rats (Fig.
2 and Table 2). As to the bone histomorphometric analysis,

Table 1 Oral glucose tolerance test (OGTT) 2 h test per 2 weeks monitoring serum glucose change on GK diabetic rats post initiate calcitriol

treatment

Drug OGTT Oh (mmol/L) OGTT 1 h (mmol/L) OGTT 2 h (mmol/L)

intervetion

Time Control GK GK + Cal Control GK GK + Cal Control GK GK + Cal
(weeks)

0 3.89+£0.15 7.08+0.47* 6.03+0.30* 5.61+0.19 16.65+1.40* 14.86+1.34* 4.09+0.11 11.53+0.88* 11.19+0.75%
2 390+0.11 6.04+0.30* 6.84+0.32* 5.41+£0.24 1622+1.22*% 1550+1.35% 4.10+£0.14 12.30+1.26* 10.49 +0.86*
4 3.93+0.12 6.19+0.56% 6.11+£0.88* 548+024 16.15+0.73* 16.07+1.59% 4.09+0.12 12.89+1.72* 10.91 +0.83*#
6 3.95+0.12 6.64+1.08% 6.59+0.61* 546+034 1634+1.48*% 15.03+1.60% 4.13+0.10 12.55+1.46* 10.93 +0.85+#
8 3.88+0.13 6.38+0.75* 7.00x1.06* 530+0.29 16.30+1.27* 17.83+2.43* 4.13+£0.10 11.88+1.65* 10.93+£0.72*
10 390+£0.12 6.05+0.48* 594+041* 548+0.21 16.38+1.84* 13.54+2.36* 4.18+0.09 11.95+2.04* 10.03 +1.49*
12 411+043 5.86+0.87% 6.11+048% 536x027 17.20+1.32*% 16.80+£2.79% 4.41+040 12.81=1.11* 10.96+0.60**
14 428+0.29 6.31x0.53*% 5.63x049%% 545+0.35 16.95+1.94% 1531x1.68% 4.60+0.27 12.09+0.86* 10.80+0.88*
16 426+0.18 6.63+£0.63*% 5.72+043% 539x0.33 16.90+1.38*% 14.60=0.96** 4.68+0.21 12.34+0.93* 10.74+0.43%#
18 421+020 6.11+1.03% 6.16+0.52% 549+024 18.26+1.65% 13.86+1.98** 4.61+0.16 12.00=1.07* 10.87+2.91*
20 429+022 644+047% 541+0.79% 554x029 16.31+1.84*% 1517+2.11% 4.67+0.19 11.95+0.57* 9.36+0.61*#

Note: Vs. Control “P <0.05, vs. GK #P <0.05. Values are presented as mean + SD

Control wild-type Wistar rats, GK Goto-Kakizaki diabetic rats, GK + Cal Goto-Kakizaki diabetic rats with calcitriol treatments
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Fig. 2 Representative PTM images of p-CT and histomorphometry analysis in GK diabetic rats calcitriol treatment. a Representative 3D u-CT
images of the proximal tibial metaphysis (PTM); b Representative bone histomorphometry micrographs of PTM (undecalcified sections with
Goldner’s trichrome staining); ¢ Representative bone histomorphometry fluorescent micrographs of PTM (undecalcified sections with calcein
labeling); d Representative bone histomorphometry micrographs of PTM (undecalcified sections with toluidine blue staining); e Representative
bone histomorphometry fluorescent micrographs of tibial shaft (TX) (undecalcified sections with calcein labeling). Quantitative data were showed
in Table 2 and Table 3. Control, wild-type Wistar rats; GK, Goto-Kakizaki diabetic rats; GK + Cal, Goto-Kakizaki diabetic rats with calcitriol
treatments; PTM, proximal tibial metaphysis; CT, computed tomography
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Table 2 p-CT analysis of proximal tibial metaphysis (PTM) in GK diabetic rats with calcitriol treatment

Group BV/TV (%) Conn-D (l/mm3 ) Tb.N (1/mm) Tb.Th (mm) Tb.Sp (mm) vBMD (mg/cm3)
Control 18.00 = 1.90 28.76 +4.89 247+0.25 0.11 +0.008 0.41 £0.04 232.09 +13.95
GK 12.00 +3.10% 15.41+4.18" 1.91+0.36" 0.089 +0.004" 0.55+0.11" 182.65+21.05"
GK + Cal 17.00 = 4.70% 23.97 +7.50* 2.46 +0.46" 0.10+0.019* 0.43 £0.09 224.58 +30.32%

Note: Vs. Control *P < 0.05, vs. GK *p< 0.05, Values are presented as mean + SD

Control wild-type Wistar rats, GK Goto-Kakizaki diabetic rats, GK + Cal Goto-Kakizaki diabetic rats with calcitriol treatments, u-CT micro-
computed tomography, PTM proximal tibial metaphysis, TV tissue volume, BV bone volume, Conn-D connectivity density, Th.N trabecular
number, 7b.Sp trabecular separation, 7b.Th trabecular thickness, vBMD volumetric bone mineral density

calcitriol treatment significantly increased bone formation
parameters; including mineralizing surface, mineral appo-
sition rate, and bone formation rate in both trabecular and
corticoid bone (Table 3). Additionally, calcitriol treatment
also significantly increased osteoblast surface and reduced
osteoclast surface. Bone biomechanical data revealed a
significant higher max load (increased by 14.1%), yield load
(increased by 12.7%), fracture load (increased by 16.4%)
and stiffness (increased 11.9%) in GK diabetic rats with
calcitriol treatment than in untreated GK diabetic rats (Fig.
4). Serum biomarkers demonstrated that osteocalcin was
significantly increased whereas TRAP and CTX-I were
significantly decreased in calcitriol-treated GK diabetic rats
compared with untreated GK diabetic rats (Table 5). Cal-
citriol treatment significantly decreased TXNIP protein
expression and mildly decreased MDA in GK diabetic rats
compared with untreated GK diabetic rats. Additionally,
gastrocnemius weight loss, the decreased muscle fiber area
and number, as well as the decreased ubiquitin C gene
expression in the gastrocnemius muscle were significantly
alleviated by calcitriol treatment (Fig. 4). High levels of
serum glucose INS and GSP in GK diabetic rats were also
decreased by calcitriol treatment (Table 5). Calcitriol
treatment suppress the deterioration of pancreas islet and
increased islet cell density in GK rats.

Discussion

In the present study, we have demonstrated that GK rats
showed higher serum glucose, INS and GSP levels and
deteriorating pathological changes in the pancreas, which
may mimic cardinal symptom of T2DM. Our data demon-
strated that T2DM significantly impaired bone formation
and increased bone resorption, and, further, induced dete-
rioration in the bone microarchitecture and biomechanical
properties. We also showed that bone deterioration occurs at
multiple skeletal sites (tibia and lumbar vertebrae), where

both trabecular and cortical bone are present. Additionally,
T2DM caused increased muscle loss and degradation that
further impaired physical functioning of the musculoskele-
tal system in GK rats. Previous studies have demonstrated
skeletal changes in GK rats by dual X-ray absorptiometry
(DXA), peripheral quantitative CT (PQCT) [12], and his-
tomorphometric and biomechanical analysis [13]. Our
results were not only consistent with those of previous
studies but also add to those findings with comprehensive
data, including bone histomorphometry; p-CT; biomecha-
nical properties; pathology; and immunohistochemical,
muscle, and serum biomarker analyses in GK rats.

On the other hand, our data also demonstrated that
20 weeks calcitriol (1,25-dihydroxy vitamin D3) inter-
vention increased bone formation and bone mass in the
trabeculae of the tibia and lumbar vertebrae, as well as in
cortical bone, which was consistent with the results of the
pu-CT. Calcitriol also mildly suppressed bone resorption
and osteoclast activity. The increased bone mass and
improved microarchitecture of bone in calcitriol-treated
GK rats eventually yielded better biomechanical proper-
ties than those in untreated GK rats. Muscle loss and
degradation in GK rats were alleviated by calcitriol
treatment. Calcitriol treatment brings better bone and
muscle quality that together contribute to reducing frac-
ture risk in diabetic rats. Previous researches have con-
firmed that vitamin D3 plays an important role within the
bone remodeling process and it has been used in clinical
practice for the prevention of disorders associated with
bone health [14-16]. In addition, calcitriol decreased
serum glucose, and GSP and attenuated pancreas damage
in GK T2DM model rats when compared to its effect in
untreated GK rats, which suggest calcitriol not only has a
beneficial role in improving bone and muscle health but
also is involved in glucose metabolism.

An increasing number of clinical studies have investi-
gated the involvement of vitamin D3 supplementary treat-
ment in reducing the risk fractures induced by diabetes.
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Control

Fig. 3 Representative lumbar vertebrae images of histomorphometry
analysis in GK diabetic rats with calcitriol treatment. a Representative
bone histomorphometry micrographs of lumbar vertebrae (undecalci-
fied sections with Goldner’s trichrome staining); b Representative
bone histomorphometry fluorescent micrographs of lumbar vertebrae
(undecalcified sections with calcein labeling); ¢ Representative bone

GK+Cal

histomorphometry micrographs of lumbar vertebrae (undecalcified
sections with toluidine blue staining). Bone histomorphometry data of
lumbar vertebrae was shown in Table 4. Control, wild-type Wistar rats;
GK, Goto-Kakizaki diabetic rats; GK + Cal, Goto-Kakizaki diabetic
rats with calcitriol treatments

Table 4 Bone histomorphometric parameter analysis of lumbar vertebrae on GK diabetic rats with calcitriol treatment

Group  B.A/T.Ar Tb.Th (um) Tb.N(I/  Tb.Sp (um) Ob.S/BS (%) Oc.S/BS MS/BS (%) MAR (um/  BFR/BS BFR/BV BER/TV

(%) mm) 7 day) (%lyear) (%lyear) (%lyear)
Control  0.25+0.03  81.03+9.90 3.13+£0.22 240.10+19.76  1.08+0.06  0.61+0.04 515093 0.79+0.12  6.73x1.74 5126+1551  12.76+3.34
GK 0.19£0.02%  70.21 +£7.94% 2.67+0.10% 304.71 £13.55% 0.56+0.06% 0.67+0.05*% 2.03+0.49% 0.34+0.023% 1.27+0.22% 11.02 + 1.48* 2.06+0.36%
GK+  022+0.02%% 74.81+1.60" 2.94+0.15% 265.95+18.73%% 0.79+0.02%" 0.64+0.03 4.80=0.74" 0.56+0.09** 2.65+0.34*%  21.57+2.68*"  4.76+0.78*%

Cal

Note: Vs. Control *P <0.05, vs. GK P <0.05. Values are presented as mean + SD

Control wild-type Wistar rats, GK Goto-Kakizaki diabetic rats, GK + Cal Goto-Kakizaki diabetic rats with calcitriol treatments, B.Ar/T.Ar
trabecular bone area ratio in tissue area, Th.N trabecular number, 7b.Sp trabecular separation, 7b.Th trabecular thickness, Ob.S osteoblast
surface, Oc.S osteoclast surface, BS bone surface, MS/BS mineralizing surface, MAR mineral apposition rate, BFR bone formation rate, BV bone

volume, TV tissue volume

pathological state, can adversely affect bone homeostasis;
this is the immediate cause of suppression of the generation
and survival of osteoclasts, osteoblasts, and osteocytes [31].
Oxidative stress is increased in T2DM and this appears to

underlie the development of T2DM diabetic complications
[32]. Our serum data indicated that calcitriol treatment
decreased MDA in GK rats accompanied by decreased
TXNIP expression. Researchers have found that TXNIP
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Fig. 4 Gastrocnemius muscle analyses and bone biomechanical
properties analyses of GK diabetic rats with calcitriol treatment. a
Representative gastrocnemius histological images (H&E stain) and
gastrocnemius muscle analysis in GK diabetic rats with and without
calcitriol treatment; b Bone biomechanical properties analyses of GK
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diabetic rats with osteopenia undergoing calcitriol treatment. Notes:
Vs. Control "P < 0.05, vs. GK P < 0.05, Values are presented as mean
+ SD. Control, wild-type Wistar rats; GK, Goto-Kakizaki diabetic rats;
GK + Cal, Goto-Kakizaki diabetic rats with calcitriol treatments

Table 5 Serum biochemical marker analyses of GK diabetic rats with calcitriol treatment

Group INS (TU/L) GSP (mmol/L) OCN (ng/mL) AKP (king unit/100mL) CTX-I (ng/mL) TRAP (IU/L) SOD (U/L) MDA (nmol/mL) Ca (mmol/L) P (mmol/L)
Control 2276+343 0.28+0.04 6.60 +0.89 12.94+1.84 1.56£0.25 16.98+2.40 323.80+10.68 14.64+1.34 1.89+0.53 2.14+0.28

GK 31.57+2.85% 0.46+0.06* 397+0.73*% 5520+ 14.04* 2.74£0.39* 29.67+£5.22% 293.90+9.49*% 16.54+1.38* 1.99£0.46 1.85+0.31%*
GK +Cal 3347+181% 0.30+0.05" 4.56+0.99%  29.48 +10.24%# 2.02+0.14%%  23.08+5.61% 293.50+9.16% 15.71+2.31 220+0.16%  2.38+0.36"

Note: Vs. Control “P <0.05, vs. GK #P <0.05. Values are presented as mean + SD

Control wild-type Wistar rats, GK Goto-Kakizaki diabetic rats, GK + Cal Goto-Kakizaki diabetic rats with calcitriol treatments. /NS insulin, GSP
glycated serum protein, OCN osteocalcin, AKP serum alkaline phosphatase, CTX-I carboxy-terminal collagen crosslinks, TRA tartrate-resistant acid

phosphatase

protein is a key protein that could amplify oxidative stress
in the initial stage of the diabetic individuals. The upregu-
lated protein will stimulate oxidative stress and lead to the
death of pancreatic insulin-producing cells. TXNIP also
affects osteocalcin secretion by osteoblasts, and induces
bone resorption by regulating OPG/RANKL pathway [33].
In this study, we demonstrated that TXNIP expression was
significantly increased in GK rats, and calcitriol treatment

@ Springer

could suppress TXNIP expression in GK diabetic rats. The
results suggested that calcitriol treatment may improve bone
quality in GK rats by suppressing TXNIP-mediated oxida-
tive stress.

In conclusion, our study demonstrated that calcitriol
treatment (1, 25-dihydroxy vitamin D3) effectively attenu-
ates osteopenia, improves bone and muscle quality in GK
type 2 diabetes model rats.
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Fig. 5 Immunohistochemical analysis of TXNIP expression of femur
and pancreas pathology analysis in GK diabetic rats with calcitriol
treatments. a Immunohistochemical analysis of TXNIP expression in
the distal femurs. b Representative pancreas histological images (H&E
stain); ¢ Semi-quantitative results of TXNIP expression in the distal
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