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Machine Friendly Machine 
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Recent advancements in deep learning for automated image processing and classification have 
accelerated many new applications for medical image analysis. However, most deep learning 
algorithms have been developed using reconstructed, human-interpretable medical images. While 
image reconstruction from raw sensor data is required for the creation of medical images, the 
reconstruction process only uses a partial representation of all the data acquired. Here, we report the 
development of a system to directly process raw computed tomography (CT) data in sinogram-space, 
bypassing the intermediary step of image reconstruction. Two classification tasks were evaluated 
for their feasibility of sinogram-space machine learning: body region identification and intracranial 
hemorrhage (ICH) detection. Our proposed SinoNet, a convolutional neural network optimized 
for interpreting sinograms, performed favorably compared to conventional reconstructed image-
space-based systems for both tasks, regardless of scanning geometries in terms of projections or 
detectors. Further, SinoNet performed significantly better when using sparsely sampled sinograms 
than conventional networks operating in image-space. As a result, sinogram-space algorithms could 
be used in field settings for triage (presence of ICH), especially where low radiation dose is desired. 
These findings also demonstrate another strength of deep learning where it can analyze and interpret 
sinograms that are virtually impossible for human experts.

Continued rapid advancements in algorithms and computer hardware have accelerated progress in automated 
computer vision and natural language processing. By combining these two factors with the availability of 
well-annotated large datasets, significant advances have emerged from automated medical image interpretation 
for the detection of disease and critical findings1–3. The application of deep learning has the potential to increase 
diagnostic accuracy and reduce delays in diagnosis and treatment for better patient outcomes4. Deep learning 
techniques are not limited to image analysis, but they also can improve image reconstruction for magnetic res-
onance imaging (MRI)5,6, computed tomography (CT)7,8, and photoacoustic tomography (PAT)9. In particular, 
deep learning approaches have been used to improve image quality for low-dose CT reconstruction by interpo-
lating sparse CT projection data10,11, denoising sparse-view reconstructed image7,8, or both12. These prior works 
demonstrated that deep learning now is a feasible alternative to well-established analytic and iterative methods 
of image reconstruction13–17.

However, most prior work using deep learning algorithms has focused on image analysis of reconstructed 
images or as an alternative approach to image reconstruction. Despite this human centric approach, there is no 
reason that deep learning algorithms must function in image-space. Since all the information in the reconstructed 
images is present in the raw measurement data, deep learning models could potentially derive features directly 
from raw data in sinogram-space without intermediary image reconstruction, with possibly even better perfor-
mance than models trained in image-space.

In this study, we determined the feasibility of analyzing computed tomography (CT) projection data — sino-
grams — through a deep learning approach for human anatomy identification and pathology detection. We 
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proposed a customized convolutional neural network (CNN) called SinoNet, optimized it for interpreting sino-
grams, and demonstrated its potential by comparing its performance to pre-existing system based on other CNN 
architectures using reconstructed CT images. This approach accelerates edge computing by making it possible to 
identify critical findings rapidly from the raw data without time-consuming image reconstruction processes. In 
addition, this could enable us to develop simplified scanner hardware for the direct detection of critical findings 
through SinoNet alone.

Results
Experimental design.  We retrieved 200 contiguous whole-body CT datasets from combined positron emis-
sion tomography-computed tomography (PET/CT) examinations for body part recognition and 720 non-con-
trast head CT scans for intracranial hemorrhage (ICH) detection with IRB approval from the picture archiving 
and communication systems (PACS) at Massachusetts General Hospital. Axial slices in the 200 whole body scans 
were annotated as sixteen different body regions by a physician, and slices of the 720 head scans were annotated 
with the presence of ICH by a panel of five neuroradiologists by consensus (Methods). We evaluated twelve dif-
ferent classification models developed by training Inception-v318 on reconstructed CT images and SinoNet with 
sinograms (Table 1, Methods). The reconstructed CT images containing Hounsfield units (HU) were converted to 
scaled linear attenuation coefficients (LAC). Two-dimensional (2D) parallel-beam Radon transform was applied 
to the LAC slices (512 × 512 pixels) to generate a fully-sampled sinogram with 360 projections and 729 detector 
pixels (‘sino360x729’), which was then uniformly subsampled in the horizontal direction (projection views) and 
averaged in vertical direction (detector pixels) by factors of 3 and 9 to obtain moderately sampled sinograms with 
120 views by 240 pixels (‘sino120x240’) and sparsely sampled sinograms with 40 views by 80 pixels (‘sino40x80’).

Original CT images were used as fully sampled reconstructed images (recon360x729), and images recon-
structed from the sparse sinograms (‘recon120x240’ and ‘recon40x80’) were generated using a deep learning 
approach (FBPConvNet8) followed by a conversion from LAC to HU. Reconstructed CT images and sino-
grams with predefined window-level settings were created to evaluate the effect of windowing: ‘wrecon360x729’, 
‘wrecon120x240’, ‘wrecon40x80’; and ‘wsino360x729’, ‘wsino120x240’, ‘wsino40x80’ (Methods). Based on the scan-
ning geometries and window-level settings described above, 12 CNN models were evaluated: 6 were developed 
by training Inception-v318 with reconstructed CT images and the other 6 were obtained by training SinoNet with 
sinograms (Table 1, Methods). Data for body part recognition was randomly split into training, validation, and 
test sets with balanced genders: 140 scans (female: n = 70; male: n = 70) in training, 30 (female: n = 15; male: 
n = 15) in validation, and 30 (female: n = 15; male: n = 15) in testing. A dataset split was also performed for ICH 
detection with 478 scans in training, 121 in validation, and 121 in testing. Details of data preparation, CNN archi-
tecture, sinogram generation, and image reconstruction are described in Methods.

Results of body part recognition.  Figure 1 shows test performance of the twelve different models for 
body part recognition. Models trained on fully sampled images had accuracies of 97.4% in image-space (I1), 
96.6% in sinogram-space (S1), 97.9% in windowed-image-space (I2), and 97.4% in windowed-sinogram-space 
(S2). Moderately sampled images had model accuracies of 97.4% in image-space (I3), 96.3% in sinogram-space 
(S3), 97.9% in windowed-image-space (I4), and 97.4% in windowed-sinogram-space (S4). Sparsely sam-
pled images had model accuracies of 97.1% in image-space (I5), 96.2% in sinogram-space (S5), 97.2% in 
windowed-image-space (I6), and 97.1% in windowed-sinogram-space (S6). These results imply that models 
trained and operating in image-space performed slightly better than sinogram-space (SinoNet) models for body 
part recognition, regardless of scanning geometry. Additionally, windowed input images consistently outper-
formed the ones with full-range images/sinograms.

Results of intracranial hemorrhage detection.  Figure 2 depicts receiver operating characteris-
tic (ROC) curves, and the corresponding areas under the ROC curves (AUC) for the twelve different models 
of ICH detection. Models trained on fully sampled images had AUCs of 0.898 in image-space (I1), 0.918 in 
sinogram-space (S1), 0.972 in windowed-image-space (I2), and 0.951 in windowed-sinogram-space (S2). 
Moderately sampled images had model accuracies of 0.893 in image-space (I3), 0.915 in sinogram-space (S3), 

Fully sampled Moderately sampled Sparsely sampled

I1: recon360x729 
(original CT) I3: recon120x240 I5: recon40x80

S1: sino360x729 S3: sino120x240 S5: sino40x80

I2: wrecon360x729 
(windowed original CT) I4: wrecon120x240 I6: wrecon40x80

S2: wsino360x729 S4: wsino120x240 S6: wsino40x80

Table 1.  Summary of the 12 different models evaluated in this study. Inception-v3 was used for analyzing 
reconstructed images (I1–I6), and SinoNet was used for interpreting singorams (S1–S6). ‘sino360x729’, 
‘sino120x240’, and ‘sino40x80’ represent sinograms with 360 projection views by 729 detector pixels, 
120 projection views by 240 detector pixels, and 40 projection views by 80 detector pixels, respectively. 
‘wsino360x729’, ‘wsino120x240’, and ‘wsino40x80’ represent sinograms created from windowed CT images. 
‘recon360x729’, ‘recon120x240’, and ‘recon40x80’ are images reconstructed from the corresponding sinograms, 
and ‘wrecon360x729’, ‘wrecon120x240’, and ‘wrecon40x80’ were reconstructed images from the windowed 
sinograms.
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0.953 in windowed-image-space (I4), and 0.947 in windowed-sinogram-space (S4). Sparsely sampled images had 
model accuracies of 0.885 in image-space (I5), 0.899 in sinogram-space (S5), 0.909 in windowed-image-space 
(I6), and 0.942 in windowed-sinogram-space (S6).

Comparison of SinoNet and Inception-v3 for analyzing sinograms.  Table 2 details performance 
comparisons of Inception-v3 and SinoNet for interpreting fully-sampled sinograms (360 projection views and 
729 detector pixels) for both body part recognition and ICH detection. SinoNet models significantly outper-
formed Inception-v3 models in both tasks.

Discussion
We have demonstrated that models trained on sinograms can achieve similar performance when compared to 
models using conventional reconstructed images for body part recognition and ICH detection in all three scan-
ning geometries, despite the fact that the raw measurement data are not interpretable to humans. SinoNet, when 
trained with sinograms, has comparable performance with that of Inception-v3 when trained with reconstructed 
CT images for body part recognition, regardless of the number of projection views or detectors. For ICH detec-
tion, SinoNet trained with full-range sinograms outperformed Inception-v3 trained with full dynamic range 
reconstructed images for all three sampling densities, with SinoNet significantly outperforming Inception-v3 
when using windowed, sparsely sampled images. By applying window settings similar to what a radiologist would 
use, network performance increased significantly due to the improved contrast of target to background (Fig. 3) in 
both reconstructed images and in sinogram-space. As depicted in Fig. 3(b), not only are the key features relevant 
to hemorrhage enhanced in the windowed CT image, but also in the windowed sinogram.

SinoNet, a proposed convolutional neural network, was developed for analyzing sinograms through custom-
ized Inception modules with multi-scale convolutional and pooling layers18. In SinoNet, the square convolutional 
filters in the original Inception module were replaced by various sized rectangular convolutional filters which 
include width-wise (projection dominant) and height-wise (detector dominant) filters. The customized architec-
ture of SinoNet allowed for significantly improved performance in both body part recognition and ICH detection 
when compared with Inception-v3 models trained with sinograms, regardless of sampling density. These results 
imply that non-square filters may be effective in enabling models to learn the interplay between projection views 
and detector pixels from sinusoidal curves and to extract salient features from the sinogram domain for classifica-
tion, a task thought to be impossible for human experts to grasp. This approach is similar to the one proposed for 
learning temporal and frequency features using rectangular convolution filters in spectrograms19.

SinoNet, by operating in sinogram-space, can accelerate image interpretation for pathology detection as 
complex computations for image reconstruction are not required. SinoNet also excels when the projection data 
was moderately or sparsely sampled, maintaining its AUC at 0.942 on the hemorrhage detection task, while 
Inceptionv3 dropped from 0.972 to 0.909. Sparsely sampled datasets suggest that radiation dose could be mark-
edly decreased with only a slight degradation in performance for sinogram-space algorithms. The number of 
projections linearly correlates with radiation dose, theoretically achieving 33% and 89% dose reductions for mod-
erately and sparsely sampled data respectively. Similarly, by reducing the size and number of detectors required 
for diagnostic CT data, cheaper and simpler CT scanners can be created. At our institution, the average head CT 
has a CTDIvol of 50 mGy. Sparsely sampled data could have CTDIvol between 6 and 16 mGy. One possible use of 
this technique would be to use the sinogram model as a first-line screening tool in the field setting without image 
reconstruction, subsequently prioritizing a patient for potential stroke therapy given no evidence of intracranial 
hemorrhage. Subsequent full-dose CT could be used to confirm the interpretation from the sinogram method. 

Figure 1.  Performance of 12 different models trained on reconstruction images and sinograms with varying 
numbers of projections and detectors for body part recognition. 95% confidence intervals (CIs) are indicated 
in black error bars. The purple and blue bars (I1–I6) compare the test accuracy of Inception-v3 trained with 
full dynamic range reconstructed images with abdominal window setting reconstructed images (window-
level = 40 HU, window-width = 400 HU). The green and red bars (S1–S6) compare the performance of SinoNet 
models trained with sinograms generated from full-range and windowed reconstructed images, respectively.
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Another possible use for this technique would be to create “smart-scanners” which allow the CT scanner to adjust 
the protocol and field of view based on the intended region of the body.

Although these results demonstrate the power of the sinogram based approach, several important areas of 
future investigation remain. Due to their unavailability, the sinograms used in this study were simulated by apply-
ing the 2D parallel-beam Radon transform to the reconstructed CT images rather than actual measurement data 
acquired from CT scanners. Improved simulation data could be acquired by accounting for other advanced pro-
jection geometries — cone-beam or fan-beam — and considering Poisson noise when generating projection data. 
Although SinoNet trained with windowed sinograms achieved comparable or better performance compared with 
windowed reconstructed images, windowed sinograms were generated from reconstructed images that were post-
processed with predefined window settings; generation of windowed sinograms directly from CT measurement 
data is not straightforward, but it could be implemented by using energy-resolving, photon-counting detectors 
from multi-energy CT imaging to acquire measurements in multiple energy bins20. Our work will need to be 
further validated by using raw data from clinical scanners as well as raw data from actual low-dose image acqui-
sitions to see if performance remains robust despite increased image noise.

In conclusion, sinogram-space deep learning with our proposed CNN called SinoNet is feasible for human 
anatomy identification and pathology detection (presence of ICH) on sinograms acquired using different scan-
ning geometries in terms of projections and detectors which are not virtually interpretable to human experts 
like sinograms. In particular, this study showed SinoNet performed better for pathology detection directly from 
sparse sinograms than reconstructed images, indicating the potential of deep learning to identify critical findings 
from raw data without expensive image reconstruction processes in field settings for triage, especially where low 
dose radiation is required.

Methods
All the images were fully de-identified in compliance with the Health Insurance Portability and Accountability 
Act (HIPAA). This retrospective study was conducted with the approval of the Institutional Review Board (IRB) 
of Massachusetts General Hospital and under a waiver of informed consent. All experiments were performed in 
accordance with relevant guidelines and regulations.

Figure 2.  ROC curves for performance of 12 different models trained with reconstruction images and 
sinograms with various sparsity configurations in numbers of projections and detectors. The purple and blue 
curves (I1–I6) correspond to performance of Inception-v3 trained with reconstruction images with a full 
dynamic range of HU values and brain window setting (window-level = 50 HU, window-width = 100 HU), 
respectively. The green and red curves (S1–S6) show performance of SinoNet models trained with sinograms 
generated from full-range and windowed reconstruction images, respectively. The areas under the curve (AUCs) 
for the 12 models are present in legends with their 95% CIs. Statistical significance of the difference between 
AUCs of paired models (Ix - Sx) was evaluated. n.s., p > 0.05; *p < 0.05; **p < 0.01.

Input

Body part recognition (Test accuracy) ICH detection (AUC)

Inception-v3 SinoNet Inception-v3 SinoNet

sino360x729 93.9% (93.4%–94.4%) 96.6% (96.2%–96.9%) 0.873 (0.849–0.895) 0.918* (0.899–0.935)

sino120x240 93.5% (93.0%–94.0%) 96.3% (95.9%–96.7%) 0.874 (0.851–0.896) 0.915* (0.897–0.932)

sino40x80 93.4% (92.9%–93.9%) 96.2% (95.8%–96.6%) 0.852 (0.828–0.876) 0.899* (0.879–0.917)

Table 2.  Comparison of Inception-v3 and SinoNet network performance when both networks are trained on 
full-range sinograms are varying sampling densities for body part recognition and intracranial hemorrhage 
(ICH) detection. Body part recognition is reported in accuracy. ICH detection as AUC. 95% CIs in parentheses. 
*p < 0.0001.
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Data collection and annotation.  Body part recognition.  A total of 200 contrast-enhanced PET/CT 
examinations of head, neck, chest, abdomen, and pelvis for 100 female and 100 male patients were retrieved 
from our institutional PACS between May 2012 and July 2012. A total of 56,334 axial slices in the CT scans were 
annotated as one of sixteen body regions by a physician (see Supplementary Fig. S1). 30 cases (Female: n = 15; 
Male: n = 15) were randomly selected for use as validation data for hyperparameter tuning and model selection, 
another 30 cases (Female: n = 15; Male: n = 15) as test data for performance evaluation, and the rest of 140 cases 
(Female: n = 70; Male: n = 70) as training data for model development (Table 3).

Intracranial hemorrhage (ICH) detection.  A total of 720 5-mm non-contrast head CT scans were identified and 
retrieved from our PACS between June 2013 and July 2017. Every 5-mm thick axial slice (3,151 slices without ICH 
and 2,895 slices with ICH) was annotated by five board-certified neuroradiologists (blinded for review, 9 to 34 
years experience) according to presence of ICH by consensus. The examinations included 201 cases without ICH 
and 519 cases with ICH, which were randomly split into train (141 cases), validation (30 cases), and test (30 cases) 
datasets at the case-level to ensure slices from the same case were not split across different datasets (Table 4).

Figure 3.  Examples of reconstructed images and sinograms with different labels for (a), body part recognition 
and (b), ICH detection. From left to right: original CT images, windowed CT images, sinograms with 360 
projections by 729 detector pixels, and windowed sinograms 360 × 729. In the last row, an example CT with 
hemorrhage is annotated with a dotted circle in image-space with the region of interest converted into the 
sinogram domain using Radon transform. This area is highlighted in red on the sinogram in the fifth column.
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Sinogram generation.  Simulated sinograms were utilized in this study instead of raw data obtained by 
commercial CT scanners as this was a retrospective analysis and access to raw projection data from patient CT 
scans could not be retrieved. To generate simulated sinograms, the pixel values of 512 × 512 CT images stored in 
DICOM file were first converted into scaled linear attenuation coefficients (LACs). Any calculated negative LAC 
was leveled to zero under the assumption that it is physically impossible to have negative LACs, so this result must 
represent random noise. Subsequently, three different sinograms were generated based on the scaled LAC images. 
First, we computed sinograms with 360 projection views over 180 degrees and 729 detectors (‘sino360x729’), 
using the 2D parallel-beam Radon transform. ‘sino360x729’ were then used to produce sparser sinograms by 
uniformly subsampling projection views (in the horizontal direction) and averaging projection data from adja-
cent detectors (in the vertical direction) by factors of 3 and 9 to obtain sinograms with 120 projection views and 
240 detectors (‘sino120x240’) and sinograms with 40 projection views and 80 detectors (‘sino40x80’), respectively 
(Fig. 4). Sparser sinograms (‘sino40x80’, ‘sino120x240’) were resized to 360 × 729 pixels using a bilinear interpola-
tion to have a uniform resolution with the corresponding full-view sinograms (‘sino360x729’).

Image reconstruction.  Reconstructed images were generated from the synthetic sinograms for models I1–
I6. Original CT images were used as the reconstructed images for ‘recon360x729’ as fully sampled sinogram data 
could be completely reconstructed into images using filtered back projection (FBP). However, other complex 
algorithms are needed to reconstruct high-quality images from sparser datasets, such as model-based iterative 
reconstruction. Rather than employing complex iterative algorithms, we implemented a deep learning approach 
to reconstruct sparsely sampled sinograms as this technique has been demonstrated to compare favorably to 
state-of-the-art iterative algorithms for sparse-view image reconstruction7,8. We implemented FBPConvNet, 
a modified U-net21 with multiresolution decomposition and residual learning as proposed by a prior work8. 
FBPConvNet takes FBP reconstructed images from sparser sinograms (‘sino120x240’ or ‘sino40x80’) as inputs and 
is trained for regression between the input and the original CT image (converted into LACs) with mean square 
error (MSE) as the loss function (see Supplementary Fig. S2). Since the output images of FBPConvNet were LACs, 
they were converted into HU as the final reconstructed images. Sparser sinograms were resized to 360 × 729 
pixels using bilinear interpolation in order to make the corresponding FBP images have the uniform resolution 
of 512 × 512 pixels, resulting in final reconstructed images of 512 × 512 pixels. The best FBPConvNet models 
selected based on root mean square error (RMSE) values on the validation data were employed on ‘sino120x240’ 
and ‘sino40x80’ to generate ‘recon120x240’ and ‘recon40x80’ respectively (Fig. 5). The RMSE of reconstructed 
images obtained from the FBPConvNet in validation dataset are much smaller than that of conventional FBP 
images (see Supplementary Table S1).

Train Validation Test

No. Cases 140 30 30

No. Images 39,472 8,383 8,479

L1: Head 1,980 483 435

L2: Eye lens 878 189 188

L3: Nose 1,449 309 323

L4: Salivary gland 1,803 361 349

L5: Thyroid 1,508 312 333

L6: Upper lung 1,632 345 392

L7: Thymus 3,213 727 672

L8: Heart 3,360 707 762

L9: Chest 4,647 914 935

L10: Upper abdomen 4,943 1,008 1,103

L11: Lower abdomen 1,736 342 368

L12: Upper pelvis 2,524 617 545

L13: Lower pelvis 2,230 563 422

L14: Bladder 3,144 609 766

L15: Upper leg 2,607 563 532

L16: Lower leg 1,818 334 354

Table 3.  Distribution of training, validation, and test datasets for body part recognition.

Train Validation Test

No. 
Cases

No. 
Images

No. 
Cases

No. 
Images

No. 
Cases

No. 
Images

No ICH 141 2,202 30 474 30 475

ICH 337 1,915 91 490 91 475

Total 478 4,117 121 964 121 950

Table 4.  Distribution of training, validation, and test datasets for ICH detection.
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Windowed images and sinograms.  We utilized full-range 12-bit grayscale images and windowed 
8-bit grayscale images with different window-levels (WL) and window-widths (WW) suitable for each task: 
abdominal window (WL = 40 HU, WW = 400 HU) for body part recognition and brain window (WL = 50 HU, 
WW = 100 HU) for ICH detection. The windowed sinograms were generated from corresponding windowed CT 
images. Examples of windowed images and sinograms are shown in Supplementary Fig. S3.

Convolutional neural network for sinograms: SinoNet.  A customized convolutional neural network, 
SinoNet, was designed for analyzing sinograms using customized Inception modules with multiple convolu-
tional and pooling layers and dense connection for efficient use of model parameters18,22. As shown in Fig. 5, the 
Inception module was modified with various sized rectangular convolutional filters in SinoNet. The non-square 
filters include height-wise (detector dominant) and width-wise (projection dominant) filters to enable effi-
cient extraction of features from sinusoidal curves. Two Inception modules were densely connected to form a 
Dense-Inception block, which was followed by a Transition block to reduce the number and dimension of feature 
maps for computational efficiency, as suggested in the original report22. In this study, SinoNet was used only for 
interpreting sinograms.

Baseline convolutional neural network: Inception-v3.  Inception-v318, a validated CNN for object 
recognition in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)23, was selected as the network 
architecture to develop classification models trained on reconstructed images. We modified Inception-v3 by 
replacing the last fully-connected layers with a sequence of a global average pooling (GAP) layer, a fully-connected 
layer, and a softmax layer with outputs of the same number of categories: 16 multi-class outputs for body part 
recognition and a binary output for ICH detection. Inception-v3 was also used to classify sinograms when evalu-
ating SinoNet performance at body part recognition and ICH detection when using sinograms as the input data.

Weight initialization.  All models developed using Inception-v3 and SinoNet for body part recognition 
task were initialized with He normal initialization24. For the ICH detection task, models were initialized with 
corresponding pre-trained weights on the body part recognition with full-view scanning geometry. For example, 
the Inception-v3 model trained with ‘recon360x729’ for body part recognition was used as the initial weights 
for Inception-v3 models trained with reconstructed images for ICH detection for all scanning geometries and 

Figure 4.  (a) Schematic of sinogram generation with 360 projection views and 729 detectors (‘sino360x729’) 
from original CT images (converted into linear attenuation coefficients). (b) Sparse sinograms were 
created from ‘sino360x729’ by downsampling in the horizontal dimension and signal averaging in the 
vertical dimension to simulate the effect of acquiring an image with 120 projection views and 240 detectors 
(‘sino120x240’) or an image with 40 projection views and 80 detectors (‘sino40x80’). R, Radon transform.
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window levels. Similarly, SinoNet ICH detection models were initialized using the weights from the body part 
recognition SinoNet model trained with ‘sino360x729’.

Performance evaluation and statistical analysis.  Test accuracy was used as the performance metric 
for comparing body part recognition models, and ROC curves with AUC were used for evaluating performance 
of models for detection of ICH. All performance metrics were calculated using scikit-learn 0.19.2 available in 
python 2.7.12. A non-parametric approach (DeLong25) was used to assess the statistical significance of the dif-
ference between AUCs of ICH detection models trained with reconstruction images and sinograms using Stata 
version 15.1 (StataCorp, College Station, Texas, USA). We employed a non-parametric, bootstrap approach with 
2,000 iterations to compute 95% CIs of the metrics including test accuracy and AUC26.

Network training.  Classification models for body part recognition and ICH detection were trained for 45 
epochs using the Adam optimizer with default settings27 and a mini-batch size of 80. FBPConvNet models were 
trained for 100 epochs using the Adam optimizer with default settings and a mini-batch size of 20. The base learn-
ing rate of 0.001 was decayed by a factor of 10 every 15 epochs for the classification models and every 33 epochs 
for FBPConvNet. The best classification and FBPConvNet models were selected based on the validation loss.

Infrastructure.  We used radon and iradon functions in Matlab 2018a for generating sinograms and obtain-
ing FBP reconstructed images, respectively. We used Keras (version 2.1.1) with a Tensorflow backend (version 
1.3.0) as the framework for developing deep learning models, and performed experiments using an NVIDIA 
Devbox (Santa Clara, CA) equipped with four TITAN X GPUs with 12 GB of memory per GPU.

Received: 23 April 2019; Accepted: 28 September 2019;
Published: xx xx xxxx

Figure 5.  (a) Overall network architecture of SinoNet. (b) Detailed network diagram within the Inception 
modules that include rectangular convolutional filters and pooling layers. The modified Inception module 
contains multiple rectangular convolution filters of varying sizes: height-wise rectangular filters (projection 
dominant) in red; width-wise rectangular filters (detector dominant) in orange; “Conv3x3/s2” indicates a 
convolutional layer with 3 × 3 filters and 2 stride, and “Conv3x2” means a convolution layer with 3 × 2 filters 
and 1 stride. (c) Dense-Inception layers contain two densely connected Inception modules. (d) Transition 
modules situated between Dense-Inception modules reduce the size of feature maps. Conv = convolution layer, 
MaxPool = max pooling layer, AvgPool = average pooling layer.
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