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Machine learning the metastable phase diagram of
covalently bonded carbon
Srilok Srinivasan 1, Rohit Batra1, Duan Luo 1, Troy Loeffler1, Sukriti Manna1,2, Henry Chan 1,2,

Liuxiang Yang 3, Wenge Yang 3, Jianguo Wen 1✉, Pierre Darancet 1,4✉ &

Subramanian K.R.S. Sankaranarayanan 1,2✉

Conventional phase diagram generation involves experimentation to provide an initial esti-

mate of the set of thermodynamically accessible phases and their boundaries, followed by

use of phenomenological models to interpolate between the available experimental data

points and extrapolate to experimentally inaccessible regions. Such an approach, combined

with high throughput first-principles calculations and data-mining techniques, has led to

exhaustive thermodynamic databases (e.g. compatible with the CALPHAD method), albeit

focused on the reduced set of phases observed at distinct thermodynamic equilibria. In

contrast, materials during their synthesis, operation, or processing, may not reach their

thermodynamic equilibrium state but, instead, remain trapped in a local (metastable) free

energy minimum, which may exhibit desirable properties. Here, we introduce an automated

workflow that integrates first-principles physics and atomistic simulations with machine

learning (ML), and high-performance computing to allow rapid exploration of the metastable

phases to construct “metastable” phase diagrams for materials far-from-equilibrium. Using

carbon as a prototypical system, we demonstrate automated metastable phase diagram

construction to map hundreds of metastable states ranging from near equilibrium to far-

from-equilibrium (400 meV/atom). We incorporate the free energy calculations into a

neural-network-based learning of the equations of state that allows for efficient construction

of metastable phase diagrams. We use the metastable phase diagram and identify domains of

relative stability and synthesizability of metastable materials. High temperature high pressure

experiments using a diamond anvil cell on graphite sample coupled with high-resolution

transmission electron microscopy (HRTEM) confirm our metastable phase predictions. In

particular, we identify the previously ambiguous structure of n-diamond as a cubic-analog of

diaphite-like lonsdaelite phase.
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Materials synthesis traditionally relies on “thermo-
dynamic phase diagrams” to provide information about
the stable phases as a function of various intensive state

properties such as temperature, pressure, and chemical compo-
sition. The conventional method for generating a phase diagram
involves experimentation to provide an initial estimate of phase
boundaries followed by the use of phenomenological models to
interpolate the available experimental data points and extrapolate
to experimentally inaccessible regions. Such an approach com-
bined with atomistic simulations and recent data-mining tech-
niques has led to well-established exhaustive thermodynamic
databases1–3 for different materials—albeit limited to phases
observed near thermodynamic equilibria. However, following
synthesis and processing, or during operation, materials may be
trapped in local minima of the energy landscape, that is, in
metastable states (see Fig. 1a). Solid carbon is a prototypical
system exhibiting such behavior, with numerous known meta-
stable allotropes at room temperature and atmospheric pressure.
Importantly, these allotropes have wide-ranging properties, from
metals4–7, semiconductors8, topological insulators9–11, to wide
bandgap insulators12. Similarly, a vast and rich phase space of
metastable structures for multi-component materials exists, some
of these phases with potentially desirable properties, driving the
need to go beyond near-equilibrium materials. Exhaustive

“metastable phase diagrams”, mapping the equation of states for
phases without parent in thermodynamic equilibrium, are hence
highly desirable.

Predicting, identifying, and mapping the free energy of meta-
stable materials is a non-trivial and data-intensive task. The first
challenge is to employ an efficient structure optimization algo-
rithm capable of identifying both global (ground state) and local
(metastable) minima of the energy landscapes in the configura-
tional space. The next challenge is to map the free energy surface
(i.e. the equation of state) for each of these metastable phases as a
function of the intensive thermodynamic state variables (P, T and
X), over the range in which the phase information is desired. This
step quickly becomes computationally prohibitive for large
numbers of metastable configurations, and, in practice, requires a
surrogate model, to approximate the free energy calculations of a
more expensive first-principles-based approach (e.g. ab-initio
molecular dynamics). After the equation of state for all the phases
is computed, the final challenge is to classify and identify the
phase boundaries and the domains of metastable equilibrium, i.e.
the areas of the phase diagram in which a metastable structure is
dynamically decoupled from lower energy structures.

Here, we report an automated framework that addresses the
above challenges by integrating an evolutionary algorithm with
first-principles calculations, machine learning (ML), and high-

Fig. 1 Our automated AI workflow for construction of metastable phase diagrams. a, b Schematic illustration of the free energy landscape in the
configurational space at different conditions ðT1; P1Þ, ðT2; P2Þ. frig refers to the coordinates of the basis atoms and a; b; c; α; β; γ are the lattice parameters.
The phases corresponding to the minima are labeled χ;ψ;ω. GS, M1, and M2 stand for ground state, near-equilibrium and far-from equilibrium metastable
phases. c Graph representation of the energy landscape. Nodes correspond to the phases and the edges contain the barrier height. d Equation of state for
χ;ψ and ω. e Illustration of the metastable phase diagram as a function of ΔG. f Our workflow to identify metastable configurations and construct the
metastable phase diagram. DFT, density functional theory; DNN, deep neural network; SVM, support vector machine.
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performance computing to allow the exploration of the meta-
stable materials and construct their phase diagrams. Our frame-
work allows curation of metastable structures from published
literature/databases and concurrently enables automatic dis-
covery, identification, and exploration of the metastable phases of
a material, and ‘learns’ their equations of state through a deep
neural network. We apply our framework to the case of carbon –a
system well-known to exhibit a large number of metastable
allotropes–and map its metastable phase diagram in a large range
of temperatures (0–3000 K), pressure (0–100 GPa) and excess free
energy (up to 400 meV/atom above thermodynamic equilibrium).
Importantly, we show that the proximal phases to thermo-
dynamic equilibrium (within �140 meV/atom) can be observed
experimentally in high-pressure high temperature (HPHT) pro-
cessing of graphite. In particular, we identify a new cubic-diaphite
metastable configuration that explains the diffraction pattern of
the previously reported n-diamond13, demonstrating the poten-
tial of our approach to guide the synthesis of materials beyond
equilibrium. We also demonstrate that our metastable phase
diagrams can be used to identify both the relative stability of the
various metastable phases as well as domains of synthesizability.

Results
Our workflow is summarized in Fig. 1. We construct metastable
phase diagrams with the chemical information of the periodic
system as input, along with the range of pressure and temperature
of interest.

As explained in detail below, we identify the metastable phases
by sampling the configurational landscape at fixed thermo-
dynamic conditions. The ground and metastable states at a given
set of thermodynamic conditions ðT; PÞ correspond to global and
local minima of the free energy in the configurational space,
Gðfrig; a; b; c; α; β; γÞ, where a; b; c; α; β; γ are the lattice para-
meters and frig are the position of the basis atoms. We then
compute, at the identified minima, the Gibbs free energy in the
thermodynamic space as a function of intensive variables GðT; PÞ;
the free energy and the relative energetic ordering of its minima
vary with ðT; PÞ as illustrated in Fig. 1a, b. Upon identification,
the free energy and stability of these phases at ðT; PÞ is repre-
sented as a graph (Fig. 1c) with nodes corresponding to the free
energy of the phases and the edges to the free energy barrier
connecting them. This discrete thermodynamics representation is
made continuous as a function of ðT; PÞ, and the crossing points
in the equation of states are automatically identified. Finally, we
generate the full metastable phase diagram, P T; P;ΔGð Þ, where P
is the most energetic phase within a free energy ΔG with respect
to the ground state at a given T; P;ΔGð Þ.

Evolutionary structure prediction. The first step in our work-
flow is to identify the periodic structures that are energetically
favorable for a given chemical composition. We use an evolu-
tionary search based on genetic algorithm—known to be efficient
for periodic systems14–18. Briefly, evolutionary algorithms opti-
mize the atomic arrangement {r1,r2,...rn} and the lattice para-
meters (a; b; c; α; β; γ) of a population of structures over different
regions of the energy landscape through genetic variations and
selections over successive iterations. Hence, evolutionary algo-
rithms are naturally suited to locate candidate metastable phases
over the configurational space by evolving a pool of structures at
the same time. Although G includes both the temperature(−TS)
and pressure (PV) contributions, for computational cost effi-
ciency, we only include the effect of finite pressure in the selection
of the offspring structures, by optimizing enthalpy at 0 K and
fixed pressure, HðT ¼ 0K; PÞ —the entropic contributions being
integrated at subsequent steps of our workflow.

We perform evolutionary structure search at several different
pressures (P = 0 GPa, P = 10 GPa, and P = 100 GPa)
independently by minimizing HðT ¼ 0K; PÞ. More details
regarding the evolutionary algorithm such as the genetic
operations performed, selection criteria and other relevant
parameters can be found in the supplementary methods
(Section 1). All the distinct phases encountered during the search
and their corresponding enthalpy values are recorded. Candidate
metastable phases for further free energy calculations are
identified from a collated list of structures from several
independent evolutionary structure search at different pressures.

Diamond and graphite are the ground state phases observed in
the experimental equilibrium phase diagram19 of carbon. Apart
from the equilibrium phases, our evolutionary search also identified
metastable structures like the hexagonal diamond (lonsdaleite),
several stacking combinations of cubic and hexagonal diamond
(stacking disorder), distorted cubic diamond, distorted hexagonal
diamond (diaphite), which are also observed in our HPHT
experiments. In addition, we also identify Z-carbon20,21,
F-carbon22,23, G-2124, 10B25, bct-carbon26,27 and several other
theoretically predicted phases of carbon (see Supplementary Table 1
for a complete list) within the Samara Carbon Allotrope Database
(SACADA)28,29. At a given pressure, the structure with minimum
enthalpy (Hground) is the ground state at 0 K – in the case of carbon,
graphite at 0 GPa. In this work, we focus on the bulk phases of
carbon and exclude nanoscale clusters, such as fullerene C60, their
ordered 3D configurations, amorphous or molten carbon phases,
and metallic carbon at extreme pressures due to the prohibitively
high computational cost required to estimate their free energies. At
0 K, we have HðT ¼ 0K; PÞ ¼ GðT ¼ 0K; PÞ. Hence, we use
cutoff criteria based on HðT ¼ 0K; PÞ to screen the candidate
metastable phases for the subsequent free energy calculation. We
define a ΔHcut-off and only include structures whose enthalpy
satisfies H <Hground+ΔHcut-off for the free energy calculation.
In the present work, we set ΔHcut-off ¼ 670 meV/atom, comparable
to the excess enthalpy of C60 fullerene (ΔHC60 ¼ 608 meV/atom)
that, we hypothesize, should be large enough to include the
thermodynamically relevant metastable structures. Among the
selected structures, we group geometrically similar and layered
structures (for example hexagonal graphite, orthorhombic graphite,
rhombohedral graphite) based on the radial distribution function,
angular distribution function (see Supplementary Methods, Sec-
tion 1.1.2) which further reduces the number of candidate
structures for free energy calculation. After performing the above
selection and grouping of structures, we narrow down to 505
candidate metastable structures for free energy calculations.

The candidate structures obtained from the evolutionary
structure search are purely based on the enthalpy values at 0 K.
However, the metastability of a structure at a finite temperature is
determined based on the Gibbs free energy GðT; PÞ. The Gibbs
free energy of each candidate screened from the previous step is
computed across the temperature and pressure range of interest,
and by including the temperature and entropic contributions of
free energy to the enthalpy. The entropic part of the Gibbs free
energy (�TSðT; PÞ) is obtained by modeling the atomic vibrations
as a system of harmonic oscillators. The methodology for
computing the vibrational free energy using first-principles
density functional theory (DFT) can be found in the “Methods”
section. We note that the harmonic model employed here
neglects the anharmonic effects. The crystalline carbon phases
considered here are expected to be weakly anharmonic to an
extent that harmonic model is a good approximation30. For
disordered and amorphous systems exhibiting non-negligible
degree of anharmonicity, their free energy contribution should be
included using an appropriate method30.
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Phase-dependent equations of state through Deep Neural
Networks. As shown below, recently developed machine learning
(ML) methods31–34 for developing inter-atomic potentials35–38 or
estimating atomistic or molecular properties39–41 can be used to
compute Gibbs free energy as a continuous function of T; P. In
particular, the equation of state of a phase can be predicted
directly given only the 0 K structural information of a phase,
allowing us to quickly estimate a ðT; PÞ region wherein a specific
phase has low Gibbs free energy, and can be potentially realized
in the experiments.

Deep neural networks (DNN) have been shown to show
superior performance as compared to other regression techni-
ques, particularly for problems that involve large volumes of
data31. Thus, here, we develop a DNN model that takes as an
input the smooth overlap of atomic positions (SOAP)
representation42 of a phase, along with T and P information.
The DNN is trained on the Gibbs free energy data of 273 phases
out of the 505 carbon phases. Regularization techniques, such as
dropout and early stopping, were utilized to avoid overfitting.
Some important low energy metastable phases, namely, n-
diamond (S291), stacking fault diamond (S132) and 6B (S389),
were intentionally left out from the training process and were
used to evaluate the DNN performance. More details on the DNN
architecture, training, and the SOAP descriptor are provided in
the “Methods” section.

The phase diagrams constructed only considering the phases
identified in this work are shown in Supplementary Fig. 14.
However, using the DNN, we can rapidly screen the energetically
relevant structures within SACADA database, not identified by
our evolutionary search, and include them as well in the
metastable phase diagrams. We perform explicit DFT calculation
for those SACADA structures with sizes similar to the training set
(less than 20 atoms/unitcell) and DNN predicted free energies
less than 250 meV/atom with respect to cubic diamond. The
metastable phase diagram, inclusive of the SACADA screened
structures (18 phases), is shown in Fig. 2.

Equilibrium phase diagram. The phase diagrams are constructed
by comparing the GðT; PÞ of the candidate structures at a given
ðT; PÞ. The difference in free energies between phases corre-
sponds to the energy separation of their respective minima in the
configurational space (frig; a; b; c; α; β; γ) at a given ðT; PÞ (Fig. 1c,
d). The final stage in our workflow is to clearly identify the phase
boundaries as a function of T; P;ΔGð Þ separating the different
phases. We use a multiclass SVM43–47 (MSVM), using a non-
homogeneous 3rd order polynomial kernel, which can classify
multiple classes (phases) without relying on decomposition
techniques (see Supplementary Methods, Section 1.2). The final
equilibrium and metastable phase diagram with the decision
boundaries drawn using MSVM are shown in Fig. 2.

We first validate our workflow by constructing equilibrium
phase diagram and comparing against the experimental graphite-
diamond phase boundary19,48. The color of the region in ðT; PÞ
phase diagram corresponds to the color of the structures shown
in Fig. 2a. As expected, from the experimental phase diagram19,49,
the cubic diamond phase is dominant at high pressure whereas
graphite is more stable in the low-pressure region. Importantly,
our predicted diamond-graphite phase boundary matches
excellently with the experimental phase boundary19 (dashed line
in Fig. 2c).

The experimental phase diagram reported by Bundy50, and
later by others 19[,49,51, describes two different crystallographic
forms of diamond, namely the predominant “cubic” diamond
alongside small fractions of “hexagonal” diamond. While cubic-
diamond has a “ABCABC” stacking sequence of atomic layers,

hexagonal-diamond exhibits “ABAB” stacking. Although we
compute the free energies individually, the different polytypes
(4H, 6H, 15R, 21R, etc.) of hexagonal and cubic stacking
combinations are collectively referred to as “stacking disorder”
diamond in this work. We note that the stacking disorders in
diamond are marginally stabilized (ΔG=kBT < 0:2) at high
temperatures (T > 1000 K) and moderate to high pressures
(P > 50 GPa) (see Supplementary Discussion, Section 2.1), where
kB refers to the Boltzmann constant. The formation of mixtures of
hexagonal and cubic diamond during high-pressure-high-
temperature treatment of graphite has been reported by many
others52–62. These observations are not surprising considering
that the energetic differences between the stacking disorder and
pure cubic diamond are only 0:2 ´ kBT or less. Such a small
difference increases the likelihood (discussed below) of forming
these phases at high temperatures.

Metastable phase diagram. We next construct the metastable

phase diagram of carbon. We define the quantity ΔG
MSj
GSi

¼
GMSj

� GGSi
as the difference in Gibbs free energy between a

metastable structure MSj and the ground state GSi at given

temperature and pressure, with ΔGGSi
GSi

ðT; PÞ ¼ 0 and

ΔG
MSj
GSi

ðT; PÞ> 0 if MSj and GSi are distinct phases.
The probability of occurrence of a metastable phase at a given

temperature T is proportional to exp � ΔG
MSj
GSi

kBT

� �
. We therefore

construct a ΔGðT; PÞ surface, the projections of which can be used
to derive the metastable phase diagram as a function of the degree
of non-equilibrium from the corresponding equilibrium phase.
We define a metastable phase diagram as the phase diagram
obtained by projecting on T � P plane, the phaseMSj with closest

ΔG
MSj
GSi

ðT; PÞ value compared to a given degree of non-

equilibrium, ΔG, and satisfies ΔG
MSj
GSi

ðT; PÞ<ΔG. In other words,
by varying ΔG, we are effectively taking slices of the overlaid free
energy landscape (Fig. 1e) of all the structures. We do not exclude
any phase during the construction of the metastable phase
diagram and compare the free energies of all the structures. The
metastable phase diagrams represent the most energetic phase
accessible within that ΔG. Experimentally, such phases can be
accessed by using pulsed laser heating, in which the system
undergoes phase transformation with the pulse providing the
excitation energy to transition between local minima of the free
energy (Fig. 1c).

The metastable phase diagram of carbon at ΔG equal to 40,
140, and 220 meV/atom (Fig. 2b–d) shows the appearance of
metastable phases and their regions of metastability with respect
to ground state. The stacking disorders in diamond are within
ΔG ¼40 meV/atom with respect to pure cubic diamond. The
lonsdaelite like hexagonal-diaphite phase and distorted cubic n-
diamond, both of which also observed during high-pressure-high-
temperature processing of graphite (see below), appear at a
ΔG ¼140 meV/atom. At further higher ΔG ¼220 meV/atom, we
observe several different metastable phases, which were also
theoretically predicted, such as G92, G173, G178, G21, G12024,
W-carbon63,64, H-carbon65 and C2/m-1666 phase. Beyond
demonstrating the phase diversity, the metastable phase diagram
allows us to determine an effective “low free-energy projection” of
the phases likely to be kinetically stabilized for a set of
experimental conditions (as shown in Section 3.3). Such
representation of the metastability of different phases allows
one to deduce the temperature-pressure ranges at which a phase
is likely to be stabilized—and an estimate of minimum excitation
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energies (from ΔG) required to synthesize a metastable phase,
thus guiding experiments at favorable conditions for synthesis.

We use the information derived from the metastable phase
diagram to explain the experimental observations during laser
heating induced phase transformation of hexagonal graphite in a
pressurized diamond anvil cell67,68. As described in ref. 68 and
ref. 67 the graphite crystal was heated to �1400 K by a YAG laser
at the center of the crystal. Due to the Gaussian distribution of
laser spot, a temperature gradient exists from the center to
outside within a single laser spot in a given sample. In these
recovered samples with the incomplete conversion of diamond,
several metastable phases were identified by HRTEM as shown in
Fig. 3. When pressurized, the graphite layers slide with respect to

each other to form orthorhombic and rhombohedral graphite
(Fig. 3a)67,69–71. With further increase in temperature, the
orthorhombic and rhombohedral graphite layers buckle to form
interlayer bonds resulting in the formation of hexagonal or cubic
diamond, respectively69,70,72–78. In practice, both the transforma-
tion pathways occur simultaneously, resulting in an intergrowth
of cubic and hexagonal diamond54,77,79–82, also known as the
stacking disorder (shown in Fig. 3c).

As evidenced in ref. 68, the hexagonal diamond is actually a
diaphite-like lonsdaelite phase with two different bond lengths68.
One can again interpret this observation with the aid of our
metastable phase diagram. Our structure model (S353) can
explain experimental data in ref. 68 (see Supplementary

Fig. 2 Machine learning a metastable phase diagram for carbon. a Phases that appear within ΔG � 220 meV/atom. b Equilibrium phase diagram with
boundary fitted using MSVM. Equilibrium phase diagrams matches the experimental phase diagram19,48. c–e Metastable phase diagram (at a ΔG of 40,
140, and 220 meV/atom respectively) showing metastability of phases listed above. The color on the phase diagrams corresponds to the color of the
structures shown in (a). Regions where no metastable phase is present other than the ground state are shaded in grey.
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Discussion, Section 2.5). The diaphite phase is easily accessible
under the experimental conditions used (20 GPa, 1400 K) since it
is metastable with ΔG=140 meV/atom (a purple region in
Fig. 2d) which is � 0:86 ´ kBT . We conjecture that graphite
undergoes phase transformation, triggered by the excitation in
experiments, into a accessible metastable phase which can be
represented as excitation induced hopping from the global
minima to a local minimum in the free energy landscape.

Furthermore, we observe a new cubic-diamond-like phase
exhibiting the same diffraction pattern as the previously reported
n-diamond13. New diamond (n-diamond) was proposed as a new
carbon allotrope; its electron diffraction pattern matches that of
cubic (Fd-3m) diamond apart from some additional reflections
that are forbidden for diamond, indexed as {200}, {222} and
{420}. The speculation of this new allotrope was first reported in
199113, but the exact crystal structure of n-diamond has remained
a controversy despite several attempts to explain the n-diamond
diffraction pattern83–86. Here, we attempt to explain the crystal
structure of the metastable n-diamond using our metastable
phase diagrams. Among all the phases that appear near the
experimental conditions (�20 GPa, 1400K) in the metastable
phase diagram at ΔG � 100 meV/atom (Fig. 2e), the diffraction
pattern of the S291 phase matches excellently with experiments
(Fig. 3b). The S291 phase is a cubic analog of the diaphite-like
lonsdaelite phase with two different bond lengths (Supplementary
Discussion, Section 2.3). Similar to the diaphite-like lonsdaelite
phase, cubic-diaphite is dynamically stable and has no imaginary
phonon modes under a highly anisotropic pressure. Such
anisotropic pressure can be explained by the buckling of basal
planes, which induce the collapse of c-axis, equivalent to a huge
increase in pressure in the out-of-plane direction. In fact, many
rhombus voids within a single crystal, resulting from anisotropic
pressure differentials, have been reported in diamond anvil
experiments67. It is predicted that n-diamond nucleates at these

bent areas87. The observation of n-diamond phase as nanodo-
mains with a size of �100 nm suggests that they are not just
defective cubic diamond and can potentially be stabilized as a
standalone phase. Our experimental observation suggests that
structure of n-diamond is a cubic diaphite with two different sp3

bond lengths, which has not been reported before. This
interpretation of the structure of cubic diaphite (n-diamond)
can aid in synthesizing better quality n-diamond, as well as to
understand the graphite-diamond transformation mechanism.

Hence, our framework not only correctly reproduces the
dominant diamond and graphite phase in the equilibrium phase
diagram, but also explains the observation of metastable phases in
HPHT experiments. While one can do ad-hoc structure optimiza-
tion to match experimental HRTEM images, the use of a metastable
phase diagram not only accelerates phase identification by
narrowing down the phase space but more importantly aids in
discovering novel polymorphs. We note that while our framework
does not guarantee an exhaustive search of all possible metastable
structures, it allows for the inclusion of new metastable phases when
encountered experimentally or theoretically.

Mapping the metastable phase diagram and inspecting the
neighboring phases provides insight into possible phase trans-
formation pathways and assists in selecting the appropriate
starting material for targeted synthesis, thus accelerating
computer-aided materials discovery.

Discussion
Domains of relative stability. The metastable phase diagrams
discussed above were generated by comparing the free energies
of all the candidate phases. Often, materials scientists find it
useful to consider only a select few phases of interest and
inspect their relative probability of formation. For example, one
may consider only two phases involved in a phase transition
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Fig. 3 High-resolution TEM images of metastable phases of carbon. a Orthorhombic-graphtie with AB’ stacking pattern and rhombohedral-graphite with
ABC stacking along with the experimental and simulated diffraction patterns (blue circles)67. b Hexagonal-diaphite and cubic-Diaphite along with the
experimental and simulated diffraction patterns(blue circles)68. c Different combinations of stacking patterns resulting from the simultaneous inter-growth
of hexagonal and cubic-diamond79,106.
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and study their relative stability, to estimate the phase transi-
tion line. The probability of observing a phase at a given
pressure and temperature depends on its relative stability with
respect to the competing phases. Figure 4a shows the free
energy profile, at P = 6.25 GPa, of the near equilibrium
metastable phases and some representative far from equili-
brium metastable phases (S228, S32). The points where any two
pair of lines intersect is the phase boundary between the cor-
responding phases. Free energies of distinct phases are sepa-
rated by a finite ΔG (the degree of non-equilibrium). The

relative stability can also be considered as the projection, on the
T � P plane, of the distances between the free energy surfaces
GðT; PÞ for each phase. Figure 4b shows the map of the dif-
ference in the free energies ΔG ¼ Ghex-diamond � Gdiaphite.
Experimentally, diaphite is observed at moderate pressures and
high temperatures whereas high-pressure conditions pre-
dominantly yield hexagonal diamond. Such information about
the relative stability can aid in driving the synthesis process to
yield a desired metastable phase, as opposed to a mixture of
phases, by appropriately tuning the experimental conditions.

Fig. 4 Information extracted from metastable phase diagram. Relative stability of metastable phases: (a) GðT; P ¼ 6:25GPaÞ of equilibrium and some
representative metastable phases; (b) Relative stability between hexagonal diamond (green) and diaphite (purple) computed as ΔG ¼ Ghex-diamond � Gdiaphite.
d Transformation barriers to hexagonal diamond, bct-Carbon and Z-carbon metastable phases, starting from cubic-diamond and graphite, are used to construct
a discrete (c) thermodynamic graph representing the transformation pathways and their respective barriers. e Domains of synthesizability based on dynamical
stability for metastable phases S32, S54, and S125, respectively.
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Transformation barriers between metastable phases. We note
that our metastable phase diagrams, like any other phase diagram,
contain information regarding the thermodynamics of the phases
and only partial information regarding kinetics. In practice, the
actual excitation required to overcome the kinetic barriers for
phase transformation are larger than ΔG. Once a list of com-
peting metastable phases is identified over a ðT; PÞ of interest, an
approximate energy barrier across any pair of phases can be
estimated by matching the crystal structure to each other using
the algorithm proposed by Stevanović et al.88 and computing the
energies of the images across the transformation pathway (see
Supplementary Methods, Section 1.4). As an example, the
transformation barriers for metastable hexagonal diamond, bct-C
and Z-carbon phases, starting from ground state cubic-diamond
and graphite, are shown in Fig. 4d. We construct a discrete
thermodynamic graph representation (Fig. 4c) where the nodes
represent individual phases and the length of the edges is pro-
portional to the transformation barriers. Based on this graph, we
find a lower transformation barrier for graphite to Z-carbon
phase vs. cubic diamond to Z-carbon signifying graphite to be a
preferred starting material for realizing the Z-carbon metastable
phase. On the other hand, a cubic diamond would be relatively a
better starting material to form bct-C. It is worth pointing out
that metastable configurations of carbon have interesting elec-
tronic properties that range from metallic to semiconducting to
insulating - which can be exploited if we can understand the
thermodynamic landscape of such phases and the barriers to
transform from one metastable phase (eg. metallic) to another
(e.g. insulating). For example, graphite is electrically conducting
whereas Z-carbon is insulating65. Similarly, diamond is insulating
while bct-C carbon is predicted to be metallic21,89. Building such
a network of metastable phases, related by their transformations
pathways, can thus serve as a kinetics-based guide in determining
the starting material during synthesis of a desired metastable
phase. We also note that while the method proposed in Ref. 88

allows us to quickly estimate the approximate kinetic barriers by
matching the crystal structures, a more accurate barrier height
along with the minimum energy pathway and saddle point can be
obtained from higher fidelity solid-state nudged elastic band
(SSNEB)90 calculations, once the competing transformations are
identified above. As an example, we perform SSNEB calculation
to compare graphite to hexagonal-diamond transformation with
graphite to Z-carbon (Supplementary Methods, Section 1.5). The
graphite to Z-carbon transformation has a larger kinetic barrier
(Ebarrier ¼ 0:47 eV/atom) compared to graphite to hexagonal
diamond transformation (eV/atom), in agreement with the
findings using Stevanovic’s method (0.68 eV/atom and 0.52 eV/
atom, respectively). All the kinetic barriers computed here cor-
respond to the concerted transformation mechanism.

Domains of synthesizability. The possibility of observing a phase
at a given T and P depends on whether the crystal structure is
retained or deformed due to melting or dynamical instability. In
other words, the synthesizability is fundamentally limited by dyna-
mical stability. We determine the dynamical stability of the meta-
stable phases by inspecting the mean square deviation (MSD) of the
atoms during MD simulations, performed over the temperature and
pressure range of interest, using the long-range bond-order potential
for carbon (LCBOP)91. The LCBOP potential reproduces the equi-
librium phase diagram of carbon48 and captures the equation of
states of the phases (Supplementary Discussion, Section 2.2) con-
sidered in Fig. 4e. A metastable phase is considered dynamically
unstable if the MSD is greater than 0.1 Å. In the context of Linde-
mann melting criteria92,93, our choice of MSD cutoff corresponds to
a Lindemann parameter of δL ¼ 0:175. Here, we define the domain

of synthesizability as the region in the (T; P) space where a phase is
dynamically stable. Figure 4e shows the domains of synthesizability of
S32, S54, and S125. While the synthesizability of phases S32 and S54
is pressure limited, S125 is temperature limited. It should be noted
that staying within the domain of synthesizability is a necessary, but
not a sufficient condition for successful synthesis as there may be
other factors limiting the synthesis. Similar upper limits for synthe-
sizability, but based on the energetics of the amorphous phase, have
been proposed in the past94. When a metastable phase is driven into
a region of dynamical instability, it may transform into a neighboring
metastable phase in the energy landscape or undergo melting to form
an amorphous phase. Such theoretical bounds on the state variables
ðT; PÞ, where a phase is likely to be stabilized, are instructive for
synthesizing a metastable phase of interest.

Accelerating construction of metastable phase diagrams using
machine learning. The generation of metastable phase diagram
relies on expensive free energy computations for a large number of
competing phases. Inspired by the success of deep neural networks in
achieving good performance on DFT datasets related to atomic
energies and forces, we use a similar ML strategy in this work. Using
ML-based surrogate models, we show that this process can be
accelerated, and surrogate models that predict GðT; PÞ can be con-
structed. Figure 5 presents the performance of the DNN model
trained to predict GðT; PÞ given only the structural information in
the form of SOAP descriptor. The parity plots in Fig. 5a demonstrate
the prediction accuracy (mean absolute error, MAE) achieved by the
DNN model on the training as well as the test set. Notably, n-
diamond (S291), S455 and 6B (S389) data were part of the test set
and the good DNN performance for these cases illustrates its cap-
ability to capture the free energy surface of carbon. Further, in Fig. 5b
we show that our DNN model is able to accurately predict the
equation of state of phases in the test set, given only their structural
information. The overall MAE across all phases in the test set was
37.1 meV/atom (Supplementary Discussion, Section 2.4) and was
found to perform significantly superior to another baseline DNN
model, which was fit to the coefficients of the free energy surface
assuming its quadratic dependence with P and T. In many cases, high
errors in the free energy predictions were observed at relatively higher
pressures, as partially captured in Fig. 5. We note that learning Gibbs
free energy as opposed to the potential energy or the enthalpy of a
phase is fundamentally more challenging as it involves 2nd order
derivatives with respect to energy. However, the encouraging per-
formance of the DNN model on the test set indicates the overall
promise of this approach. While the performance of DNN seems
satisfactory, more rigorous work should be done in the future to find
more suitable ML methods and the input structure fingerprints that
improve the model performance further. Once such a surrogate
model is trained, the free energy landscape of any new phase can be
predicted orders of magnitude faster using only the structural
information, thus, speeding up the process of constructing metastable
phase diagrams.

In summary, we introduce an alternate representation of
metastability by providing a free energy scale which helps identify
both the metastable phase location and its extent of non-
equilibrium. Such a representation is far more informative with
regard to designing experiments and accelerating the discovery of
metastable phases, which often display exotic properties. Our
automated workflow allows for the construction of a “metastable
phase diagram” by combining several synergistic computational
approaches including a structural search based on genetic
algorithms, deep learning accelerated high-throughput free
energy calculations and multiclass support vector machines to
classify phase boundaries. We demonstrate the efficacy of our
computational approach by using a representative single-
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component carbon system, whose equilibrium and metastable
phases have been well studied in the past. We successfully predict
the equilibrium phase diagrams, and using our metastable phase
diagram, explain several experimental observations during high-
pressure-high-temperature processing of graphite in diamond
anvil cell. We propose a cubic-diaphitine structure, as a candidate
phase to explain the diffraction pattern of n-diamond. In
addition, we demonstrate that information about the relative
stability of metastable phases and their synthesizability can be
parsed from the metastable phase diagram. We also show that the
phase diagram construction can be accelerated by orders of
magnitude with the help of a surrogate ML model, which can
reliably predict the equation of states, given only the structural
information. Our framework lay the groundwork for computer-
aided discovery and design of synthesizable metastable materials.

Methods
Evolutionary structure search. Genetic algorithm (GA) was used to identify can-
didate structures, wherein an initial gene pool of crystal structures is randomly guessed
and evolved in subsequent generations through genetic mutations or crossover between
the fittest structures. Fitness of each organism in a given gene pool is evaluated as

f i ¼
Hi � Hmax

Hmin �Hmax
ð1Þ

where Hi is the enthalpy of the organism i, Hmax and Hmin are the maximum and the
minimum enthalpy in the current pool. The gene pool is ranked according to the fitness
and parent structures are selected to undergo genetic variations to produce new off-
spring structures for the subsequent generation of gene pool. The selection probability

of each structure is based on the fitness:

pi ¼
f i
∑
i
f i

ð2Þ

The set of genetic operations used to build new generation of structures are: (i)
Crossover variation, (ii) Structure mutation, and (iii) Number of atoms mutations.
We perform the search with DFT as well as classical force fields (LCBOP) in
independent GA runs. We collate a list of candidate structures from several
independent evolutionary structure before computing the free energies. A detailed
description of structure optimization procedure and genetic operations can be
found in the Supplementary Methods.

Free energy calculations. The Gibbs free energy at a point i in the thermo-
dynamic phase space corresponding to a temperature ðTiÞ and pressure ðPiÞ can be
written as

GiðTi;PiÞ ¼ HiðTi; PiÞ � TiSiðTi;ViÞ: ð3Þ

where

HiðTi; PiÞ ¼ Ui þ PiViðTi;PiÞ: ð4Þ

Here we make the approximation

HiðTi; PiÞ � HiðT ¼ 0K; PiÞ ð5Þ
In other words, we neglect the effects of thermal pressure and thermal

expansion on enthalpy. This is a reasonable approximation considering that, for
solids, the change in volume with respect to temperature and the associated ΔPV is
� Ui . We can thus separate the temperature and pressure contribution to the
Gibbs free energy as enthalpy and entropic contribution, respectively. Additionally,
in solids with few atomic components, the vibrational contribution to the entropy

Fig. 5 Performance of the DNN model to predict Gibbs free energy of different phases of carbon. a Parity plot demonstrating prediction accuracy of
DNN model against reference Gibbs energy dataset for different phases of C in the test or training set (inset). For better comparison, the range of x- and
y-axes is kept consistent in the inset and the main panels. b Gibbs free energy predictions for the W-carbon, n-diamond (291) and 6B (389) phases for
various temperature and pressures. Although these phases were part of the test set, DNN predicts their equation of states accurately. The blue arrows in
panel (b) indicate the direction of increasing pressure. Abbreviation: MAE, mean absolute error.
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is the dominant one95, and hence we make the approximation:

SðT; PÞ � SvibrationalðT;PÞ; ð6Þ
If the atomic vibrations are modeled as harmonic oscillators, it follows that

FHarmonic ¼ UHarmonic � TSvibrational ¼
1
2
∑
qv
_ωðqvÞ þ kBT∑

qv
ln 1� exp � _ωðqvÞ

kBT

� �� �
ð7Þ

The pressure range (0–100 GPa), over which the phase information is
desired, is discretized into nine points—P0 2 f0:0 GPa; 13:3 GPa; 26:6 GPa;
40:0 GPa; 53:3 GPa; 66:6 GPa; 80:0 GPa; 93:3 GPa; 100:0 GPag. For any given
metastable phase, the equilibrium volume VðP ¼ P0Þ and enthalpy HðP ¼ P0Þ is
obtained by relaxing the structure under and external pressure P0 using density
functional theory (DFT). The temperature-dependent entropic part of the free
energy is obtained from Eq. (7) using the phonon modes computed at the
equilibrium volume VðP ¼ P0Þ.

The total Gibbs free energy GðT ¼ T0; P ¼ P0Þ is obtained by summing the
enthalpy HðP ¼ P0Þ and the vibrational free energy FHarmonic.

The DFT calculations were performed using the VASP package96 under
Perdew–Burke–Ernzerhof97 approximation with optB86b-vdW98,99 exchange
functional to include the van der Waals interactions. All calculations were done
with an energy cutoff of 600 eV. A dense K-point grid defined by natoms ´
nkpoints � 6000, where natoms is the number of atoms in the primitive cell and
nkpoints is the number of k-points, is employed100,101. The phonon modes were
computed from the Hessian matrix, obtained from density functional perturbation
theory, using the PHONOPY package102.

All the calculations were performed petascale supercomputer, Theta, at
Argonne Leadership Computing Facility (ALCF). While performing high
throughput DFT calculations can quickly become expensive, when such computing
resources are not readily available, one can use cheap models like semi-empirical91

or machine learnt classical force fields33,42 which offers a reasonable compromise
between computational cost and accuracy.

Deep neural network. A deep neural network (DNN) was used to learn the Gibbs
free energy of different phases of carbon. It consisted of 8 fully connected (dense)
hidden layers with 128, 256, 512, 512, 512, 512, 64, and 32 neurons, respectively, as
shown in Supplementary Fig. 3. Relu activation function was used in all layers, except
the input and the output layers. Many dense layers were followed by batch normal-
ization to assist the training of such a large network. The input layer consisted of
smooth overlap of atomic positions42 (SOAP) of the 0 K and 0 GPa structure of a
phase, and the normalized T and P value. The SOAP fingerprint was obtained using the
python library Dscribe103 with the following parameter settings: rcut ¼ 6Å, nmax ¼ 6
and lmax ¼ 4, where rcut is the cut-off radius for the atomic neighborhood around the
concerned atom, nmax is the number of radial basis functions (spherical Gaussian type
orbitals) and lmax is the maximum degree of spherical harmonics. This resulted in a
SOAP fingerprint vector for each atom, which was averaged using the “inner” averaging
scheme (average over atomic sites before summing up the magnetic quantum numbers)
to obtain a 105-dimensional configuration fingerprint for each phase. To account for
the large variation across the different features of the fingerprint, each feature was
normalized by removing the mean and scaling to unit variance, as obtained from the
data in the training set. T and P values were included as two additional features, overall
resulting in a 107-dimensional input fingerprint to the DNN.

The output layer consisted of a single neuron describing the DNN predicted Gibbs
free energy of a phase at the input T and P values. The DNN was trained using Adam
optimization algorithm104 with the mean absolute error chosen as the loss function
definition. Free energy data corresponding to 273 phases was used to train the model,
while that for 19 and 31 phases was used as the validation and test set, respectively. A
few important phases, such as diamond, graphite and diaphite (S353), were part of the
training set, while others, including n-diamond (S291), stacking-disorder (S132), and 6B
(S389), were part of the test set. Since some phases were found to be dynamically
unstable at different P and T conditions, caution was taken to only include free energy
training data when the phase was stable. The number of training epochs was
determined by monitoring the model performance on the validation set and multiple
dropout layers (with values of 0.1-0.3) were used for regularization purposes. The DNN
code was implemented in Tensorflow105. The overall performance of the DNN model
on the training as well as the test set is presented in Supplementary Fig. 3.

Data availability
All data supporting the findings of this study are available within the Supplementary
Information. Any further related information can be provided by the authors upon
reasonable request.

Code availability
The code used to train DNN model are provided in the GitHub repository: https://
github.com/Srilok/Machine-learning-Metastable-Phase-Diagram. The scripts and
framework to construct the metastable phase diagram are available from the authors
upon reasonable request.
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