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Paclitaxel is a chemotherapeutic agent that acts as an inhibitor of cellular mitosis and has been widely used in the treatment of
triple-negative breast cancer (TNBC). However, paclitaxel resistance is one of the major reasons that contribute to the high failure
rates of chemotherapy and the relapse of TNBC. Accumulating studies have demonstrated that long noncoding RNA (lncRNA)
plays a role in the paclitaxel resistance and positively correlated with progression and metastasis of breast cancers. In the present
study, microarray expression profile analysis of lncRNA was performed between paclitaxel-resistant TNBC cell line MDA-MB-
231 and their parental cells. After verification with quantitative PCR, we identified that AF178030.2, an orphan lncRNA, was
significantly upregulated in paclitaxel-resistant TNBC cells. Overexpression of AF178030.2 greatly attenuated the sensitivity of
TNBC to paclitaxel, whereas knockdown of AF178030.2 enhanced the sensitivity of TNBC cells to paclitaxel. Furthermore,
bioinformatic analysis and RNA binding protein immunoprecipitation assay reveal that AF178030.2 can directly bind with
trichorhinophalangeal syndrome-1 (TRPS1), an oncogene in breast cancer, and downregulate its expression in paclitaxel-resistant
TNBC cells. TRPS1 overexpression effectively increased the sensitivity of paclitaxel-resistant TNBC cells to paclitaxel. Taking
together, high AF178030.2 expression contributed to paclitaxel resistance in TNBC through TRPS1 and poor clinical outcomes,
which may provide a new treatment strategy for paclitaxel-resistant TNBC patients.

1. Introduction

Breast cancer is the most common malignant tumor in
women worldwide. According to the latest statistics from the
American Cancer Society, the mortality rate of breast cancer
ranks only after lung cancer [1, 2]. Breast cancer can be
divided into different types based on the expression of es-
trogen receptor (ER), progesterone receptor (PR), human
epidermal growth factor receptor-2 (HER-2), and Ki-67
[1, 2]. Among them, triple-negative breast cancer (TNBC)
refers to breast cancer with negative expression of ER, PR,
and HER-2, accounting for about 10%–15% of breast cancer
population [3, 4]. Compared with non-TNBC breast cancer,
TNBC is characterized by strong invasion, high histological
grade, easy recurrence, and metastasis and therefore has a
worse prognosis [3, 4]. Moreover, targeted therapy and

endocrine therapy are limited in TNBC due to its special
molecular expression type [5]. So far, the treatment for
patients with late stage TNBC is chemotherapy using taxanes
and anthracyclines drugs [6, 7]. However, multiple cycles of
chemotherapy will induce tumor cells to develop resistance
to chemotherapeutic drugs, leading to treatment failure and
tumor progression, which seriously affects the patient’s
quality of life and long-term survival rate. ,erefore, how to
overcome TNBC chemotherapy resistance is the key to
improving the prognosis of TNBC patients.

Paclitaxel is a taxane compound and commonly used as a
clinical chemotherapy drug for TNBC [8]. It is generally
believed that paclitaxel can interfere with the normal po-
lymerization and depolymerization of microtubules by
binding to tubulin, thereby blocking the cell cycle in the G2/
M phase and initiating cell apoptosis [9, 10]. Clinical data
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have demonstrated that, during the long-term paclitaxel
chemotherapy, nearly half of the patients showed obvious
paclitaxel resistance and tumor progressed [8, 11]. ,ere-
fore, drug resistance is the main challenge of paclitaxel
treatment in TNBC [11]. In-depth exploration of the mo-
lecular mechanism of paclitaxel resistance to discover new
intervention targets is urgent and necessary to effectively
overcome paclitaxel chemotherapy resistance in clinical
practice. Long noncoding RNAs (lncRNAs) are defined as
noncoding RNA longer than 200 nucleotides and found to
be important regulators of diverse biological processes, and
their expression is altered in multiple pathologies including
cancer [12, 13]. Recently, accumulating studies have dem-
onstrated the important roles of lncRNAs in the chemo-
therapy resistance of a variety of tumors [14, 15]. ,erefore,
identifying the lncRNAs that are involved in the paclitaxel
resistance may shed a new light on overcoming paclitaxel
chemotherapy resistance.

In the present study, we performed microarray ex-
pression profile analysis in paclitaxel-resistant MDA-MB-
231 cells and identified an orphan lncRNA, AF178030.2,
which was extensively upregulated in paclitaxel-resistant
cells and was able to mediate the sensitivity and resistance to
paclitaxel by downregulating the expression of tricho-
rhinophalangeal syndrome-1 (TRPS1), an important regu-
lator in epithelial-mesenchymal transition, which was found
to be one of the main reasons to induce drug resistance in
many cancers.

2. Material and Methods

2.1. Transient Gene Transfection. ,e plasmid expressing
AF178030.2 or TRPS1 coding region was constructed by
Gibson assembly using lentivirus vector (pCDHL). To
overexpress AF178030.2 or TRPS1, the plasmids with
AF178030.2 or TRPS1 coding region were transiently
transfected by TNBC cell lines using Lipofectamine™ 3000
(Invitrogen, USA) according to the manufacturer’s in-
structions. ,e vectors of AF178030.2 were also transfected
by HEK293T cells for lentivirus packaging. MDA-MB-231
were then infected by HEK293T cell supernatant and were
selected in media supplemented with 5 μg/ml of puromycin.

To knock down AF178030.2 expression, we obtained two
AF178030.2 siRNA constructs (5′-TGC TGT TCA ATC
AGA TAT T-3′) and a negative control scrambled siRNA
(NC) construct from GenePharma (China) and then tran-
siently transfected TNBC cell lines using Lipofectamine™
3000 (Invitrogen, USA) according to the manufacturer’s
instructions.

2.2. Cell Culture and Establishment of Paclitaxel-Resistant
Cell Lines. ,e human cell lines of TNBC, MDA-MB-231,
and MDA-MB-436 were obtained from ,e Cell Bank of
Type Culture Collection of Chinese Academy of Sciences
(Shanghai, China) and cultured with Dulbecco’s Modi-
fied Eagle’s medium (Gibco, ,ermo Fisher Scientific,
Inc.) supplemented with 10% fetal bovine serum and
1 × penicillin streptomycin (Corning) in a 37°C incubator

with an atmosphere of 5% CO2 and 95% air. MDA-
MB-231 and MDA-MB-436 paclitaxel-resistant cell
lines were established by gradual administration of in-
creasing concentration of paclitaxel (Sigma-Aldrich,
USA) into culture medium from 1 nM to 100 nM for 6
months. ,e medium with paclitaxel was changed every
two days.

2.3. Microarray Expression Profile Analysis. Total RNA was
isolated from MDA-MB-231 paclitaxel-resistant cells and
their parental cells using Trizol reagent. ,e human
LncRNA microarray V2.0 (Arraystar Co., USA) con-
taining lncRNAs was used in this study. About 33,000
lncRNAs were collected from different data sources in-
cluding NCBI RefSeq, RNAdb, UCSC, and UCRs. Each
lncRNA array was composed of more than 60,000 distinct
probes (60 mers), and each lncRNA was represented by
1∼5 probes. ,e microarray hybridization and bio-
informatic analysis was performed by KangChang Bio-
tech, Co. (Shanghai, China).

2.4. Cell Growth Assay. Cell growth rate of MDA-MB-231
and MDA-MB-436 paclitaxel-resistant cells and their pa-
rental cells was determined by cell proliferation assay via
real-time cell impedance analysis (RTCA). Briefly, the cell
proliferation rates were monitored dynamically by the
xCELLigence system (Roche Applied Science) according to
the manufacturer’s instructions. ,e impedance was indi-
cated as cell index. RTCA software was applied to analyze the
measurements.

2.5. MTT Assay. Cell proliferation was determined by a 3-
(4,5-demerthylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay according to the manufacturer’s in-
struction. Briefly, cells were seeded in 96-well culture plates
at a density of 4×103 cells per well. After treatment with
various drugs for indicated periods of time, the medium was
changed. 5mg/ml MTT was then added to each well and
incubated for 4 h at 37°C. Subsequently, the supernatant was
discarded and 150 μL dimethyl sulfoxide was added to
dissolve intracellular formazan crystals. ,e cell viability in
each well was determined by measuring the absorbance at
490 nm using a microplate spectrophotometer. Each cell
viability assay was performed in triplicate.

2.6. Colony Formation Assay. Colony formation assay was
performed to determine the survival ability of a single cell to
grow into a colony. MDA-MB-231 and MDA-MB-436
paclitaxel-resistant cells were seeded in 6-well plates (500
cells/well) with 4ml complete medium. After one week of
culture, the colonies were washed with phosphate buffer
saline and fixed with methanol at room temperature for
30min. After staining with 0.1% crystal violet dye for 30min,
the cells were placed under a microscope and the images of
the stained colonies were captured. Finally, the number of
colonies was counted from these images.
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2.7. GeneOntologyAnalysis. Hierarchical clustering analysis
of genes was carried out, which were differentially expressed
between naı̈ve and resistant cell lines. Potential targets of
mRNAs were analyzed by Gene Ontology (GO). ,e bio-
logical process (BP), cellular component (CC), and mo-
lecular function (MF) of potential targets were clustered
based on ClusterProfiler package in R software (version:
3.18.0). In the enrichment result, P< 0.05 or FDR <0.05 is
considered to be enriched to a meaningful pathway.

2.8. Quantitative Real-Time PCR. Total RNA was extracted
using Trizol reagent according to the manufacturer’s in-
struction. 2 μg total RNA was reverse-transcribed into the
first-strand cDNA using Oligo dT primer and random
primer. ,e PCR primers for amplification were as follows:
TRPS1 sense-5′ CGC GAA GGC TCC TTT GAT ATT3′,
antisense-5′ GCG AGA GAG CAA TCG AGA GG3′;
AF178030.2 sense-5′ CTC GAC GTC ACT TCT TCC ACA
3′, antisense-5′ GGC TCC TTT TCT CCA CCA GAA3′;
BC015064 sense-5′ CAG GAT ACC AGT GCC CTT CA3′,
antisense-5′ CGT AGC AGC TAT GCA GCT TG 3′;
AM259138 sense-5′ TTG GTA CAG CAG ACT ACG CA 3′,
antisense-5′ GAC TAG TTT CTC GCG CAC AG 3′; SND1
sense-5′ GAC TGC TGT CCT TAC AGG GG 3′, antisense-
5′ TGG CTG GGG TTG CAT AAC TC3′; AK129540 sense-
5′ TTC CAT TCC ATC GTC TGG GT 3′, antisense-5′ TGA
AAG GAA GCA GGA GAG CA 3′; AC073934.6 sense-5′
CCA CTC GAC TTC CGA CAT T 3′, antisense-5′ CCT
CCA GCT TCT TGA TCT TTC3′; NR_024579 sense-5′
CCC TCA TTC CTC CAG AGC TT 3′, antisense-5′ TAG
CAT GAT CCC AGC TAC CC 3′; NR_023391 sense-5′ CTT
CAT TGA TGC GCT TGT GC 3′, antisense-5′ ACA CTG
AGG CTT GAT CAG ACA 3.

,e expression level of mRNA was measured based on
the threshold cycle (Ct), and relative expression levels were
calculated as 2−((Ct of mRNA)–(Ct of GAPDH)) after normaliza-
tion to GAPDH expression.

2.9.WesternBlot. Total proteins were extracted from cells by
radioimmunoprecipitation assay buffer (RIPA buffer). ,e
protein concentration was determined by bicinchoninic acid
(BCA) method. 20 μg of total protein was separated by SDS-
PAGE and was then transferred onto PVDF membrane.
After blockage with 5% nonfat milk, the PVDF membrane
was incubated with primary antibodies (anti-TRPS1 anti-
body, ab125197; anti-β-actin antibody, ab8226) overnight at
4°C. After washing, the membrane was further incubated
with HRP-conjugated secondary antibody. ,e signal was
developed by film. Relative protein expression levels were
quantified by scanning densitometry.

2.10. RNA Binding Protein Immunoprecipitation Assay. ,e
cells were lysed in low-sucrose buffer containing 0.3M sucrose,
5mM CaCl2, 5mM MgAc2, 0.1mM EDTA, 50mM HEPES,
1mMDTT, and 0.1% Triton X-100 on ice. ,e lysate was then
cross-linked by 1% formaldehyde. After washing twice with the
following buffer (150mM NaCl, 50mM Tris, 20mM EDTA,

0.5% NP-40, and 1% Triton-X-100) and incubated in lysis
buffer (100mM Tris-HCl, 20mM EDTA, and 2% SDS) for
10min, the lysate was precleared with Dynabeads protein A
(Invitrogen) and then incubated with anti-TRPS1 antibody
(ab125197, Abcam) for additional 2 hours at 4°C. After
washing, the RNA was eluted from beads and purified by an
miRNeasy Mini Kit (Qiagen). During the procedure, RNAse
inhibitor (Invitrogen) and protease inhibitors (Roche, cocktail)
were added to all solutions. Finally, the purified RNA was
reversed-transcribed for qRT-PCR analysis.

2.11. Statistical Analysis. ,e data were expressed as
mean ± standard deviation, unless otherwise stated. All
statistical analyses were performed using the Prism
GraphPad statistical software. T test and a one-way
ANOVA were used for the statistical analysis. P � 0.0416
were considered significant.

3. Results

3.1. Microarray Expression Profile Analysis of lncRNA in
Paclitaxel-Resistant TNBC Cells. To establish a cell model of
paclitaxel-resistant TNBC, MDA-MB-231 cell line was cul-
tured in a continuous treatment with a gradually increasing
concentration of paclitaxel (1–100 nM) for 6 months. Com-
pared with their parental cells (MDA-MB-231P), paclitaxel-
resistant cells (MDA-MB-231R) grew significantly slower
(Figure 1(a)). MTTassay was used to verify the establishment
of paclitaxel-resistant TNBC. As shown in Figure 1(b), the
sensitivity to paclitaxel of MDA-MB-231R was dramatically
reduced, and MDA-MB-231R survived well in 1 μM pacli-
taxel. Similar results were found using another TNBC cell line,
MDA-MB-436 (Supplemental Figure 1).

To search for the key lncRNA that us involved in the
paclitaxel resistance, we first performed microarray ex-
pression profile analysis to identify some lncRNAs that were
differentially expressed in the paclitaxel resistance. Based on
the data in Figure 1(c), the lncRNA expression levels be-
tween MDA-MB-231R and MDA-MB-231P were compared
and showed 1025 upregulated lncRNAs and 656 down-
regulated lncRNAs that were significantly differentially
expressed (>2-fold change). To generally understand po-
tential roles of these differentially expressed lncRNAs in the
paclitaxel resistance, Gene Ontology (GO) analysis and
pathway analysis were performed to determine the predicted
target genes of differentially expressed lncRNAs attribute in
biological processes and molecular functions. As shown in
Figures 1(d) and 1(e), the potential target genes of high and
low expression of lncRNA in paclitaxel-resistant MDA-MB-
231R cells mainly involved the processes of drug resistance,
invasion, and metastasis, indicating the important roles of
lncRNA in the paclitaxel resistance of TNBC.

3.2. Upregulation of lncRNA AF178030.2 and Its Clinical
Outcome in Paclitaxel-Resistant TNBC Patients. Next,
quantitative real-time PCR was employed to verify the ex-
pression level of lncRNAs that have >10-fold change in the
microarray expression profile analysis, including BC015064,
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AF178030.2, AM259138, SND1, AK129540, AC073934.6,
NR_024579, and NR_023391, using another MDA-MB-
231R and MDA-MB-231P samples. We found that the fold
changes of these lncRNAs was quite consistent, with
AF178030.2 having highest fold change (Figure 2(a)).
,erefore, we focused on the lncRNA AF178030.2 in the
following experiments. Indeed, the expression level of
AF178030.2 was elevated by paclitaxel treatment (1 μM) in a
time-dependent manner in MDA-MB-231 and MDA-MB-
436 cells (Figure 2(b) and Supplemental Figure 2), indicating
that AF178030.2 may mediate the paclitaxel resistance of
MDA-MB-231 and MDA-MB-436 cells. Furthermore, we

retrieved the expression data of AF178030.2 from the TCGA.
As shown in Figure 2(c), the AF178030.2 expression was
significantly upregulated in chemotherapy-resistant patients
of TNBC breast cancer than chemotherapy-sensitive pa-
tients. More importantly, our analysis revealed that higher
AF178030.2 expression was associated with shorter overall
survival of TNBC breast cancer patients (Figure 2(d)).

3.3. Overexpression of AF178030.2 Attenuated the Sensitivity
of TNBC to Paclitaxel, Whereas Knockdown of AF178030.2
Enhanced the Sensitivity of TNBC Cells to Paclitaxel. To
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investigate the role of lncRNA AF178030.2 in paclitaxel
resistance of TNBC, the construct for AF178030.2 expres-
sion was generated and transfected into MDA-MB-231.
Quantitatively PCR results showed that the expression level
of AF178030.2 was overexpressed ∼26 folds after 3 days
(Figure 3(a)). MTT assay was used to determine the cell
proliferation of MDA-MB-231 after overexpression of
AF178030.2. As shown in Figure 3(b), AF178030.2 over-
expression in MDA-MB-231 significantly attenuated the
inhibitory effect of 1 μM paclitaxel in cell proliferation.
Moreover, the colony formation assay also showed a similar
result, in which the paclitaxel-mediated inhibition of cell
growth was partly eliminated by AF178030.2 overexpression
(Figure 3(c)). Similar results were found using another
TNBC cell line, MDA-MB-436 (Supplemental Figure 3).
,ere results suggested that the sensitivity of paclitaxel was
reduced by AF178030.2 overexpression in MDA-MB-231
and MDA-MB-436 cells.

,e complementary experiments were also done by
knocking down AF178030.2 expression using shRNA.
Compared to the control shRNA, the expression level of

AF178030.2 in MDA-MB-231 cells was reduced to ∼20% in
two different shRNAs that target AF178030.2 (Figure 3(d)).
MTT assay and colony formation assay both showed that
knockdown of AF178030.2 expression significantly in-
creased paclitaxel-induced cell proliferation and growth
(Figures 3(e) and 3(f )). Taken together, these results indi-
cated that lncRNA AF178030.2 mediated the sensitivity and
resistance of paclitaxel in MDA-MB-231 cells.

3.4. TRPS1 is a Binding Target of AF178030.2 and Regulates
the Sensitivity of TNBCCells to Paclitaxel. To investigate the
mechanisms underlying the regulation of AF178030.2 in
paclitaxel resistance, bioinformatic analysis was performed
to predict the potential target of AF178030.2. Interestingly,
we found that AF178030.2 can directly bind with tricho-
rhinophalangeal syndrome-1 (TRPS1), an important regu-
lator in epithelial-mesenchymal transition, which was found
to be one of the main reasons to induce drug resistance in
many cancers [16, 17]. RNA binding protein immunopre-
cipitation assay result verified the interaction between
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AF178030.2 and TRPS1 (Figure 4(a)). Indeed, the expression
level of TRPS1 was downregulated in MDA-MB-231R cells,
compared with MDA-MB-231P cells (Figure 4(b)). Over-
expression of AF178030.2 greatly reduced the TRPS1 ex-
pression (Figure 4(c)), whereas knockdown of AF178030.2
increase has an opposite effect (Figure 4(d)). Similar results
were found using another TNBC cell line, MDA-MB-436
(Supplemental Figure 4). ,ese results indicated that
AF178030.2 mediate the sensitivity of paclitaxel in MDA-
MB-231 and MDA-MB-436 cells by interacting with TRPS1.

To test this hypothesis, we established an MDA-MB-231
cell line that stably overexpressed TRPS1 by lentivirus in-
fection and puromycin selection. ,e mRNA and protein
expression of TRPS1 was examined by real-time PCR and
Western blot, respectively. As shown in Figure 5(a), TRPS1
expression was elevated by ∼4 folds both in mRNA and
protein levels. ,en, this cell line was challenged by
AF178030.2 overexpression and 1 μM paclitaxel treatment.
Interestingly, MTT assay showed that, in this cell line,
AF178030.2 overexpression cannot attenuate the inhibitory
effect of paclitaxel in cell proliferation (Figure 5(b)). Con-
sistently, AF178030.2 overexpression also cannot affect the
paclitaxel-mediated inhibition of cell growth detected by the
colony formation assay (Figure 5(c)). ,ese results were

confirmed by using another TNBC cell line, MDA-MB-436
(Supplemental Figure 5), suggesting that TRPS1 was a
downstream target of AF178030.2 that mediated the sen-
sitivity of paclitaxel in MDA-MB-231 and MDA-MB-436
cells.

4. Discussion

In the present study, we first established a TNBC cell model
with paclitaxel resistance in MDA-MB-231 cells. Combining
microarray expression profile analysis and lncRNA, gain/
loss-of-function experiments, and functional assays, we
identified a novel lncRNA, AF178030.2, which is an im-
portant regulator during the process of paclitaxel resistance.
Furthermore, TRPS1 was found to be a target of AF178030.2
that regulates the sensitivity of TNBC cells to paclitaxel. ,e
AF178030.2-TRPS1 axis may shed a new light on the un-
derlying mechanism of paclitaxel resistance in TNBC.

Compared with non-TNBC, TNBC has a poorer prog-
nosis due to its strong invasiveness, high histological grade,
and easy recurrence and metastasis [2–4]. TNBC is more
common in young women. Paclitaxel is the most used
clinical chemotherapy drug for TNBC [7, 9]. ,e main
mechanism of action is to interfere with the normal
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overexpression. (d) Quantitative PCR result showing the knockdown effect of AF178030.2 by two separate siRNAs. (e) MTTassay showing
the cell viability after AF178030.2 knockdown. (f ) Colony formation assay showing the colony number after AF178030.2 knockdown.
∗∗P< 0.01. n� 5.
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polymerization and depolymerization of microtubules by
binding to tubulin, thereby arresting the cell cycle in the G2/
M phase and then initiating cell apoptosis [9, 10]. Clinical
data showed that when paclitaxel is used as a first-line
chemotherapy drug, its effective rate is about 50%; when
used as a second-line or third-line chemotherapy drug, its
effective rate drops to 20%–30%, and it is prone to develop
chemotherapy resistance after about 6 to 10 months. ,e
tumor then progressed, and nearly half of the patients
showed obvious paclitaxel resistance [8]. ,erefore, drug
resistance is the main reason for the failure of paclitaxel
treatment [11]. It is generally believed that the resistance
mechanism of paclitaxel may include (1) abnormal ex-
pression of drug transporters such as ABC transporter,
P-glycoprotein, and multidrug resistance protein [18, 19];
(2) changes in drug targets such as tubulin [20]; (3) changes
in the expression of apoptosis regulatory proteins such as
p53 and Bcl-2 [21, 22]; and (4) abnormal drug metabolism/
inactivation [23]. However, the strategies taken for the above
drug resistance mechanisms have not improved the clinical
paclitaxel resistance problem well. ,erefore, in-depth ex-
ploration of the molecular mechanism of paclitaxel resis-
tance to discover new intervention targets is necessary to
effectively overcome paclitaxel chemotherapy resistance in
clinical practice. Here, we found 1025 upregulated lncRNAs

and 656 downregulated lncRNAs that were significantly
differentially expressed in the paclitaxel-resistant cells, and
the potential target genes of these differentially expressed
lncRNA mainly involved the processes of drug resistance,
invasion, and metastasis, suggesting the important roles of
lncRNA in the paclitaxel resistance of TNBC.

Our microarray expression profile analysis showed that
lncRNA178030.2 is a highly expressed lncRNA in paclitaxel-
resistant MDA-MB-231 cells, which was further verified by
quantitative RT-PCR assay. LncRNA178030.2 was also
significantly upregulated in TNBC chemotherapy resistant
tissues and highly associated with the poor prognosis of
TNBC. LncRNA178030.2 has a full length of 402 nt and is an
antisense transcript of the intron of the TRPS1 gene, sug-
gesting that TRPS1 may be one of the targets of
lncRNA178030.2. In this study, overexpression of
lncRNA178030.2 significantly attenuated the inhibitory ef-
fect of 1 μM paclitaxel in cell proliferation of MDA-MB-231,
while knockdown of lncRNA178030.2 had an opposite ef-
fect, suggesting that lncRNA178030.2 mediated the process
of paclitaxel resistance of breast cancer cells.

TRPS1 is a newly discovered member of the GATA
transcription factor family. ,e human TRPS1 gene is lo-
cated on chromosome 8q24.1 and encodes a transcriptional
regulator composed of 9 zinc fingers. TRPS1 protein
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contains 1 GATA-type DNA binding domain, 2 potential
nuclear localization signals, and 2 C-terminal zinc finger
domains [16]. ,e TRPS1 gene is highly conservative, and its
encoded product TRPS1 is widely expressed in human
prostate, testis, ovary, kidney, lung, and breast tissues and
mainly exists in the nucleus [16, 24, 25]. As a transcription
factor, TRPS1 can both promote and inhibit the expression
of target genes [26]. Accumulating studies have shown
[16, 27, 28] that TRPS1 is an important regulator of epi-
thelial-mesenchymal transition (EMT) by regulating the
expression of key regulators of EMT. It has been demon-
strated that EMT is one of the important mechanisms for
inducing drug resistance in tumors [17, 29]. Here, RNA
binding protein immunoprecipitation assay result verified
the interaction between AF178030.2 and TRPS1. Impor-
tantly, the expression level of TRPS1 can be regulated by
AF178030.2. Gain-of-function experiments showed that
TRPS1 overexpression disturbed the effect of AF178030.2 on
the sensitivity of TNBC cells to paclitaxel, suggesting that
AF178030.2-TRPS1 axis is an important regulator during
the paclitaxel resistance process.

In summary, lncRNA AF178030.2 was identified to
regulate the paclitaxel resistance by targeting TRPS1, which
may provide a new treatment strategy of paclitaxel-resistant
TNBC patients.
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