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ABSTRACT
Cancer immunotherapy has primarily been focused on attacking tumor cells. 

However, given the close interaction between tumor cells and cancer-associated 
fibroblasts (CAFs) in the tumor microenvironment (TME), CAF-targeted strategies 
could also contribute to an integrated cancer immunotherapy. Fibroblast activation 
protein α (FAP α) is not detectible in normal tissues, but is overexpressed by CAFs 
and is the predominant component of the stroma in most types of cancer. FAP α has 
both dipeptidyl peptidase and endopeptidase activities, cleaving substrates at a post-
proline bond. When all FAP α-expressing cells (stromal and cancerous) are destroyed, 
tumors rapidly die. Furthermore, a FAP α antibody, FAP α vaccine, and modified 
vaccine all inhibit tumor growth and prolong survival in mouse models, suggesting 
FAP α is an adaptive tumor-associated antigen. This review highlights the role of 
FAP α in tumor development, explores the relationship between FAP α and immune 
suppression in the TME, and discusses FAP α as a potential immunotherapeutic target.

INTRODUCTION

 In the past, cancer immunotherapy mainly focused 
on attacking tumor cells. Cancer immunotherapy is 
a promising treatment strategy against solid tumors; 
however, it cannot completely eradicate them. The 
biological complexity of the tumor microenvironment 
(TME) seems to be an obstacle for cancer immunotherapy, 
suggesting that using a strategy in which only tumor cells 
are targeted is inadequate to overwhelm the aggressively 
growing tumor. Therefore, a synergistic TME-targeted 

strategy is required for the development of more potent 
cancer immunotherapy [1]. Modern immunotherapy has 
shifted to an approach that also targets the TME. This 
approach is founded on the “seed and soil hypothesis” 
which has illuminated that the complex interplay between 
TME components plays an important role in tumor 
metastasis [2]. Among tumor stromal cell types, cancer-
associated fibroblasts (CAFs) are the dominant cellular 
component in the TME, and they play critical roles in 
promoting tumor progression. Given the close interaction 
between tumor cells and CAFs in the TME, CAF-targeted 



Oncotarget33473www.impactjournals.com/oncotarget

strategies would be promising for developing integrated 
cancer immunotherapy [3]. Fibroblast activation protein α 
(FAP α) is overexpressed by CAFs and is the predominant 
component of the stroma in most types of cancer, while 
it is not detectable in normal adult human tissues [4, 5]. 
Studies have confirmed that FAP α plays multiple roles 
in neoangiogenesis, invasion, and metastasis; thus, FAP α 
has been explored as a target for cancer therapy. Combined 
immunotherapy treatment with T cells that target cancer 
cells and an additional agent that targets FAP α-expressing 
cells for destruction could increase the success of solid 
tumor elimination [6, 7]. 

 In order to determine the role of FAP 
α-expressing stromal cells in immune suppression within 
the TME, a transgenic mouse model has been created with 
established Lewis lung carcinomas. Only 2% of the tumor 
cells in this model express FAP α; however, when all FAP 
α expressing cells (stromal and cancerous) are destroyed, 
the tumors begin to die rapidly. Therefore, FAP α 
expressing cells are a non-redundant, immunosuppressive 
component of the TME [8]. Furthermore, it was reported 
that a FAP α vaccine combined with curcumin stimulates 
FAP α antibody production and CD8+ T cell-mediated 
killing of FAP α-expressing stromal cells and prolongs 
the survival of mice implanted with melanoma [9]. All 
of these results suggest that FAP α is an adaptive tumor-
associated antigen useful for tumor immunotherapy. In 
this article, we will review the role of FAP α in tumor 
development, discuss FAP α as a potential target, and 
examine its immunotherapeutic benefits.

THE BIOLOGICAL CHARACTERISTICS 
OF FIBROBLAST ACTIVATION 
PROTEIN α

Extracellular matrix (ECM) breakdown, 
detachment of neoplastic cells from the primary site, 
and their subsequent invasion into the lymphatic vessels, 
capillaries, and the surrounding normal tissues, is the 
result of a complex interplay of numerous proteolytic 
enzymes, including serine proteases. Overexpression 
of serine proteases in carcinomas is correlated with 
enhanced tumorigenicity and adverse prognosis [10-12]. 
Therapeutic strategies targeting FAP α, a membrane-bound 
serine protease of the prolyl oligopeptidase family that is 
expressed on CAFs within the tumor stroma, offer another 
tumor treatment option [13].

 FAP α was originally identified by a group in 
pursuit of a selective marker for activated fibroblasts. A 
monoclonal antibody named F19 was produced to define 
the FAP α-positive cell, which strongly labeled cultured 
fibroblasts, fibroblasts in fetal mesenchymal tissues, the 
reactive stromal fibroblasts of epithelial tumors, and tumor 
cells of sarcomas [5, 14]. The name FAP α was given to 
the F19 antigen because of its unique expression profile 
[15]. Subsequently, another group identified a 170-KDa 

membrane-bound protease expressed by invadopodia, the 
protrusions of invasive melanoma cells, which was called 
“seprase”[16, 17]. Molecular cloning suggested that FAP 
α and seprase were the same cell surface serine protease 
[18-20]. 

FAP α is a type II integral membrane serine protease 
that belongs to the dipeptidyl peptidase (DPP) subfamily, 
which has the ability to cleave the bond between proline 
and any other amino acids. This enzymatic activity 
has been shown to have an impact on a wide variety 
of bioactive signaling molecules [21]. There is 50% 
sequence homology between DPP-IV and FAP α, and 70% 
homology in the catalytic domain. Both peptides have the 
same domain structure and belong to the family of post-
prolyl peptidases [22, 23]. Human FAP α, expressed in 
activated stromal fibroblasts and remodeling tissue, is a 
type II cell-surface-bound transmembrane glycoprotein 
with Mr 95,000, it consists of 760 amino acids and is 
composed of a short 6 amino acid cytoplasmic domain, 
an 18 amino acid trans-membrane domain, and a large 
extracellular domain of 736 amino acids. The critical 
structure of the catalytic triad is formed by serine 
(Ser624), aspartate (Asp702), and histidine (His734) [24] 
(Figure 1). Ser624 is essential for enzymatic activity, for 
when this serine is changed into alanine, the proteolytic 
activity of FAP α no longer exists [25]. According to the 
crystal structure, FAP α exists as a homodimer which, 
when activated, must assemble into a heterodimer [26]. 

FAP heterodimers which composed by FAP α and FAP 
β participate in the migration of fibroblasts to collagen 
substrates [27], probably because together they can 
effectively degrade the substrate and regulate tumor cell 
growth, differentiation, adhesion, metastasis.

FAP α has both dipeptidyl peptidase and collagenase 
activity, and can degrade gelatin and type I collagen. 
However, the biological significance of FAP α cleavage of 
gelatin and type I collagen is still unknown. Nonetheless, 
FAP α is required for the generation of biologically 
active fragments of denatured collagen [28]. Recently, 
Neuropeptide Y (NPY), B-type natriuretic peptide, 
substance P, and peptide YY were found to be natural 
substrates for FAP α dipeptidyl peptidase activity. These 
proteins are also substrates for DPPIV; however, FAP α is 
distinguished from DPPIV by its effects on the half-life of 
substrates and its endopeptidase activity [29, 30]. 

THE ASSOCIATION BETWEEN 
FIBROBLAST ACTIVATION PROTEIN 
α AND HUMAN CARCINOMA 

While different kinds of tumors have general 
features in common, they also have their own 
characteristics related to tumor location, size, stage, 
degree of cell malignancy, involvement of lymph nodes, 
and metastasis. In this section, we will examine the role of 
FAP α in different carcinomas. FAP α is expressed by more 
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than 90% of human epithelial tumors, and there has been 
much interest in exploring FAP α as a therapeutic target 
in breast cancer. In vivo studies have demonstrated that 
increased FAP α expression is associated with increased 
tumor growth rate and promotes neovascularization 
[31]. Another study using shRNA to target FAP α in 
a mouse model carrying 4T1 breast cancer came to the 
same conclusions [32]. These two results demonstrate 
the important role of FAP α and its potential value as an 
effective therapeutic target. 

FAP α is overexpressed by CAFs in 85-90% of 
primary and metastatic colorectal cancers [33]. High 
levels of FAP α in human colon tumors promote tumor 
growth, progression, metastasis, and recurrence [34]. 
Moreover, the level of FAP α in rectal carcinomas, which 
have received preoperative chemo- or radiotherapy, is 
a negative prognostic factor [35]. Not only the level of 
FAP α, but also the location of FAP α, is related to poor 
prognosis of colon cancer patients [33]. All of these 
findings provide rationale for the development of FAP 
α-directed therapy.

 A series of findings about the expression and 
role of FAP α in pancreatic carcinoma has suggested 
that FAP α-targeted immunotherapy may be a new 
treatment for pancreatic cancer patients. FAP α-induced 
reorganization of the ECM in TME promotes the 
invasiveness of pancreatic cancer cells [36]. There is 
also growing evidence that high FAP α expression in 
pancreatic cancer is related to poor clinical outcome and 
its location is associated with its clinical results [37]. In 

pancreatic carcinoma, FAP α is not only expressed in 
stromal fibroblast cells, but also in carcinoma cells, in 
contrast to previous studies which had shown FAP α to be 
selectively expressed in malignant cells of bone and soft 
tissue sarcomas. In addition, similar to previous findings, 
high expression of FAP α in fibroblasts and carcinoma 
cells is associated with poor clinical outcomes. Therefore, 
FAP α is a link between the TME and pancreatic cancer 
cells, which indicates that blocking the activity of FAP 
α directly or depleting the FAP α-expressing cells may 
obtain the expected anti-tumor effects [38]. Although the 
exact function of FAP α in the development of the different 
diseases remains unclear, it is believed to participate in the 
progression and metastasis of cancer, angiogenesis, and 
the suppression of the antitumor response of the immune 
system [4]. In sum, these findings support the hypothesis 
that FAP α is a novel target for tumor therapy.

THE RELATIONSHIP BETWEEN 
FIBROBLAST ACTIVATION PROTEIN 
α AND IMMUNE SUPPRESSION IN THE 
TUMOR MICROENVIRONMENT

The complex interactions between the stroma and 
tumor, along with the regulatory signaling molecules 
in the TME, contribute to oncogenesis and tumor 
progression. The process of tumor invasion and metastasis 
is accompanied by angiogenesis and ECM degradation 
[39]. In most epithelial cancers greater than 1-2mm3 in 

Figure 1: Cartoon architecture of the FAP α homodimer. The critical structure of the catalytic triad is formed by serine (Ser624), 
aspartate (Asp702), and histidine (His734), and Ser624 is essential for enzymatic activity. The figure was generated using JSmol (PDB ID 
1Z68). The blue and red represents two same subunit of FAP α which contains helixes and β-sheets.
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size, tumor progression is critically dependent on the 
supporting TME [40]. Previous studies in murine models 
have shown that vaccination against tumor vasculature 
in tumor stroma, results in tumor repression without 
significant adverse effects, suggesting that TME-targeted 
immunotherapy is likely to bring a benefit to cancer 
patients [41-43].

However, tumor immune tolerance is a major 
impediment in cancer immunotherapy. For example, 
tumor vaccines proven to have therapeutic effects in 
vitro have the ability to activate the host immune system. 
Even the use of tumor-specific antibodies and activation 
of antitumor immune cells does not alter the overall 
capabilities of these agents [44]. Therefore, researchers 
began to take a fresh look at the relationship between 
the tumor and the TME, and determined that the failure 
of these vaccines is probably due to the existence of 
special cells in the TME that are immune-suppressive. 
“Antitumor” immune cells include cytotoxic CD8+ T 
lymphocytes (CTLs), T helper type 1 (Th1) cells, type 1 
macrophages (M1), type 1 neutrophils (N1), natural killer 
(NK) cells, natural killer T (NK-T) cells, eosinophils, 
and mature dendritic cells (DCs) [45-48], all of which 
are known to support the clearance of tumor cells. An 
effective antitumor immune response can be divided into 
three steps: First, there is full activation of T lymphocytes 
by mature DCs in the tumor-draining lymph node; then, 
cancer-specific effector T cells leave the blood vessels 
and enter the tumor site; and finally, tumor-infiltrating 
lymphocytes (TIL) eventually cause tumor regression 
[49]. 

In contrast to normal tissues, the vast majority 
of immune cells in the TME have lost their function. 
Furthermore, in cancer patients the composition of 
immune cells undergoes a change wherein the inhibitory 
subgroups, such as regulatory immune cells, myeloid-
derived suppressor cells (MDSCs), and M2 macrophages 
are the dominate components [50]. In addition, the 
TME helps the tumor cells to escape from the attack of 
effector cells by recruiting inhibitory cells, therefore 
escaping the body’s immune surveillance, moreover, 
the origin of MDSCs in the TME is converted by a 
specific mature subset of NK T-cells [51]. Furthermore, 
the abnormal distribution, migration barrier, and anergy 
of T lymphocytes and other immune cells are important 
reasons for T lymphocyte-mediated antitumor activity 
failure [52-54]. Thus, immunosuppression in the TME 
leads to inefficient or ineffective cancer treatments, and 
immunotherapy strategies aimed at activating T cells are 
currently under investigation in preclinical and clinical 
studies.

FAP α is an immune-suppressive component in the 
TME. The first experiments that assessed the immunologic 
effects of perturbing the FAP α+ stromal cells used a direct 
approach of conditionally depleting this cell type from 
a mouse bearing immunogenic Lewis lung carcinoma 

cells expressing ovalbumin (LL2/OVA). These studies 
demonstrated that administering diphtheria toxin to 
these mice depletes approximately 80% of the tumoral 
FAP α+ cells, which comprised only approximately 2% 
of all tumoral cells, and caused rapid, adaptive immune-
dependent reduction in tumor volume. Furthermore, when 
FAP α expression was inhibited, tumor shrinkage was 
seen accompanied by increased expression of IFN-γ and 
TNF-α, indicating the existence of immune suppression 
that was restricted to the FAP α+ cells [8]. However, 
the mechanism of FAP α action on immunosuppression 
has not been clarified in detail. In subcutaneous tumors 
established with immunogenic LL2/OVA, the FAP α+ 
population is comprised of CD45+ and CD45- cells, and 
the tumoral FAP α+/CD45+ population was identified as 
a minor sub-population of F4/80hi/CCR2+/CD206+ M2 
macrophages [55]. Using bone marrow chimeric mice 
in which the primate diphtheria toxin receptor (DTR) 
is restricted either to the FAP α+/CD45+ or to the FAP 
α+/CD45- subset, it was demonstrated by conditionally 
depleting each subset that both independently contribute 
to the immune suppressive properties of the TME. The 
immune inhibitory enzyme, heme oxygenase-1 (HO-1), is 
the basis for the function of the FAP α+/CD45+ subset. 
FAP α+/CD45+ cells are the major tumoral source of HO-
1, and an inhibitor of HO-1, Sn-mesoporphyrin, causes 
the same extent of immune-dependent arrest of LL2/OVA 
tumor growth as does the depletion of these cells. Since 
this observation of immune suppression by the FAP α+/
CD45+ stromal cell has been replicated in a transplanted 
model of pancreatic ductal adenocarcinoma, tumoral 
immune suppression is likely mediated by macrophages 
expressing FAP α and HO-1. 

In subsequent studies, immune suppression by 
the FAP α+ CAFs was mediated by CXCL12, the 
chemokine that binds to cancer cells and excludes T 
cells by a mechanism that depends on signaling by the 
CXCL12 receptor, CXCR4 [56]. T cells are absent from 
regions of the tumor containing cancer cells, which are 
coated with the chemokine, CXCL12, and the FAP α+ 
CAFs are the principal source of CXCL12 in the tumor. 
Administering AMD3100, a CXCL12 receptor chemokine 
(C-X-C motif) receptor 4 inhibitor, induces rapid T-cell 
accumulation and acts synergistically with α-PD-L1 to 
greatly diminish cancer cells, which are identified by their 
loss of heterozygosity of the TRP53 gene. The residual 
tumor is composed only of premalignant epithelial cells 
and inflammatory cells. Thus, a single protein, CXCL12, 
secreted from a single stromal cell type, the FAP α+ 
CAFs, explains the overriding immunosuppression by 
the FAP α+ cell in a model of human pancreatic ductal 
adenocarcinoma. CXCL12 is the reason for immune 
suppression, while abrogation of FAP α positive cells 
permits immune inhibition of tumor growth and enhances 
the efficacy of constructed immunotherapeutic antibodies 
[57]. Furthermore, a newly developed vaccine that co-
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targets tumor cells and FAP α, a consistent marker of 
CAFs, have shown greater antitumor activity with the 
enhanced induction of infiltration of CD8+ T cells in 
B16 melanoma models [58]. Therefore, the more we can 
understand about the role of FAP α in the suppression of 
the antitumor response of the immune system will lead to 
novel immunotherapy targets for clinical benefit.

THE FAP α-TARGETED 
IMMUNOTHERAPY STRATEGY

As previously mentioned, FAP α is a transmembrane 
serine protease that is highly expressed on CAFs present in 
>90% of human epithelial tumors, and plays a significant 
role in tumor progression and metastasis [14]. Targeting 
FAP α genetically with vaccines, with antibodies, or with 
pharmacological agents, impairs tumor progression in 
several preclinical cancer models [59-61]. Therefore, FAP 
α is considered to be an adaptive tumor-associated antigen 
for tumor immunotherapy. In this section we will focus 
on the clinical and preclinical attempts at employing FAP 
α-targeted treatment strategies and its prospects in tumor 
therapy.

 As reviewed above, FAP α belongs to the serine 
proteinase family, has both collagenase and dipeptidase 
activities which can degrade gelatin, collagen, and other 
substrates of dipeptidase, and promotes tumor growth, 
migration, invasion, metastasis and ECM degradation. 
Therefore, it was hypothesized that selectively blocking 
the enzymatic activity of FAP α may be a method of 
targeting it in tumor development. Val-boroPro, also called 
Talabostat, was the first inhibitor of the proteolytic activity 
of FAP α used in phase II clinical trials successively 
performed in patients with metastatic colon cancer, 

non-small cell lung cancer, and melanoma. Val-boroPro 
was administrated alone or combined with other non-
specific anti-tumor drugs, but minimal clinical response 
was observed with the addition of Val-boroPro [62-64]. 
There is still no consistent conclusion as to why the drug 
did not work, but there are reports suggesting that the 
enzymatic activity of FAP α has little to do with increased 
tumor growth [28], and there are also contradictory results 
suggesting that serine proteases can function as tumor 
suppressors [21, 65]. Some scientists hold the view that it 
was the form that Val-boroPro exists in vivo that matters 
[4], and that more studies are required to get the real 
picture. 

The disappointing clinical outcome of Val-boroPro 
does not exclude the potential role of FAP α’s proteolytic 
activity in tumor invasion and metastasis, or that an 
inhibitor antibody may be a potent therapeutic target. 
An inhibitory scFv antibody, named E3 was identified, 
which competitively inhibits FAP α function [66]. This 
scFv antibody with high affinity and enhanced inhibitory 
effects on FAP α enzyme activity, seems very likely to 
be exploited as a tool for the treatment of FAP α driven 
tumors. Studies to evaluate the effects of scFv antibody 
deserve more exploration and further characterization to 
confirm previous findings. In one study, human scFvs 
were transformed into bivalent minibodies of completely 
human origin, which worked far better than murine or 
humanized antibody derivatives. Thus, the successful 
use of mini-antibodies in immunohistology for a variety 
of carcinomas is encouraging for in vivo diagnostic and 
tumor-targeting studies [67]. Combinatorial strategies 
addressing the two key issues of cancer immunotherapy 
(ie. targeting the tumor cells and modulating the T-cell 
response), the production of a bio-specific single chain 

Figure 2: The diagram demonstrating the role of FAP α in immune suppression and the application of FAP α-targeted 
immunotherapy strategy.
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antibody (scFv) directed against FAP α and CD3 (T cell 
receptor component), and the subsequent construction 
of a bio-specific antibody combined with co-stimulatory 
antibody-ligand fusion proteins, show the potential for 
initiating and regulating immune response at the TME in 
addition to modulating tumor progress [68, 69]. Advanced 
combinatorial strategies could result in unprecedented 
clinical outcomes with great beneficial effects.

Early work on FAP α-targeting monoclonal 
antibodies investigated the toxicity, imaging, and bio-
distribution of a 131-labeled monoclonal antibody 
(131I-mAbF19) against FAP α in patients with hepatic 
metastases from colorectal carcinoma. The 131I-mAbF19 
was administered by intravenous injection and no 
toxicity was observed [70]. Further work has defined 
the population pharmacokinetics of 131I-mAbF19 with 
the data from two phase I studies in cancer patients 
[71]. These studies indicated potential diagnostic and 
therapeutic applications of humanized mAbF19. Then, 
sibrotuzumab, an antibody directed against humanized 
F19, was produced and used in a Phase I dose-escalation 
study, which showed the safety of this antibody in patients 
who suffer from advanced or metastatic FAP α-positive 
cancers [6]. Interestingly, there was a relationship between 
body weight and this antibody [72]. Unconjugated 
sibrotuzumab (BIBH 1) was investigated in an early 
phase II trial with metastatic colorectal cancer patients, 
and, although it was well tolerated and safe, the trial 
was suspended because of its minimal clinical response 
[73]. Despite the disappointing results, the study of more 
efficient FAP α antibodies continues. Novel human-mouse 
cross-reactive antibodies, ESC11 and ESC14 labeled with 
radionuclide (177) Lu, were recently engineered and 
characterized [74]. Accumulation of these two antibodies 
is specific to tumor tissue, particularly the (177) Lu-
labeled ESC11, suggesting these antibodies could be 
potential tumor growth retardants in a melanoma xenograft 
model. (177)Lu-ESC11 has advantage over (177) Lu-
ESC14 and (177) Lu-vF19 in prolonging survival time. 
However, more preclinical and clinical experiments are 
needed to explore the diagnostic and therapeutic effects 
of these potent antibody-drug conjugates in patients with 
FAP α-expressing tumors. 

Vaccines targeting FAP α provide another 
therapeutic strategy that takes advantage of the restricted 
distribution of FAP α in tumor sites. Scientists have 
constructed a DNA vaccine directed against FAP α [75], 
and immune tolerance against the FAP α self-antigen 
can be inhibited through delivery of FAP α cDNA as a 
subcutaneous DNA vaccine. In prophylactic experiments, 
the CD8+ T-cell-mediated antitumor immune response 
induced by pFAP α vaccination inhibited tumor growth, 
significantly suppressed growth of pulmonary metastases 
and prolonged the life spans of vaccinated mice, consistent 
with a previous study [60]. Similar results were also 
observed for adaptive immunity induced by adoptive 

transfer of T cells from pFAP α-immunized mice. Non-
specific immune responses were unlikely, because the 
cytotoxic effects mediated by CD8+ T cells in vitro 
were restricted to target cells overexpressing the FAP 
α antigen, consistent with other studies [59, 60]. More 
importantly, an in vitro screening method was used to 
determine whether dendritic cells transfected with mRNA 
encoding products of FAP α are capable of stimulating 
cytotoxic CD8+ (CTL) responses from human peripheral 
blood mononuclear cells. It was demonstrated that CTL 
responses could be consistently generated against FAP α. 
To enhance the immunogenicity of the mRNA-translated 
FAP α product, a lysosomal targeting signal derived from 
lysosome-associated membrane protein-1 (LAMP-1) was 
fused to the COOH terminus of FAP α to redirect the 
translated product into the class II presentation pathway. 
Dendritic cells transfected with mRNA encoding the FAP 
α-LAMP fusion product stimulated enhanced CD4+ and 
CD8+ T-cell responses [76]. 

Furthermore, in our research, we have developed 
a new tumor vaccine, FAP α τ-MT, which was produced 
by conjugating 1-MT to a FAP α. The in vitro results 
confirmed that 1-MT could be dissociated from the FAP 
α τ-MT vaccine and inhibit intracellular IDO activity 
[77]. In a FAP α-positive tumor model, the FAP ατ-MT 
vaccine elicited an antitumor response that was similar 
to systemic treatment with the FAP α τ vaccine plus 
1-MT. Most importantly, administration of the FAP α 
τ-MT vaccine did not lead to pregnancy failure in mice 
carrying allogeneic fetuses. These findings that FAP 
α τ-MT breaks tumor immune tolerance as a local IDO 
inhibitor, suggesting that conjugation of 1-MT to a tumor 
antigen peptide is a potentially effective clinical cancer 
immunotherapy. In subsequent studies, we used the main 
catalytic domain of dipeptidyl peptidase of murine FAP 
α as a vaccine that contains abundant T-cell epitopes and 
B-cell epitopes, combined with curcumin lavage that 
inhibits the expression of IDO to relieve tumor immune 
tolerance, to treat mice implanted with melanoma cells. 
We demonstrated that FAP α vaccine combined with 
curcumin lavage inhibits tumor growth and prolongs the 
survival of mice implanted with melanoma cells. The 
combination of a FAP α vaccine and curcumin stimulated 
FAP α antibody production and CD8+T cell-mediated 
killing of FAP α-expressing stromal cells without adverse 
reactive effects [9]. These results suggest that FAP α, a 
product preferentially expressed by CAFs, would be a 
more effective antigen to target in the setting of cancer 
immunotherapy.

CONCLUSIONS

 Cancer cells are embedded in stroma, the 
connective tissue framework of solid tumors. Stromal cells 
and cancer cells depend on each other for mutual paracrine 
stimulation, and stromal fibroblasts are probably required 
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for cancer cells to survive and grow [78, 79]. Recently, 
tumor stromal cells have been suggested as a target for 
tumor immunotherapy because tumor stromal cells, unlike 
tumor cells, are diploid, genetically stable, and open to 
immunological attack. Thus, immunizing against stromal 
fibroblasts in tumors may unmask an immune response to 
cancer [80-82]. 

FAP α is a tumor-associated antigen which is a serine 
protease involved in extracellular matrix remodeling and 
highly expressed on reactive stromal fibroblasts in >90% 
of human epithelial carcinomas, but is not detectable 
in normal adult human tissues [83, 84]. Stromal cells 
expressing FAP α may suppress the immune response to 
tumors as a consequence of producing massive amounts 
of stromal cell-derived factor-1 (SDF-1/CXCL12). SDF-1 
attracts regulatory T cells (CD4+ subtype) into the tumor 
[85]. Furthermore, because of the multiple roles played by 
FAP α in neoangiogenesis, invasion and metastasis, it is 
being explored as a target for cancer therapy. 

In the context of immunotherapy involving T cells 
targeting cancer cells, an agent targeting FAP α-expressing 
cells might increase therapeutic efficacy against both solid 
tumors and metastatic cells [86-89]. Eliminating FAP 
α+ stromal fibroblasts activating cancer-specific T cells 
should inhibit growth of small spontaneous tumors and 
thus may help eliminate clinically undetectable cancer 
cells that have already metastasized before excision of 
the primary tumor [90]. Thus, combined immunotherapy 
treatment consisting of T cells that target cancer cells and 
an agent targeting FAP α-expressing cells for destruction 
could increase the success of eliminating solid tumors 
and metastatic cells. Because FAP α is a robust target for 
immunotherapy, preclinical and clinical studies targeting 
FAP α have been initiated adopting methods such as 
small inhibitor molecules, FAP α-activated prodrugs, 
monoantibodies, DNA vaccines, peptide vaccines, and 
modified vaccines, etc. (Figure 2). In the future, there 
will be more and more combinatorial immuno(chemo) 
therapeutic regimens and other promising methods 
targeting FAP α. 
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