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Abstract. Tumor necrosis factor‑related apoptosis‑inducing 
ligand (TRAIL) therapy is anticipated to be one of the most 
effective cancer treatments. However, resistance to TRAIL 
therapy remains a challenge facing the development of 
anticancer strategies. To circumvent this problem, TRAIL 
combinations have been experimented with for over ten years 
to induce synergism or sensitize resistant cancer cells. By 
analyzing the signaling pathways triggered by these combina-
tions, this review has defined a set of core targets for novel 
combinatorial treatments. The review suggests specific path-
ways to be targeted together with TRAIL for more efficient 
treatment, including cellular FLICE inhibitory protein and its 
downstream survival factors, the Bcl‑2 family and other prom-
inent targets. The suggested pathways provide new avenues for 
more effective TRAIL‑based cancer therapy.
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1. Introduction

Programmed cell death is considered a defensive mechanism 
to eliminate harmful and defective cells. Disturbances in the 
signaling pathways involved in programmed cell death may 
lead to uncontrolled cell proliferation and eventually cancer. 
Therefore, recent studies have focused on apoptosis, autophagy 

and necroptosis as strategic targets for novel cancer thera-
pies (1). Apoptosis is of particular importance due to its pivotal 
role in controlling irregular cell proliferation through its 
well‑defined mechanism. Apoptosis can be either initiated by 
ligands that bind to receptors on the cell membrane (extrinsic 
pathway) or initiated from intracellular signals (intrinsic or 
mitochondrial pathway) (2). With regard to ligand‑induced 
apoptosis, characterized ligands and corresponding death 
receptors include Fas ligand/Fas receptor, tumor necrosis 
factor (TNF) α/TNF receptor 1, Apo‑3 ligand/death receptor 
(DR) 3, TNF‑related apoptosis‑inducing ligand (TRAIL)/DR4 
and TRAIL/DR5 (2).

TRAIL was first characterized in the 1990s by 
Wiley  et  al  (3). Its potential use in cancer treatment was 
described later (4). TRAIL is characterized by its ability to 
selectively induce apoptosis in tumor cells but not in normal 
cells, qualifying as a potential drug specific for different 
types of cancer, including breast, bladder, lung and liver (5‑9). 
TRAIL is a cytokine secreted by the majority of normal 
tissues as a part of the natural immune reaction. It has been 
demonstrated that breast‑feeding women produce high levels 
of TRAIL in their milk, which may contribute to anticancer 
effects in infants (10). Collectively, TRAIL plays a significant 
role in cancer eradication and the prevention of proliferation, 
while being less likely to cause chemotherapeutic toxicity 
than established treatments  (11). The growing interest in 
TRAIL‑based interventions has led to the development of 
recombinant human TRAIL (rhTRAIL) as a promising therapy 
for different types of human cancer (12). 

This review will summarize the apoptotic pathway of 
TRAIL monotherapy in cancer cells, and how resistance 
develops against it. Subsequently the outcome of studies that 
have used TRAIL as a part of anticancer combinatorial therapy 
will be summarized and a set of targets that can be subse-
quently targeted specifically in combination with rhTRAIL to 
efficiently eliminate cancer will be identified.

2. Signaling pathway of TRAIL

In addition to binding to DR4 and DR5, TRAIL can bind decoy 
receptor (DcR) 1, DcR2 and the soluble receptor osteoprote-
gerin. However, only DR4 and DR5 can produce apoptotic 
signals through their intracellular death domain (13). As illus-
trated in Fig. 1A, the apoptotic signaling pathway of TRAIL 
is triggered by binding of trimerized TRAIL to DR4 and/or 
DR5, followed by receptor clustering leading to the recruit-
ment of Fas‑associated protein with death domain (FADD). 
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FADD adaptor protein then recruits pro‑caspase 8, forming 
the death‑inducing signaling complex (DISC) known as the 
primary complex. The recruitment of pro‑caspase 8 causes 
activation of DISC and the subsequent cleavage of caspases 3, 6 
and 7, resulting in membrane blebbing, DNA fragmentation 
and nuclear shrinkage. In certain cases, activated caspase 8 
requires the engagement of a mitochondrial response in what is 
known as the intrinsic pathway. In the intrinsic pathway, active 
caspase 8 cleaves the BH3‑interacting domain death agonist 
(Bid) to truncated Bid (tBid). tBid then binds Bcl‑2‑associated 
X protein (Bax) and Bcl‑2 homologous antagonist killer (Bak), 
then translocates to the mitochondria. This results in a change 
in mitochondrial membrane polarization and the release of 
mitochondria‑derived activator of caspase (Smac) (14). tBid 
also induces mitochondrial release of cytochrome c (15), which 
conjugates with ATP and apoptotic peptidase activating factor 1 
(Apaf‑1) to form a structure known as the apoptosome. This 
apoptosome is essential for the activation of caspase 9 and even-
tual activation of caspases 3, 6 and 7 (2,13,16).

3. Resistance developed against TRAIL‑induced apoptosis

Current TRAIL‑induced apoptosis strategies are hampered by 
the scarcity of death receptors expressed on the cell surface, and 
thus the inefficient targeting of these cells by TRAIL/agonistic 
monoclonal antibody (mAb). In addition, development of 
resistance to rhTRAIL/agonistic mAb has unfavorable nega-
tive implications for such therapies  (16). Although DISC 
is considered a critical step in the initiation of apoptotic 
signaling through the activation of pro‑caspase 8, cellular 
FLICE inhibitory protein (c‑FLIP), which shares sequence 
homology with caspase 8, may inhibit caspase activation by 
competing for FADD binding, as illustrated in Fig. 1B. In the 
presence of c‑FLIP, FADD and pro‑caspase 8, together with 
receptor‑interacting protein (RIP), TNF receptor‑associated 
factor 2 (TRAF2), IκB kinase and TNFR1‑associated death 
domain (TRADD), form a secondary complex responsible 
for the activation of non‑apoptotic signals initiated through 
the phosphoinositide 3‑kinase (PI3K)/Akt, nuclear factor κB 
and mitogen‑activated protein kinase (MAPK) pathways. 
However, a previous report refers to c‑FLIP as a pro‑apoptotic 
protein and therefore the survival process may require further 
clarification (17).

Another group of molecules involved in the resistance 
mechanism is the inhibitor of apoptosis (IAP) family, which 
includes X‑linked IAP, cellular IAP (c‑IAP) 1, c‑IAP2 and 
survivin. This group of molecules can inhibit the activity of 
caspases 3, 7 and/or 9. Nevertheless, this effect can be antago-
nized by Smac/direct inhibitor of apoptosis binding protein 
with low pi (DIABLO), which is released from mitochondria 
during apoptosis (18).

4. Signaling pathway of TRAIL combinations

Facing acquired resistance to TRAIL‑targeted cell death, an 
alternative approach has been utilized through which TRAIL 
is combined with other drugs that can be more effective 
than a single therapy. The major objective of combinato-
rial TRAIL is to either synergize the activity of TRAIL or 
to sensitize TRAIL‑resistant cells. Previous studies by 

the authors demonstrated that several natural compounds, 
including curcumin, cinobufotalin and berberine may be used 
solely or in combination to treat various disorders, including 
cancer (19‑22). To that end, natural compounds are involved 
in the majority of combinatorial strategies directed towards 
synergizing TRAIL and/or sensitizing resistant cancers to 
TRAIL.

Combinatorial strategies mainly initiate their action through 
endoplasmic reticulum (ER) stress, resulting in the upregula-
tion of DR5 and/or DR4 followed by increased TRAIL‑induced 
apoptosis (23‑25) (Fig. 2). ER stress primarily causes the release 
of reactive oxygen species (ROS) (26,27), which is considered a 
central checkpoint from which several signaling pathways can 
be triggered. Another downstream checkpoint is the activa-
tion of CCAAT‑enhancer‑binding protein homologous protein 
(CHOP) via p38/extracellular‑signal‑regulated kinase (ERK) 
MAPKs, which in turn increase the transcription of DR5 (28,29), 
enhance pro‑apoptotic proteins (such as Bim) (30) or down-
regulate the Bcl‑2 and Mcl‑1 survival proteins (29,31). The 
third member of the MAPK family, the c‑Jun N‑terminal 
kinases (JNKs), can also upregulate DR5 (via an Sp1‑mediated 
mechanism) and downregulate Bcl‑2 and Mcl‑1 (32). ROS may 
also cause DNA damage and p53 activation, leading to direct 
DR5 upregulation (the extrinsic apoptotic pathway) (33,34) 
or activation of p53 upregulated modulator of apoptosis 
(PUMA), phorbol‑12‑myristate‑13‑acetate‑induced protein 1 
(Noxa) and Bax pro‑apoptotic proteins (the intrinsic apoptotic 
pathway) (35,36).

In addition to ER stress, TRAIL combinations can act by 
downregulating NFκB, PI3K/Akt or Janus kinase (JAK)/signal 
transducer and activator of transcription (STAT) pathways. 
Previous studies have also revealed that the downregulation of 
c‑FLIP appears to be an important mechanism for improved 
apoptotic response (37).

5. Impact of current TRAIL combinations on future thera‑
peutic strategies

The remainder of this review focuses on candidates that can 
be targeted in combination with TRAIL as a part of emerging 
treatments for unresponsive cancer.

C‑FLIP and downstream survival factors. C‑FLIP has been 
consistently reported to have a role in conferring resistance 
through shifting the TRAIL‑mediated apoptotic pathway 
towards secondary complex formation (vide supra). The 
secondary complex triggers the initiation of certain survival 
pathways, including NFκB and PI3K/Akt, which may promote 
resistance. Treatment of TRAIL‑resistant cancer cells with 
chemotherapeutic agents, including camptothecin, celecoxib 
and cisplatin, results in the downregulation of c‑FLIP and thus 
sensitizes the resistant cancer cells to TRAIL (38). Thus, the 
inhibition of c‑FLIP would be of great value in sensitizing 
cancer to TRAIL by inhibiting the formation of the secondary 
complex (37) (Fig. 3A, track 1).

The MAPK family includes three pathways: ERK, JNK 
and p38. Whereas ERK is associated with cell survival and 
proliferation, JNK is a promoter of cell death and apop-
tosis (39). Notably, targeting ERK in non‑tumor cells has been 
shown to induce resistance against TRAIL, implying that an 
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ERK inhibition/TRAIL combination would efficiently target 
tumor cells without harming normal cells (40). The role of p38 
depends on the upstream activation and the type of stimuli (41). 

Previous studies have reported that p38 has a role in tumor 
growth and cell survival through control of a signaling 
network responsible for cell proliferation (20,42). Together, 

Figure 1. Dual opposing signaling pathways of TRAIL. (A) The apoptotic signaling pathway. (B) The resistance pathway developed against TRAIL‑induced 
apoptosis. TRAIL, tumor necrosis factor‑related apoptosis‑inducing ligand. 

Figure 2. Signaling pathway of TRAIL/drug combinations. TRAIL, tumor necrosis factor‑related apoptosis‑inducing ligand.

  A   B
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these findings may lead to systematic targeting that specifically 
inhibits ERK or p38 in combination with rhTRAIL. However, 
pharmacological parameters should be optimized to avoid the 
loss of CHOP/ERK‑ and/or p38‑mediated apoptosis due to the 
upregulation of DR4/DR5 (Fig. 3A, track 2).

NFκB, which has been found to be downregulated by TRAIL 
combinations, is an important candidate for new targeted inhibi-
tors due to its pivotal survival roles (43). The inhibition of the 
NFκB pathway with TRAIL therapies may serve as a solution 
for unresponsive or resistant tumors (Fig. 3, track 3).

Finally, the deregulation of the PI3K/Akt pathway has 
been observed in several types of human cancer (44,45). This 
enhances the survival of cancer cells by promoting cell cycle 
progression, proliferation, invasion and angiogenesis (46‑48). 
Activation of this pathway is correlated with the incidence 
of high‑grade tumors and a decrease in apoptosis (49). It has 
been reported that the inhibition of PI3K leads to synergistic 
effects in TRAIL‑induced apoptosis (50). Therefore, the use of 
PI3K‑specific inhibitors (such as LY294002 and Wortmannin) 
may have a significant therapeutic outcome when combined 
with rhTRAIL (Fig. 3A, track 4).

Bcl‑2 family. Bcl‑2 family proteins play the main role in the 
regulation of apoptosis. They are divided into anti‑apop-
totic and pro‑apoptotic proteins  (51,52). Upregulation of 
anti‑apoptotic proteins, including Bcl‑2 and Mcl‑1, or down-
regulation of pro‑apoptotic Bax and Bak has been associated 
with resistance to TRAIL and recurrence of cancer (53,54). 
It appears that the ratio of pro‑ versus anti‑apoptotic Bcl‑2 
proteins is crucial in regulating the susceptibility of cancer 
cells to apoptosis. Shifting this balance towards apoptosis 
provides a viable tool in initiation of cancer cell death (55). 
Thus, searching for novel strategies to enhance TRAIL 
concurrent with anti‑apoptotic protein inhibition would 
be of significant therapeutic benefit  (56,57). Combining 
Bcl‑2‑specific inhibitors (such as ABT‑737 and HA14‑1) with 

TRAIL would be a powerful strategy against cancer (56,58). 
In addition, Bcl‑2‑ or Mcl‑1‑specific knockdown alongside 
TRAIL therapy would have potential for inducing apoptosis 
(Fig. 3B, track 5).

Others. TP53 (p53) is considered one of the four major 
tumor suppressor genes together with phosphatase and 
tensin homolog, alternate reading frame and inhibitor of 
cyclin‑dependent kinase  4a. The main function of p53 is 
cancer prevention through controlling cell death pathways. 
In addition, it negatively regulates the transcription of 
important anti‑apoptotic genes including Mcl‑1, Bcl‑2 and 
survivin  (59). Several reports, including a recent study by 
the authors (20) have shown p53 mutation to be a hallmark 
of TRAIL resistance in vitro. A critical factor for the TRAIL 
resistance of p53‑mutant cell lines is the limited upregulation 
of the expression of DR4 and DR5 by mutant p53 (34,60‑62). 
Previous studies have investigated the modulation of p53 using 
small molecules that restore p53 function in tumor cells. p53 
reactivation and induction of massive apoptosis (PRIMA‑1) 
and mutant p53‑dependent induction of rapid apoptosis are 
two examples of this new class of compound which exhibits 
efficacy in killing tumor cells that express mutant p53 (63). In 
particular, PRIMA‑1 has been investigated in vitro, in vivo and 
is currently in clinical trials (63). Elucidating the mechanism of 
action of this class and combining it with other anti‑neoplastic 
agents is therefore becoming increasingly important. Selective 
restoration of mutant p53 to sensitize TRAIL‑resistant cells to 
rhTRAIL via the upregulation of DR4/DR5 is thus a promising 
therapeutic strategy (Fig. 3C, track 6).

Studies have revealed that STAT3 is negatively regulated 
in response to TRAIL combinations, which eventually leads to 
the upregulation of DRs via the manipulation of anti‑apoptotic 
proteins (64,65). It is therefore suggested that specific inhibi-
tion of STAT3 (by Stattic, for example) would lead to induction 
of apoptosis (Fig. 3C, track 7).

Figure 3. Schematic diagram showing possible targets as part of future tumor necrosis factor‑related apoptosis‑inducing ligand‑based therapies enhancing 
apoptosis. (A) Targeting C FLIP and downstream survival factors. (B) Targeting the Bcl 2 family. (C) manipulating p53 and STAT3.

  A

  B

  C
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6. Conclusion

This review has summarized the outcome of various studies 
carried out during the past fifteen years and the role of TRAIL 
combinations in enhancing apoptotic signaling pathways. It has 
highlighted the pathways activated or downregulated by those 
combinations which enhance apoptotic cell death and eliminate 
resistance to single TRAIL therapy. Future therapeutic strate-
gies should capitalize on selective modulators that regulate 
those pathways as a part of a combined TRAIL therapy. In addi-
tion, the study has outlined several promising targets for direct 
intervention together with rhTRAIL therapy. It remains to be 
verified whether these new combinations are effective therapies. 
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