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a b s t r a c t

Background: Prostate-specific antigen (PSA) is a marker of prostate cancer (PCa), although its efficacy as
a diagnostic marker remains controversial. A high false-positive rate leads to repeat biopsy in approxi-
mately 70% of patients, which may not be necessary. Epigenetic biomarkers of field cancerization have
been investigated widely as promising tools for the diagnosis of patients with suspected tumors. In the
current study, we examined the diagnostic value of two microRNA (miRNA) candidates, hsv1-miR-H18
and hsv2-miR-H9, using formalin-fixed paraffin-embedded (FFPE) tissues from patients with PCa or
benign prostate hyperplasia (BPH) (as controls) to determine the usefulness of these markers for
detecting the presence of cancer.
Methods: Expression of hsv1-miR-H18 and hsv2-miR-H9 in 201 FFPE tissues, including 52 primary
tumors, 73 surrounding noncancerous tissues, and 90 BPH nontumor controls was examined by real-
time PCR.
Results: Expression of hsv1-miR-H18 and hsv2-miR-H9 was significantly higher in primary tumors from
PCa patients than in BPH controls (P < 0.0001). In patients within the PSA gray zone, the two viral
miRNAs could distinguish PCa from controls with appropriate sensitivity and specificity. Expression of
the two miRNAs did not differ between primary tumors and noncancerous surrounding tissues.
Conclusions: The viral miRNAs hsv1-miR-H18 and hsv2-miR-H9 may be associated with field cancer-
ization of PCa and could be promising supplemental biomarkers to the PSA assay to decrease the rate of
unnecessary biopsy, particularly in patients within the PSA gray zone.
© 2022 Asian Pacific Prostate Society. Publishing services by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Prostate-specific antigen (PSA) screening is commonly used to
detect early prostate cancer (PCa). However, this assay remains
controversial because of its limited diagnostic performance.1e3 The
false-positive rate is particularly high in patients with serum PSA
levels of 3.0e10.0 ng/mL, which is known as the ‘PSA gray zone’.3

Approximately 70% of those patients undergo repeat biopsy and
are often overdiagnosed and overtreated.4 Thus, identifying a more
accurate biomarker to PSA is an urgent need.

The concept of field cancerization (also known as field defect)
was first described by Slaughter et al. in 1953 to explain the
development of precancerous changes in histologically normal
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Table 1
Clinical characteristics of the study subjects

Variable BPH PCa p-valuea

No. of patients 90 125
Age (y) 70.00 ± 6.71 69.00 ± 5.41 0.163
PSA (ng/mL) 2.94 ± 8.36 11.42 ± 599.14 <0.001
Operation
TURP 90 (100.0) 23 (18.4)
Radical prostatectomy - 102 (81.6)

Gleason score
6 - 2 (1.6)
7 (3 þ 4) - 43 (34.4)
7 (4 þ 3) - 35 (28.0)
�8 - 45 (36.0)

TNM stage TURP RP
Unknown - 3 (2) -
T2� - 1 (1) 65 (52)
T3 - 19 (15) 25 (20)
T4 or metastasis - - 12 (10)

Values are presented as numbers only, mean ± standard deviation, or number (%).
BPH, benign prostate hyperplasia; PCa, prostate cancer; PSA, prostate-specific antigen; TURP, transurethral resection of the prostate.
a) All p-values were obtained by the ManneWhitney U-test for comparisons between formalin-fixed paraffin-embedded from non-tumor controls and PCa patients in the

study.
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tissues.5 It has been reviewed in various types of cancer, including
PCa, as paramount evidence of the multifocality of tumors.6

Transrectal prostate biopsy is prone to sampling error, which can
lead to spurious negative findings, particularly in cases within the
PSA gray zone. Therefore, examining preneoplastic molecular al-
terations has become a promising strategy for the selection of
appropriate procedures.7,8

MicroRNAs (miRNAs) are small, nonprotein-encoding RNAs of
approximately 20 nucleotides in length that regulate gene
expression. Many miRNAs have been suggested as biomarkers
because of their involvement in biological processes, including field
cancerization.9e11 miRNA profiling can be used to evaluate the
likelihood of tumor development and to decrease the rate of his-
tological false-negative results.12,13

In the current study, we measured the expression of two miR-
NAs, hsv1-miR-H18 and hsv2-miR-H9, as relevant epigenetic
markers for PCa in formalin-fixed paraffin-embedded (FFPE) tissues
to determine their ability to distinguish tumors from nontumor
tissues.

2. Materials and methods

2.1. Cases

A total of 215 FFPE tissues from 125 PCa patients and 90 benign
prostate hyperplasia (BPH) controls were obtained from Chungbuk
National University Hospital between May 2003 and June 2015
(approval number: 2012-02-017-001) (Table 1). Primary tumor
tissues and surrounding noncancerous tissues were collected from
PCa patients who underwent radical prostatectomy (RP) or palli-
ative transurethral resection of the prostate (TURP). Control tis-
sues were harvested from patients with BPH who underwent
TURP. Fresh tissues were formalin-fixed for >24 h, embedded in
paraffin blocks, and stored at room temperature until use. Cases
with a serum PSA concentration of 3e10 ng/mL were considered
to be in the PSA gray zone. Gleason grades were assigned to
samples obtained from TURP or RP. Tumor stage was estimated
from biospecimens harvested by RP or from computed tomogra-
phy, magnetic resonance imaging, or bone scans. The study
methodologies conformed to the standards set by the Declaration
of Helsinki.
2.2. miRNA microarray analysis

The RecoverAll Total Nucleic Acid Isolation Kit (Life Technolo-
gies, Carlsbad, CA, USA) was used to extract total RNA from each
specimen. The amount and integrity of extracted RNA were
examined using the RNA 6000 Pico Chip Kit (Agilent Technologies,
Santa Clara, CA, USA) and the Agilent 2100 Bioanalyzer. The Agilent
Human miRNA Microarray Release 16.0 platform, which contains
1,205 human and 144 viral miRNAs, was used for miRNA profiling.14

The protocol used for generating the microarray gene expression
datasets have been described previously.15

2.3. Purification of miRNAs from FFPE tissues

FFPE tissues were cut into 5 mm thick sections with 10e15 slides
and placed in 1.5 mL Eppendorf Safe-lock micro-centrifuge tubes
and stored at �70�C until use. For extracting miRNA from FFPE
sections, a NucleoSpin Total RNA FFPE XS kit (Macherey-Nagel,
Düren, Germany) was used according to the manufacturer’s
protocol.

2.4. Synthesis of complementary (c)DNA from miRNA

The concentration of RNA isolated from FFPE tissues was
measured using the Quant-IT RiboGreen RNA Reagent and Kit
(Invitrogen, Grand Island, NY, USA). TheMir-X™miRNA First Strand
cDNA Synthesis Kit (TAKARA BIO, Otsu, Japan) was used to syn-
thesize miRNA-specific cDNA according to the manufacturer’s
protocol.

2.5. Amplification of miRNAs by real-time PCR (RT-PCR)

For quantifying miRNA expression, RT-PCR amplification was
performed using a Rotor-Gene Q (Qiagen, Valencia, CA, USA)
apparatus and SYBR Premix EX Taq (TAKARA BIO, Otsu, Japan).
Reactions were performed in micro-reaction tubes (Corbett
Research Mortlake, Australia) in a final volume of 10 mL. Standard
curves were generated using chemically synthesized RNA oligo-
nucleotides (Cosmogenetech, Seoul, Korea) corresponding to the
target miRNAs. The standard curves ranged from 2.25 � 105 to
2.25 � 108 copies. All samples were run in triplicate, and RT-PCR



Y.J. Byun et al. / Two viral miRNAs in PCa 3
conditions followed the manufacturer’s protocol. Rotor-Gene Q
software 2.3.1.49 was used to capture and analyze spectral data.

2.6. Statistical analysis

Receiver operating characteristic (ROC) curves were generated
to estimate the optimal cut-off point yielding the highest combined
sensitivity and specificity of the two viral miRNAs in FFPE tissues
from patients with PCa and from BPH controls. The expression
levels of candidate miRNAs in PCa, in surrounding noncancerous
tissues, and in BPH controls were examined using the
KruskaleWallis H and ManneWhitney U tests. Statistical analysis
was performed using IBM SPSS version 24.0 (IBM, Armonk, NY,
USA) and GraphPad Prism 7 (GraphPad Software, San Diego, CA,
USA). P < 0.05 was considered statistically significant.

3. Results

3.1. Expression levels of the two miRNAs

The expression levels of hsv1-miR-H18 and hsv2-miR-H9 were
similar in PCa and surrounding noncancerous tissues, and
Fig. 1. Expression of hsv1-miR-H18 and hsv2-miR-H9 in FFPE tissues from BPH controls, sur
viral miRNAs were higher in FFPE tissues from PCa patients than from controls and showed s
tumors. BPH, benign prostate hyperplasia; FFPE, formalin-fixed paraffin-embedded; PCa, pr
Whitney U-test. *P < 0.05, **P < 0.01, and ****P < 0.0001.
significantly higher than in BPH controls (P < 0.0001) (Fig. 1A and
C). For cases within the ‘PSA gray zone’, expression of the two viral
miRNAs was higher in PCa and surrounding noncancerous tissues
than in BPH controls (P < 0.0001 and P¼ 0.005, respectively; Fig. 1B
and D). These findings indicate that hsv1-miR-H18 and hsv2-miR-
H9 are associated with field cancerization of cells surrounding
tumors.

3.2. Diagnostic performance of the two miRNAs in FFPE samples
from PCa, surrounding noncancerous tissue, and BPH controls

ROC analysis was performed to determine whether hsv1-miR-
H18 and hsv2-miR-H9 could distinguish patients with tumors from
those with BPH. The areas under the curve (AUCs) for the two
candidates were 0.800 and 0.706, with a sensitivity of 76.9% and
80.8%, and specificity of 81.1% and 55.6%, respectively (Figs. 2A and
3A). To further examine the diagnostic power of the markers, we
compared surrounding noncancerous tissues with BPH tissues and
found that the AUCs of the target miRNAs were 0.840 and 0.724,
respectively, with a sensitivity of 89.0% and 76.7% and specificity of
75.6% and 60.0%, respectively (Figs. 2B and 3B). In patients within
the PSA gray zone, the miRNAs showed improved diagnostic
rounding noncancerous tissues, and primary tumors of PCa patients. Levels of the two
imilar expression patterns between surrounding noncancerous tissues and primary PCa
ostate cancer; PSA, prostate-specific antigen. P-values were determined by the Mann-



Fig. 2. Receiver operating characteristic curves of hsv1-miR-H18 for distinguishing PCa patients from non-tumor controls. (A) and (B) for all patients. (C) and (D) for patients within
the PSA gray zone (3.0e10.0 ng/mL). AUC, area under the curve; BPH, benign prostate hyperplasia; PCa prostate cancer; PSA, prostate-specific antigen. *P-value was determined by
the Z-score.

Fig. 3. Receiver operating characteristic curves of hsv2-miR-H9 for distinguishing PCa patients from non-tumor controls. (A) and (B) for all patients. (C) and (D) for patients within
the PSA gray zone (3.0e10.0 ng/mL). AUC, area under the curve; BPH, benign prostate hyperplasia; PCa prostate cancer; PSA, prostate-specific antigen. *P-value was determined by
the Z-score.
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performance. When comparing PCa with BPH controls, the sensi-
tivity and specificity of hsv1-miR-H18/hsv2-miR-H9 were 92.3%/
84.6% and 86.7%/53.3%, respectively (AUC ¼ 0.915 and 0.738; and
P < 0.0001 and P < 0.05; respectively) (Figs. 2C and 3C). Similar
results were obtained when comparing surrounding noncancerous
tissues with BPH controls, which showed sensitivity and specificity
for hsv1-miR-H18/hsv2-miR-H9 of 90.6%/87.5% and 80.0%/56.7%,
respectively (AUC ¼ 0.886 and 0.704; and P < 0.0001 and <0.01;
respectively) (Figs. 2D and 3D). These results suggest that hsv1-
miR-H18 and hsv2-miR-H9 can distinguish patients with tumors
from those with BPH, thereby preventing miss-diagnosis by biopsy
sampling error.

4. Discussion

PSA is broadly used as a standard biomarker for the diagnosis of
PCa. However, PSA-based PCa screening is limited by poor speci-
ficity and sensitivity, especially in patients within the PSA gray zone
(3e10 ng/mL).1,16,17 Patients within the PSA gray zone often un-
dergo repeat biopsy, although the detection rate after this pro-
cedure is <30%.1e4,18,19 Therefore, approximately 70% of these
patients are overdiagnosed that resulted inmeaningless re-biopsies
with no clinical benefits, underscoring the need to identify novel
methods for early detection of PCa that can reduce the rate of un-
necessary re-biopsy.

Recent studies identified biomarkers that increase the detection
rate of PCa; however, there are several limitations. Prostate cancer
antigen 3 (PCA3) is a common PCa biomarker, and increased
expression of the PCA3 gene is detected in the urine of PCa patients.
However, the threshold value of PCA3 required to distinguish pa-
tients at risk of PCa from healthy controls remains unclear, and the
cost-effectiveness of this assay was not determined yet, indicating
that the performance of PCA3 for clinical practice applications is
debatable.20,21

The field defect or field cancerization is considered a source of
valuable biomarkers for PCa.9,22 The basic concept of field cancer-
ization, suggested by Slaughter, describes the development of
cancer in multifocal areas.5 There are many studies analyzing field
cancerization in head and neck, colorectal, bladder, and other
cancers.23,24 In PCa, methylated GSTP1 has been studied extensively
as a tumormarker.25 The ConfirmMDx is a quantitativemethylation
assay used to diagnose PCa. This assay quantifies the DNA
methylation rates of three genes, GSTP1, APC, and RASSF1, to di-
agnose PCa.26 However it has several limitations; for example, APC
methylation can be affected by infection or inflammation of tissues,
and the performance of this assay in the recent DOCUMENT study
was not satisfactory.27 Many genes have been studied and reported
as promising diagnostic biomarkers for PCa; however, most are in
the initial stages and require complex protocols that are impractical
for clinical application, whereas others failed to show reproducible
results in various tests.28,29

Recently, many researchers have focused on bacteria and vi-
ruses that may associate with infection and inflammation
causing PCa.30,31 Studies suggested that several viruses, including
herpes types, encoded their own miRNAs, and they may affect
carcinogenesis of the prostate and lead to the transformation of
epithelial cells of prostate.32,33 Although, the exact function of
viral miRNA is still unknown, diverse expression levels of viral
miRNAs were identified in PCa when compared with BPH con-
trols, indicating that viral miRNA could be a respectable risk
factor for PCa.34

Previously, we have identified the increased values of hsv1-miR-
H18 and hsv2-mir-H9 that may be associated with PCa and sug-
gested that these two viral miRNAs could be relevant diagnostic
biomarkers for PCa to decrease biopsy burdens.16
Currently, we examined the expression values of hsv1-miR-H18
and hsv2-miR-H9 using FFPE tissues from PCa patients and BPH
controls. For further investigation of two viral miRNAs in the bi-
opsy, samples should be prepared as FFPE type, as FFPE bio-
specimen can be repeatedly used, which could provide molecular
and pathological diagnosis at the same time. The hsv1-miR-H18
and hsv2-miR-H9 showed appropriate sensitivity and specificity,
independently of histological outcomes, and showed advanced
diagnostic performance in cases within the PSA gray zone. These
results suggest that hsv1-miR-H18 and hsv2-miR-H9 are upregu-
lated in prostate tumors and show potential as field defect markers
for PCa diagnosis. However, a correlation between the two miRNAs
and clinicopathological parameters of PCa was not observed (data
not shown), which indicates that their ability to predict the
aggressiveness of PCa is limited.

The results of this study indicate that hsv1-miR-H18 and hsv2-
miR-H9 could serve as diagnostic biomarkers for PCa and may
help to decrease the rate of unnecessary biopsy, especially in pa-
tients within the PSA gray zone. To apply this diagnosing strategy in
clinical practice, validation of these miRNAs in biopsy specimens
should be performed as the step for setting precise ‘cut-off point’ or
‘cut-off ranges’ to distinguish patients with high potential of PCa
presents, then investigated in blinded cohort to determinewhether
they actually could reduce biopsy sampling errors.
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