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The sleep-wake distribution contributes 
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Abstract In the mouse, Period-2 (Per2) expression in tissues peripheral to the suprachiasmatic 
nuclei (SCN) increases during sleep deprivation and at times of the day when animals are predomi-
nantly awake spontaneously, suggesting that the circadian sleep-wake distribution directly contrib-
utes to the daily rhythms in Per2. We found support for this hypothesis by recording sleep-wake 
state alongside PER2 bioluminescence in freely behaving mice, demonstrating that PER2 biolumines-
cence increases during spontaneous waking and decreases during sleep. The temporary reinstate-
ment of PER2-bioluminescence rhythmicity in behaviorally arrhythmic SCN-lesioned mice submitted 
to daily recurring sleep deprivations substantiates our hypothesis. Mathematical modeling revealed 
that PER2 dynamics can be described by a damped harmonic oscillator driven by two forces: a 
sleep-wake-dependent force and an SCN-independent circadian force. Our work underscores the 
notion that in peripheral tissues the clock gene circuitry integrates sleep-wake information and could 
thereby contribute to behavioral adaptability to respond to homeostatic requirements.

Editor's evaluation
This work contributes interesting data to both the circadian and sleep fields as it presents evidence 
that clock gene expression in peripheral tissues can be regulated in sleep-wake-state- and 
peripheral-circadian-dependent manners. To support this idea, the authors monitor sleep-wake 
state, as well as PER2 expression (utilizing a PER2-luciferase system), in both intact or SCN-lesioned 
freely behaving mice. Analysis of central and peripheral PER2LUC levels, under diverse sleep proto-
cols, and aided by mathematical models allows them to support the idea that in peripheral tissues 
the clock gene circuitry integrates sleep-wake information, potentially contributing to behavioral 
adaptability to homeostatically respond to different challenges.

Introduction
The sleep-wake distribution is coordinated by the interaction of a circadian and a homeostatic process 
(Daan et  al., 1984). The biological substrates underlying the circadian process are relatively well 
understood: circadian rhythms in overt behavior of mammals are generated by the suprachiasmatic 
nuclei (SCN) located in the hypothalamus (Hastings et al., 2018). At the molecular level, so-called 
‘clock genes’ interact through negative transcriptional/translational feedback loops (TTFLs), where the 
CLOCK/NPAS2:ARNTL (BMAL1) heterodimers drive the transcription of their target genes, among 
them the Period (Per1,2) and Cryptochrome (Cry1,2) genes. Subsequently, PER and CRY proteins 
assemble into repressor complexes that inhibit CLOCK/NPAS2:ARNTL-mediated transcription, 
including their own. The resulting reduction of the repressor complex allows a new cycle to start. 
This feedback loop, present in almost each cell of the mammalian body, interacts with other molec-
ular pathways, together ensuring a period of ~24 hr (Hastings et al., 2018). The SCN synchronizes 
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peripheral clock gene expression rhythms through its rhythmic behavioral, electrical, and humoral 
output generated across the day (Schibler et al., 2015).

Accumulating evidence suggests that, perhaps surprisingly, clock genes are also involved in the 
homeostatic aspect of sleep regulation (Franken, 2013). This is illustrated by the sleep deprivation 
(SD)-induced increase in the expression of the clock gene Per2 in tissues peripheral to the SCN, 
including the cerebral cortex, liver, and kidney (Curie et al., 2013; Curie et al., 2015; Franken et al., 
2007; Maret et al., 2007). Moreover, the highest level of peripheral Per2 expression is reached after 
the time of day mice were awake most, suggesting that also during spontaneous periods of waking 
Per2 expression accumulates. Accordingly, lesioning of the SCN, which eliminates the circadian sleep-
wake distribution, attenuates the circadian amplitude of clock gene transcripts and proteins in periph-
eral tissues (Akhtar et al., 2002; Curie et al., 2015; Tahara et al., 2012; Saini et al., 2013; Sinturel 
et al., 2021). Together, these studies suggest that sleeping and waking are important contributors to 
clock gene expression, but dissecting the contribution of the sleep-wake distribution and circadian 
time is challenging because the two change in parallel.

By simultaneously recording electroencephalogram (EEG), electromyogram (EMG), locomotor 
activity (LMA), and PER2-dependent bioluminescence signals from cortex and kidney in freely 
behaving mice, we established that the circadian sleep-wake distribution importantly contributes to 
the daily rhythmic changes in central and peripheral PER2 levels. To further test this hypothesis, we 
predicted that (i) in behaviorally arrhythmic SCN-lesioned (SCNx) mice, daily recurring SDs mimicking 
a circadian sleep-wake distribution will temporarily reinstate high-amplitude PER2 bioluminescence 
rhythms, and (ii) in intact rhythmic animals, reducing the amplitude of the circadian sleep-wake distri-
bution will result in a reduced amplitude of PER2 rhythms. While daily SDs indeed enhanced the 
amplitude of peripheral PER2 rhythms in SCNx mice, the protocol used to reduce the amplitude of 

eLife digest Circadian rhythms are daily cycles in behavior and physiology which repeat approx-
imately every 24 hours. The master regulator of these rhythms is located in a small part of the brain 
called the supra-chiasmatic nucleus. This brain structure regulates the timing of sleep and wakefulness 
and is also thought to control the daily rhythms of cells throughout the body on a molecular level. It 
does this by synchronizing the activity of a set of genes called clock genes.

Under normal conditions, the levels of proteins coded for by clock genes change throughout the 
day following a rhythm that matches sleep-wake patterns. However, keeping animals and humans 
awake at their preferred sleeping times affects the protein levels of clock genes in many tissues of 
the body. This suggests that, in addition to the supra-chiasmatic nucleus, sleep-wake cycles may also 
influence clock-gene rhythms throughout the body.

To test this theory, Hoekstra, Jan et al. measured the levels of PERIOD-2, a protein coded for 
by the clock gene Period-2, while tracking sleep-wake states in mice. They did this by imaging a 
bioluminescent version of the PERIOD-2 protein in the brain and the kidneys, at the same time as 
they recorded the brain activity, movement and muscle response of animals. Results showed that 
PERIOD-2 increased on waking and decreased when mice fell asleep. Additionally, in mice lacking a 
circadian rhythm in sleep-wake behavior – whose changes in PERIOD-2 levels with respect to time 
were greatly reduced – imposing a regular sleep-wake cycle restored normal PERIOD-2 rhythmicity.

Next, Hoekstra, Jan et al. developed a mathematical model to understand how sleep-wake cycles 
together with circadian rhythms affect clock-gene activity in the brain and kidneys. Computer simu-
lations suggested that sleep-wake cycles and circadian factors act as forces of comparable strength 
driving clock-gene dynamics. Both need to act in concert to keep clock-genes rhythmic. The model 
also predicted the large and immediate effects of sleep deprivation on PERIOD-2 levels, giving further 
credence to the idea that waking accelerated clock-gene rhythms while sleeping slowed them down. 
Modelling also suggested that having regular clock-gene rhythms protects against sleep disturbances.

In summary, this work shows how sleep patterns contribute to the daily rhythms in clock genes in 
the brain and body. The findings support the idea that well-timed sleep-wake schedules could help 
people to adjust to new time zones. It might also be useful to inform other strategies to reduce the 
health impacts of shift work.

https://doi.org/10.7554/eLife.69773
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the sleep-wake distribution did not reduce PER2 amplitude in all mice. To reconcile the sleep-wake-
driven and circadian aspects of PER2 dynamics, we implemented a mathematical model in which 
waking represents a force that sets in motion a harmonic oscillator describing PER2 dynamics and 
found that the sleep-wake distribution, also under undisturbed conditions, is an important contributor 
to the daily changes in PER2 bioluminescence. Moreover, we discovered a second, SCN and sleep-
wake independent force with a circadian period that underlay the residual circadian PER2 rhythms in 
SCNx mice, and that the phase relationship between these two forces is important for predicting the 
amplitude response in PER2 rhythms to sleep-wake perturbations.

Results
To quantify PER2 levels, we used mice expressing a knock-in (KI) construct encoding a fused PER2::LU-
CIFERASE (PER2::LUC) protein and in which changes in emitted bioluminescence can be used as proxy 
for changes in PER2 protein levels (Yoo et al., 2004). Per2Luc KI mice have been used to follow clock 
gene expression in vivo (Curie et al., 2015; Ohnishi et al., 2014; Tahara et al., 2012; van der Vinne 
et al., 2018). However, in these studies, mice had to be anesthetized for each measurement, while in 
the set-up used in our study (RT-Biolumicorder; Saini et al., 2013), we assessed PER2 bioluminescence 
continuously in freely moving mice, in central and peripheral tissues. For the central quantification of 
bioluminescence, we used mice in which the PerLuc construct was back-crossed onto a C57BL/6J (B6) 
background (see Materials and methods). For the experiments that quantified bioluminescence in 
the periphery, we used hairless SKH1 mice carrying the Per2Luc KI construct because lack of fur allows 
for the unobstructed measurement of emitted photons (see also Figure 1—figure supplement 1 for 
experimental design and Figure 1—figure supplement 2A for imaging of bioluminescence in SKH1 
mice). Under standard LD12:12 conditions, SKH1 mice exhibited sleep-wake patterns characteristic of 
mice, that is, during the light phase they spent more time in both non-rapid eye movement (NREM) 
sleep and REM sleep relative to the dark phase, the latter being their habitual active phase. Moreover, 
they showed the typical sleep homeostatic response to a 6 hr SD during the first 18 hr of recovery, 
both in sleep time and EEG delta power, although the increase in REM sleep did not reach significance 
levels (Figure 1—figure supplement 3).

In three pilot experiments, we optimized our experimental set-up. We established that the most 
important source contributing to the peripheral bioluminescence signals in the SKH1 mice are the 
kidneys (Figure 1—figure supplement 2A). We have previously shown that the central biolumines-
cence signal obtained in B6 mice is of cortical origin (Curie et al., 2015). To accomplish this, luciferin 
was infused directly into the brain, the skull locally thinned and equipped with a glass cone, and 
animals were not shaved, thereby preventing passage of photons from the periphery (see Materials 
and methods). We confirmed that in B6 mice thus prepared only photons emitted by the brain could 
be detected (Figure 1—figure supplement 2A). Finally, by using mice expressing luciferase under 
the control of synthetic CAG promotor (CAG-Luc mice; Cao et al., 2004), we determined that its 
substrate luciferin is best delivered through implantable osmotic mini-pumps compared to administra-
tion through the drinking water. Under the latter condition, strong daily rhythms in bioluminescence 
were observed, likely as a result of rhythms in drinking behavior, thereby driving luciferin availability 
(Figure 1—figure supplement 2B).

Sleep-wake state affects PER2 bioluminescence
It now has been well documented that enforced wakefulness affects Per2 mRNA and protein levels in 
various tissues and mammalian species (Franken, 2013; Hoekstra et al., 2019; Möller-Levet et al., 
2013; Vassalli and Franken, 2017), but it is not known whether circadian rhythms in spontaneous 
sleep-wake behavior contribute to the daily changes in PER2 levels. To address this question, we 
equipped Per2Luc KI B6 and SKH1 mice (n = 6 and 5, respectively) with wireless EEG/EMG recorders 
(i.e., NeuroLoggers) and monitored simultaneously sleep-wake state, PER2 bioluminescence, and 
LMA under constant darkness (DD; see Figure 1—figure supplement 1). Time asleep in mice kept 
in the RT-Biolumicorder quantified with the NeuroLoggers under DD was similar to that quantified 
under LD conditions using a tethered EEG acquisition system (48 hr baseline in DD vs. LD in C57BL/6J 
mice: NREM sleep: 42.2% ± 1.6%, REM sleep 6.1% ± 0.3% of total recording time; n = 6; compared 
to 41.3 ± 1.1 and 5.2% ± 0.2%, respectively; n = 12, data taken from Diessler et al., 2018). Sleep 

https://doi.org/10.7554/eLife.69773
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and EEG have not been recorded in SKH1 mice previously. Also in these mice, similar sleep durations 
were obtained under the two conditions (48 hr baseline in DD vs. LD: NREM sleep: 40.4% ± 2.1%, 
REM sleep 5.8% ± 0.9%; n = 5; compared to 40.0% ± 1.0% and 6.9% ± 0.2%, respectively; n = 8; see 
Figure 1—figure supplement 3).

Next, we reproduced the circadian changes in PER2 bioluminescence as well as the response to a 
6 hr SD (Figure 1A) as described previously (Curie et al., 2015) in both peripheral bioluminescence, 
mainly of renal origin, and central bioluminescence, emitted by the cortex (see Materials and methods 
for explanation of the SD procedure). Similar to what was observed in that publication, SD elicited a 
tissue-specific response, with an immediate increase in central PER2 bioluminescence after SD, while 
in the periphery the response was delayed and PER2-bioluminescence increases were observed in the 
second and fifth hour of recovery (Figure 1A). In addition to these direct effects on PER2 biolumines-
cence within the first 6 hr of recovery, the SD also caused a long-term reduction of rhythm amplitude 
during both recovery days; that is, the first (REC1) and last (REC2) 24 hr period of recovery. In the 
periphery, this decrease amounted to ca. 30% on both days (REC1: 17.5–41.1%; REC2: 18.7–42.4%, 
95% confidence intervals [95%  CI]). In the central recordings, PER2-bioluminescence amplitude 
decreased significantly during REC1 (32% [10.2–54.5%]), whereas the decrease during REC2 (22% 
[0.06–44.8%]) no longer reached significance levels (linear mixed model with fixed conditional effect 
[‘BSL,’ ‘REC1,’ ‘REC2’] and random intercept effect [‘Mouse’]; periphery: BSL vs. REC1 p=0.0014; vs. 
REC2 p=0.0011; central: BSL vs. REC1 p=0.022; vs. REC2 p=0.082; sinewave-fitted baseline ampli-
tudes: periphery 0.258 [0.15–0.36]; central 0.193 [0.08–0.31 a.u.]). This long-term reduction of PER2-
biolumnescence is reminiscent of the long-term SD effects on rhythm amplitude we observed for Per2 
expression and for other clock genes in the cortex (Hor et al., 2019).

Although a circadian modulation of PER2 bioluminescence of both peripheral and central origin 
is evident (see Figure 1B and Figure 1—figure supplement 4), we observed additional changes in 
bioluminescence that occurred simultaneously with changes in sleep-wake state, indicating that PER2 
bioluminescence increases during wake-dominated periods and decreases during sleep-dominated 
periods in both tissues. To quantify this observation, transitions from sleep (irrespective of sleep state) 
to wake and from wake to sleep were selected (see Materials and methods for selection criteria). 
Examples of the selected transitions are indicated in Figure 1B as a hypnogram. A similar number of 
sleep-to-wake and wake-to-sleep transitions passed selection criteria during the two-and-a-half base-
line days (periphery: 31.2 ± 3.9 and 29.0 ± 3.9; central: 25.6 ± 1.4 and 24.6 ± 1.4, respectively; mean 
± SEM). Transitions obtained in mice in which central bioluminescence was recorded were shorter 
(longest common wake period after sleep-to-wake transitions: 39 vs. 57 min; longest common sleep 
period after wake-to-sleep transitions: 63 vs. 75 min, for central and periphery, respectively). Although 
PER2 bioluminescence increased during wakefulness and decreased during sleep in both tissues, 
tissue-specific differences were observed (Figure 1C). At sleep-to-wake transitions, tissue differences 
concerned an initial decrease in peripheral PER2 bioluminescence after wake onset, followed by a 
steep increase saturating at 125%. In contrast, central levels of PER2 bioluminescence increased from 
the start and followed a linear time course throughout the waking period. Despite these different 
dynamics, similar bioluminescence levels were reached in both tissues. After wake-to-sleep transi-
tions, peripheral PER2 bioluminescence initially increased before quickly decreasing and then leveling 
out at around 84% (Figure 1C). In contrast, the central signal decreased linearly throughout the sleep 
period reaching levels of 91% at the end.

Changes in sleep-wake state are accompanied by physiological alterations, such as changes in 
body and brain temperature (Sela et al., 2020; Vishwakarma et al., 2021), which could influence 
bioluminescence by changing substrate levels and/or the rate of the enzymatic reaction. Although the 
circadian rhythms of subcutaneous temperature and PER2 bioluminescence are ca. 4 hr out of phase 
(Figure 1—figure supplement 6), this does not exclude the possibility that fast changes in physi-
ology associated with sleep-wake transitions contribute to luciferin availability. Therefore, we assessed 
sleep-wake-related changes in mice carrying two other luciferase reporter constructs. Besides the 
CAG-Luc mice we used to decide on the route of luciferin administration (Figure 1—figure supple-
ment 2B), we also had access to Pkg1-Luc mice in which bioluminescence is under the control of 
the promotor of the housekeeping gene Pkg1 (see Materials and methods). As expected from a 
housekeeping gene, bioluminescence in Pkg1-Luc mice was relatively constant and did not increase 
at sleep-wake transitions (Figure 1—figure supplement 5). In contrast, in CAG-Luc mice increases at 

https://doi.org/10.7554/eLife.69773
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Figure 1. The sleep-wake distribution contributes to changes in PER2 bioluminescence. Red, peripheral (kidney) 
bioluminescence; purple, central (cortical) bioluminescence. (A) Left panels: PER2 bioluminescence measured in 
the first 30 min of recovery (REC) after sleep deprivation compared to levels reached at this circadian time during 
baseline (BSL). Sleep deprivation elicited an acute response in central PER2 (lower bar graph; t(4) = 4.4, p=0.012), 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.69773
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transitions were larger than in Per2Luc mice, consistent with the rapidly activated CMV-immediate-early 
enhancer contained within the CAG synthetic promotor (Brightwell et al., 1997; Collaco and Geusz, 
2003). These results show that the bioluminescence changes at sleep-wake transitions are specific 
to the luciferase reporter construct and therefore not an artifact of sleep-wake-related changes in 
physiology.

Taken together, three observations indicate that the sleep-wake distribution importantly contrib-
utes to both central and peripheral PER2-bioluminescence dynamics: (1) enforced wakefulness has 
both acute and long-term effects on PER2 bioluminescence; (2) the changes in PER2 bioluminescence 
at sleep-wake transitions demonstrate that also spontaneous waking is associated with an increase, 
and sleep with a decrease, in PER2 bioluminescence; and (3) that PER2 bioluminescence is high when 
mice are spontaneously awake more.

The central PER bioluminescence signals tended to be noisier than peripheral signals (signal-to-
noise ratio: –1.15 ± 1.0 and 0.37 ± 1.0 dB, respectively; estimated on 3 min values in baseline of the 
6 hr SD experiments according to Leise et al., 2012). Moreover, the peripheral signal was easier to 
obtain and minimally invasive to the animal. We therefore decided for the next experiments to focus 

but not in the periphery (upper bar graph; t(4) = 1.5, p=0.21). Right panels: under baseline conditions (lighter 
graphs, time 0–24 hr repeated three times, average of 48 hr baseline), PER2 bioluminescence showed a circadian 
rhythm both in the periphery (left) and central (right). Sleep deprivation from ZT0 to –6 (times under preceding LD 
conditions) affected PER2 bioluminescence during recovery (two-way rANOVA w/ Condition × Time, periphery: 
F(41, 164) = 2.1, p=0.0007; central: F(41, 164) = 1.8, p=0.004). Asterisks indicate significant differences assessed 
by post-hoc paired t-tests. Bioluminescence is expressed as a fraction of the individual average bioluminescence 
during the experiment and depicted in 1 hr intervals as mean ± SEM for five mice (peripheral and central). (B) A 
sleep-wake state recording (gray area plot represents wakefulness in consecutive 3 min intervals) combined 
with peripheral (red line, upper graph) and central PER2 bioluminescence (purple line, lower graph) in two mice 
during baseline. Note that besides the circadian oscillation in PER2 bioluminescence, there are marked increases 
and decreases in PER2 bioluminescence. The ‘hypnogram’ (lower part of the graph) illustrates that the rapidly 
evoked changes in PER2 bioluminescence are related to periods of sleeping (S) and waking (W). This hypnogram 
is discontinuous as it depicts only the SW transitions selected in this mouse for the analysis in (C). (C) Changes 
in PER2 bioluminescence associated with transitions from sleep to wake (top) and wake to sleep (bottom) of 
peripheral (left, n = 5) and cortical (right, n = 6) origin. Data underlying figures can be found in Figure 1—source 
data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. This file contains the numerical values on which the graphs in Figure 1A–C are based.

Figure supplement 1. Experimental protocol for the three experiments.

Figure supplement 2. Sources of bioluminescence and different luciferin administration routes.

Figure supplement 2—source data 1. This file contains the numerical values on which the graphs in Figure 1—
figure supplement 2B are based.

Figure supplement 3. Sleep phenotyping of SKH1 mice.

Figure supplement 3—source data 1. This file contains the numerical values on which the graphs in Figure 1—
figure supplement 3A–C are based.

Figure supplement 4. PER2 bioluminescence co-detected with EEG-based sleep-wake state in the other mice.

Figure supplement 4—source data 1. This file contains the numerical values on which the nine graphs in 
Figure 1—figure supplement 4 are based.

Figure supplement 5. The effect of activity on bioluminescence in three different bioluminescence reporters.

Figure supplement 5—source data 1. This file contains the numerical values on which the graphs in Figure 1—
figure supplement 5A and B are based.

Figure supplement 6. Subcutaneous temperature is phase advanced relative to PER2 kidney bioluminescence.

Figure supplement 6—source data 1. This file contains the numerical values on which the graphs in Figure 1—
figure supplement 6A and B are based.

Figure supplement 7. Locomotor activity (LMA) as proxy for wakefulness.

Figure supplement 7—source data 1. This file contains the numerical values on which the graphs in Figure 1—
figure supplement 7A and B are based.

Figure 1 continued

https://doi.org/10.7554/eLife.69773
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on peripheral PER2 bioluminescence using the Per2Luc SKH1 mice. Because waking correlates highly 
with LMA (Figure 1—figure supplement 7), we recorded LMA as proxy for wakefulness to avoid 
invasive EEG/EMG surgery and mice having to adapt to a ca. 2.7 g recorder mounted on the head.

Modulating the amplitude of the sleep-wake distribution and its 
influence on PER2 bioluminescence
The SCN is the main driver of the circadian sleep-wake distribution because animals in which the 
SCN is lesioned (SCNx) lack a circadian organization of sleep-wake behavior under constant condi-
tions (Baker et al., 2005; Edgar et al., 1993). Under these conditions, the amplitude of clock gene 
expression in peripheral organs is significantly reduced, but not eliminated (Akhtar et al., 2002; Curie 
et al., 2015; Tahara et al., 2012; Sinturel et al., 2021). Given our results in freely behaving mice, we 
expect that imposing a rhythmic sleep-wake distribution in SCNx mice will reinstate high-amplitude 
rhythmicity in PER2 bioluminescence. Conversely, reducing the amplitude of the circadian sleep-wake 
distribution in SCN-intact mice is expected to reduce the amplitude of PER2 bioluminescence. We 
tested these predictions in two complementary experiments (see experimental design in Figure 1—
figure supplement 1). In the first experiment, we enforced a daily sleep-wake rhythm in arrhythmic 
SCNx mice by sleep depriving them for 4 hr at 24 hr intervals during four subsequent days. In the 
second experiment, we aimed to acutely reduce the circadian distribution of sleeping and waking in 
intact mice according to a ‘2hOnOff’ protocol, comprising 12 2-h SDs each followed by a 2 h sleep 
opportunity ‘window’ (SOW), previously utilized in the rat (Yasenkov and Deboer, 2010).

Repeated sleep deprivations in SCNx mice temporarily reinstate a 
circadian rhythm in PER2 bioluminescence
Lesioning the SCN rendered LMA arrhythmic under DD conditions (Figure 2—figure supplement 1). 
In arrhythmic SCNx mice, we confirmed that rhythms in PER2 bioluminescence were strongly reduced, 
but not completely abolished (Figure 2A–C). During the second baseline measurement after SCNx 
(BSL2 in Figure 2B), we observed in two of the four mice erratic high values (see also Figure 1—figure 
supplement 2) that we cannot readily explain especially because in the subsequent four SD days the 
variance in the PER2 bioluminescence signal among mice was again as small as in the earlier recordings 
(Figure 2A vs. B). The erratic values in these two mice led to a >10-fold increase in the residual sum of 
squares (RSS), indicating a poorer fit, and to a higher amplitude of the fitted sinewaves in the second 
compared to the first baseline recording (Figure 2C, BSL1 vs. BSL2). The repeated SDs induced a 
robust oscillation in the PER2-bioluminescence signal, restoring amplitude to the levels observed prior 
to SCN lesioning and higher than those observed in the baseline recordings (Figure 2C). The latter 
observation shows that the increased amplitude during the SD did not result from an SD-mediated 
alignment of different individual phases in baseline. Importantly, the oscillation continued after the 
end of the SDs while decreasing in amplitude (Figure 2C).

The 2hOnOff protocol reduces the circadian sleep-wake amplitude 
without consistently modulating PER2 dynamics
In the next experiment, we aimed at reducing the amplitude of the circadian sleep-wake distribution 
in intact mice using the 2-day 2hOnOff protocol. We measured sleep-wake state and PER2 biolu-
minescence during baseline conditions, the 2hOnOff procedure, and the two recovery days in two 
cohorts of mice. In the first cohort, PER2 bioluminescence was monitored, and mice were taken out 
of the RT-Biolumicorder for the 2 hr SDs. Bioluminescence was therefore quantified only during the 
SOWs, thus biasing the read-out of PER2 bioluminescence during the 2hOnOff protocol towards 
levels reached during sleep. A second cohort was implanted with tethered EEG/EMG electrodes to 
determine the efficacy of the 2hOnOff protocol in reducing the sleep-wake distribution amplitude.

As expected, mice exhibited a circadian PER2-bioluminescence rhythm under baseline condi-
tions (Figure 3A). Contrary to expectation, the 2hOnOff protocol did not significantly decrease the 
ongoing circadian PER2 oscillation when analyzed at the group level (Figure 3B). When inspecting 
the individual responses, four out of the six mice did show a consistent 27% reduction (range 23–31%) 
in PER2-biolumininescence amplitude during the 2-day 2hOnOff protocol, while in the remaining 
two mice amplitude increased by 40% (Figure 3C). In all six mice, PER2-bioluminescence amplitude 
reverted to baseline values during recovery, irrespective of whether it was increased or decreased 

https://doi.org/10.7554/eLife.69773
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Figure 2. Temporary reinstatement of circadian PER2 oscillations in SCN lesion (SCNx) mice by repeated sleep deprivations (SDs). (A) Time course 
of PER2 bioluminescence across 2.5 days under baseline conditions (left) and after the SCNx (right). Cross-hatched area represents an approximately 
5-week interval separating the two recordings during which the success of SCNx on locomotor activity was verified under DD (Figure 2—figure 
supplement 1). (B) Four 4 h SDs (gray bars) repeated daily at the beginning of the light phase under the preceding LD conditions reinstate rhythmic 
PER2 bioluminescence (n = 4). Abbreviations of experimental conditions: intact, baseline prior to SCNx; BSL1, baseline after DD locomotor activity 
recordings; BSL2, baseline immediately preceding the SDs; SD, 20 hr recordings between the four 4 hr SDs; REC, recovery after the four SDs. Data are 
depicted as mean ± SEM (n = 4). (C) Effect of SCNx and SD on PER2-bioluminescence amplitude estimated by sinewave fitting (linear mixed model with 
fixed conditional effects [‘Intact,’ ‘BSL,’ ‘SD,’ and ‘REC’] and random intercept effect [‘Mouse’] followed by Tukey’s post-hoc tests; intact vs. BSL [BSL1 

Figure 2 continued on next page
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during the 2hOnOff protocol. The distinct bimodal, opposing response in amplitude observed among 
individual mice and the subsequent reverting back to baseline suggest that the 2hOnOff protocol 
did affect the ongoing PER2-bioluminescence rhythm. This phenomenon might relate to factors not 
accounted for in our experimental design. In the modeling section at the end of the Results section, 
we explore this observation further and find that variation in circadian phase could underlie the indi-
vidual differential response (for details, see ‘Modeling PER2 dynamics’).

We used the second cohort of mice to determine the efficacy with which the 2hOnOff protocol 
reduced the circadian sleep-wake distribution. In contrast to bioluminescence, the amplitude of the 
circadian sleep-wake distribution did decrease consistently in all mice (Figure 3D and E). The circa-
dian rhythm in the sleep-wake distribution was, however, not eliminated because the sleep obtained 
during the 2 hr SDs as well as during the 2 hr SOWs both varied as a function of time of day (sleep 
during SDs: average: 12.4%, min-max: 4.9–23.0%; during SOWs: average: 54.3%, min-max: 35.7–
76.4%). This was especially evident at the beginning of the subjective light phase of day 2 when the 
average time spent asleep during the SD reached 23%. The sleep obtained during the SDs at this 
time could be due to a substantial sleep pressure because of lost sleep during day 1 of the 2hOnOff 
protocol (total time spent asleep/day, mean ± SEM; baseline: 11.1 ± 0.1 hr; 2hOnOff: day 1: 7.3 ± 
0.3 hr, day 2: 8.6 ± 0.7 hr, paired two-tailed t-test, BSL vs. 2hOnOff-day 1: t(7) = 8.86, p<0.001; BSL 
vs. 2hOnOff-day 2: t(7) = 4.18, p=0.004; 2hOnOff-day 1 vs. -day 2, t(7) = 1.97, p=0.09), combined 
with the difficulty for the experimenters to visually detect and prevent sleep in pinkish hairless mice 
under dim-red light conditions. During recovery from the 2hOnOff protocol, baseline amplitudes were 
re-established (Figure 3E).

Modeling circadian PER2 dynamics
The results above demonstrate that both circadian and sleep-wake-dependent factors need to be 
considered when studying PER2 dynamics. To understand how these two factors collectively generate 
the variance in PER2 bioluminescence, we put our experimental data into a theoretical framework 
and modeled changes in peripheral PER2 bioluminescence according to a driven harmonic oscillator 
(Curie et al., 2013). This type of oscillator is not self-sustained but depends on rhythmic forces to 
set in motion and maintain the oscillation. In the model, we assume the sleep-wake distribution to 
represent one such force. In the absence of rhythmic forces, the oscillator loses energy, resulting in 
a gradual reduction of its amplitude according to the rate set by its damping constant (γ). Besides 
amplitude and timing (i.e., phase) of the recurring forces and the damping constant, the oscillatory 
system is further defined by a string constant (‍ω

2
0‍) with the natural angular frequency (‍ω0‍) defining 

the intrinsic period. Because waking was not quantified alongside bioluminescence in the SCNx and 
the 2hOnOff experiments, we used LMA as a proxy for the driving force provided by wakefulness 

(‍
→
F WAKE‍). The 6 hr SD experiment showed that LMA and time spent awake are strongly correlated and 

that their hourly dynamics closely changed in parallel (Figure 1—figure supplement 7). Moreover, 

applying the model to this data set (see below) using either wakefulness or LMA as ‍
→
F WAKE‍ yielded 

similar fits (Figure 4—figure supplement 1), demonstrating that LMA is an appropriate proxy for 
wakefulness for the purpose of our model. We performed the analyses at the group level; that is, the 

mean LMA level of all mice was used to reflect ‍
→
F WAKE‍ , and the free parameters in the model were 

and BSL2], p=0.0045; intact vs. REC, p=0.0015; SD vs. BSL: p=0.0013; SD vs. REC: p<0.001; ★p<0.05). See Figure 2—figure supplement 2 for individual 
time courses and amplitude estimates of the separate recovery days. Data underlying figures can be found in Figure 2—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. This file contains the numerical values on which the graphs in Figure 2A–C are based.

Figure supplement 1. Suprachiasmatic nuclei (SCN) lesion eliminates circadian organization of locomotor activity.

Figure supplement 1—source data 1. This file contains the numerical values on which the graphs in Figure 2—figure supplement 1A and B are 
based.

Figure supplement 2. Individual traces of PER2 kidney bioluminescence.

Figure supplement 2—source data 1. This file contains the numerical values on which the graphs in Figure 2—figure supplement 2A–C are based.

Figure 2 continued
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Figure 3. The 2hOnOff protocol reduced the circadian sleep-wake amplitude but did not consistently affect PER2 bioluminescence. (A) An example of 
a PER2-bioluminescence recording under baseline, 2hOnOff, and recovery conditions. Upper graph shows bioluminescence data as collected, whereas 
in the lower graph, the same data are linearly detrended, normalized (relative to the individual overall mean), and averaged over 30 min intervals. A 
sinewave was fit to the data of the two baseline days, the two 2hOnOff days, and the two recovery days separately (see Materials and methods). (B) The 
time course of PER2 bioluminescence under baseline conditions and during the 2hOnOff protocol (n = 6, data depicted as mean ± SEM). Light gray 
squares below the graph mark the 2 hr sleep deprivations (SDs). (C) The amplitude of the PER2-bioluminescence rhythm decreased in four but increased 
in two mice, resulting in an overall lack of an effect of the 2hOnOff protocol (paired t-test, t(5) = 0.74, p=0.50; mean ± SEM; BSL: 0.38 ± 0.03; 2hOnOff: 
0.35 ± 0.03; REC: 0.38 ± 0.01). For all six animals, the amplitude reverted to baseline during recovery. (D) The distribution of waking across the two 
baseline days (dark gray) and during the 2hOnOff protocol (blue) in EEG-implanted SKH1 mice (n = 8, hourly values depicted as mean ± SEM) and a 
sinewave fit through the hourly average for visual comparison of BSL to SD. (E) Individual estimates of the amplitude of circadian changes in wakefulness 
during the 2hOnOff protocol were obtained by fitting a sinewave function to the wakefulness present in consecutive 4 hr intervals (i.e., SD + SOW). This 
amplitude was smaller compared to the amplitude obtained in baseline using the same approach (one-way ANOVA, F(1.8, 12.3) = 21.9, p=0.0001; post-

Figure 3 continued on next page
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optimized by fitting the motion of the oscillator to the mean PER2-bioluminescence levels (see Mate-

rials and methods). Besides ‍
→
F WAKE‍ , we implemented a circadian force to account for the residual 

PER2-bioluminescence rhythm observed in the SCNx mice (Figure 2). We assumed that this additional 

SCN and sleep-wake-independent force reflects a peripheral circadian process (‍
→
F PERI ‍) present in both 

intact and SCNx mice (Sinturel et al., 2021). This force was modeled as a sinewave with amplitude 
and phase as free parameters in both experiments while period was set to the period estimated 
from the baseline PER2-bioluminescence rhythm observed in the SCNx mice (23.7 ± 0.6 hr; n = 4). A 

schematic overview of the influence of ‍
→
F PERI ‍ and ‍

→
F WAKE‍ on PER2 bioluminescence is presented in 

Figure 4A.
We first optimized the parameters of the model describing PER2-bioluminescence dynamics in 

the SCNx experiment (data from Figure  2), and then predicted PER2 bioluminescence under the 

2hOnOff experiment. ‍
→
F PERI ‍ ’s amplitude and phase again required optimization as both differed 

between the two experiments (nonoverlapping 95% CI for both in Table 1). With the parameters listed 
in Table 1, the model captured the dynamic changes in PER2 bioluminescence in the SCNx exper-
iment with high precision including the residual rhythmicity in baseline, the reinstated pronounced 
rhythmicity during the four SDs, and its subsequent dampening thereafter (Figure  4B, black line, 
Table  2). The model also accurately captured average bioluminescence dynamics in the 2hOnOff 
experiment (Figure  4C, black line, Table  2). It furthermore predicted an 18% reduction of PER2-
bioluminescence amplitude during the 2hOnOff protocol compared to baseline (relative amplitudes 
estimated by the model: 0.31 vs. 0.38 [a.u.]; Figure  4C), consistent with our hypotheses and the 
27% reduction in PER2-bioluminescence amplitude observed in the four mice in which amplitude did 
decrease (see Figure 3C). To further test the performance of the model, we predicted the peripheral 
PER2-bioluminescence data obtained in the 6 hr SD experiment using the parameters optimized for 
the 2hOnOff experiment (Figure 1A, Table 1). Also, the results of this experiment could be accurately 
predicted with the model, including the higher PER2-bioluminescence levels reached over the initial 
recovery hours after SD and the subsequent longer-term reduction in amplitude (Figures 1A and 4D, 
Table 2). The model could not reliably predict the central PER2-bioluminescence dynamics mainly due 
to an earlier phase of the central compared to the peripheral signal (Figure 4—figure supplement 
2D). Moreover, the increase in PER2 levels immediately following the SD (Figure 1A) was missed by 
the model, further underscoring the tissue-specific relationship between time-spent-awake and PER2 
requiring the model to be optimized according to the tissue under study.

The model accurately captured peripheral PER2-bioluminescence dynamics under three different 
experimental conditions. The model’s robust performance prompted us to assess in silico whether (1) 
both forces are required to predict PER2-bioluminescence dynamics, (2) lesioning the SCN affects the 
forces exerted on PER2 bioluminescence under undisturbed, DD conditions, and (3) differences in 
the circadian phase could predict the opposing response in PER2-bioluminescence amplitude among 
mice in the 2hOnOff experiment.

To evaluate if ‍
→
F PERI ‍ and ‍

→
F WAKE‍ combined are required to predict PER2 dynamics, we compared 

the performance of the model by dropping these two modeling terms; that is, removing either ‍
→
F PERI ‍ 

or ‍
→
F WAKE‍ . Removing ‍

→
F PERI ‍ from the model did not change the coefficient obtained for ‍

→
F WAKE‍ 

(8.25e-5, which is still within the 95%  CI estimated in the full model; see Table  1). However, this 
simpler model (only four free parameters to estimate compared to six in the full model) could not 
reliably predict the bioluminescence data of the SCNx and 2hOnOff experiments (Figure 4B and C, 
blue lines) and fit statistics indicated a poorer fit (i.e., a higher Bayesian information criterion [BIC] 

hoc paired t-test, BSL vs. 2hOnOff: t(7) = 4.9, p=0.002; 2hOnOff vs. REC: t(7) = 6.3, p=0.0004; mean ± SEM; BSL: 10.4 ± 0.9; 2hOnOff: 6.5 ± 1.1; REC: 
10.4 ± 0.6). However, a circadian modulation was still present under the 2hOnOff protocol (amplitude > 0, one-sample t-test, t(7) = 5.8, p=0.0007). Note 
the overall higher levels of wakefulness during 2hOnOff compared to baseline. Data underlying figures can be found in Figure 3—source data 1. BSL, 
baseline; REC, recovery; SOW, sleep opportunity window.

The online version of this article includes the following source data for figure 3:

Source data 1. This file contains the numerical values on which the graphs in Figure 3A–E are based.

Figure 3 continued
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Figure 4. Mathematical modeling of PER2-bioluminescence dynamics. (A) Schematic view of a driven damped harmonic oscillator. The oscillation 

(black) is assumed to be driven by two forces: ‍
→
F WAKE‍ (blue) and ‍

→
F PERI ‍ (green). In our model, ‍

→
F WAKE‍ is based on locomotor activity (LMA) (here 

simplified as a square wave) and ‍
→
F PERI ‍ on a sinewave. Left panels show the individual effect of each force on the oscillator. Both forces start at t = 

72 hr and end at t = 216 hr, illustrating the waxing and waning of the resulting rhythm amplitude. Right panel shows the resulting changes in PER2 
bioluminescence when combining both forces. Note that combining the two forces increased amplitude and changed the phase of the oscillation. 
In this example, the amplitude of the peripheral circadian force is flat at beginning and end to illustrate that the oscillation is not self-sustained. 

(B) Modeling of the SCNx experiment with the full model (model 3; black line) driving oscillations in PER2 bioluminescence or with either ‍
→
F WAKE‍ (model 

1; blue line) or ‍
→
F PERI ‍ (model 2; green line) as the only driving force. Red symbols, 30 min PER2-biolumininescence averages. Lower graph in blue: 

6 min LMA values. (C) Simulation of the PER2-biolumininescence in the 2hOnOff experiment using parameter estimates listed in Table 1. Details and 
legend as in (B). (D) Simulation of peripheral PER2-biolumininescence in the 6 hr SD experiment using parameter estimates obtained in (C) (see Table 1). 
Legend as in (B). Data underlying figures can be found in Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. This file contains the numerical values on which the graphs in Figure 4B–D are based.

Figure supplement 1. Locomotor activity (LMA) as proxy for wakefulness.

Figure supplement 1—source data 1. This file contains the numerical values on which the graph in Figure 4—figure supplement 1 is based.

Figure supplement 2. Predicting PER2 bioluminescence considering ‍
→
F PERI ‍ ’s phase (A–C) and bioluminescence emitted by cortical regions (D).

Figure 4 continued on next page
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score, see Table 2). For instance, without ‍
→
F PERI ‍ the model is unable to capture the residual PER2 

rhythmicity in the baseline of the SCNx experiment (Figure 4B, ‘model 1’ until 72 hr), and it took 
longer for the PER2 bioluminescence to reach high-amplitude levels compared to the full model 

because of ‍
→
F PERI ‍ being in phase with the timing of the SDs in the full model. With the same strategy, 

we evaluated the model’s performance when dropping ‍
→
F WAKE‍ (Figure 4B and C, green lines). As the 

sleep-wake distribution no longer affects the model, ‍
→
F PERI ‍ dynamics are unperturbed throughout 

the experiment and can therefore be solved as a sinewave in the differential equation. Fit statistics 
for the SCNx experiment were poor compared to the full model as the effects of SDs on PER2 ampli-

tude could not be captured (Figure 4B, Table 2). Removing ‍
→
F WAKE‍ when modeling the 2hOnOff 

experiment resulted in BIC scores similar to those obtained with the full model (Table 2), although the 
amplitude reduction during the 2hOnOff protocol could not be captured (Figure 4C). Also, the PER2-

bioluminescence dynamics in the 6 hr SD experiment were captured best when using both ‍
→
F WAKE‍ 

and ‍
→
F PERI ‍ (Figure 4D, Table 2). Together, these results demonstrate that both forces are required to 

accurately predict PER2 dynamics under the tested experimental conditions.
To answer the second question, we compared the forces driving PER2 bioluminescence in the 

baseline recordings of the 2hOnOff (intact mice) and the SCNx experiments. The model estimated 

that the average absolute force (‍
→
F WAKE‍ , ‍

→
F PERI ‍ , ‍

→
Fγ‍, and ‍

→
Fω2

0‍ combined) exerted on the relative 

PER2-bioluminescense levels was more than twice as high in intact mice compared to SCNx mice 

(2.11e-2 vs. 0.90e-2 h-2). This large difference was not due to a difference in ‍
→
F WAKE‍ , which was some-

what lower in intact mice (2hOnOff vs. SCNx; 2.01e-3 vs. 2.22e-3 h-2). Although ‍
→
F PERI ‍ was higher by 

32% (2.45e-3 vs. 1.85e-3 h-2), this difference did not substantially contribute to the higher amplitude 

of the PER2 rhythm in intact mice. To illustrate this, we substituted the value of ‍
→
F PERI ‍ obtained in the 

2hOnOff baseline with the lower value obtained in the SCNx baseline, which resulted in a 17% ampli-
tude reduction of the PER2 rhythm. The presence of a circadian sleep-wake distribution impacted 

Figure supplement 2—source data 1. This file contains the numerical values on which the graphs in Figure 4—figure supplement 2C and D are 
based.

Figure 4 continued

Table 1. Parameter estimates obtained in the model optimization for the suprachiasmatic nuclei 
lesion (SCNx) and 2hOnOff experiments.
Damping constant, natural angular frequency, and the ‍

→
F WAKE‍ coefficient were optimized in the 

SCNx experiment and then used to predict the results of the 2hOnOff experiment. Amplitude and 
phase of ‍

→
F PERI ‍ were optimized for both experiments separately. The natural angular frequency 

defines the intrinsic period of the harmonic oscillation with 0.288 rad * hr–1 corresponding to a 
period of 21.8 hr and its square, ‍ω

2
0,‍ is referred to as the string constant. Phase of the sine function 

describing ‍
→
F PERI ‍ is expressed as radians and corresponds to maximum values reached at time 11.8 

and 19.4 hr for the SCNx and 2hOnOff experiment, respectively. Values in parenthesis represent the 
95% CI.

Parameters SCNx 2hOnOff

‍γ ‍(damping constant) 0.0155 (0.0103–0.0223) (hr–1)

‍ω0‍(natural angular frequency) 0.288 (0.285–0.291) (rad * hr–1)

‍β‍(coefficient ‍
→
F WAKE‍) 6.81e-5 (4.48e-5–9.01e-5)

Model intercept 0.92 (0.90–0.95) 0.91 (0.89–0.92)

‍A‍(amplitude ‍
→
F PERI ‍) 2.92e-3 (2.58e-3–3.32e-3) 3.87e-3 (3.80e-3–4.00e-3)

‍φ‍(phase ‍
→
F PERI ‍) 4.73 (4.6–4.85) 2.78 (2.78–2.82)

https://doi.org/10.7554/eLife.69773
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PER2 amplitude to a larger extent: running the simulation with the parameters estimated for the 
2hOnOff experiment but with the sleep-wake distribution of the SCNx mice resulted in a 32% reduc-
tion. Therefore, the circadian sleep-wake organization is an important contributor to high-amplitude 
oscillations in PER2. In the 2hOnOff experiment, the larger PER2 momentum resulted in a four times 

higher string and damping forces (2hOnOff vs. SCNx; ‍
→
Fω2

0‍ : 19.9e-3 vs. 4.4e-3 h-2; ‍
→
Fγ‍: 9.74e-4 vs. 

2.52e-4 h-2) that together with the larger ‍
→
F PERI ‍ underlie the larger average absolute force. Moreover, 

this analysis demonstrated that the direct effects of ‍
→
F WAKE‍ and ‍

→
F PERI ‍ on PER2 bioluminescence do 

not depend on an intact SCN and that the magnitude of the two forces is comparable.
Although the model predicted the expected decrease in PER2-bioluminescense rhythm ampli-

tude in the 2hOnOff experiment, this decrease was not observed in the mean bioluminescence 
data. The individual data showed, however, that in four mice this intervention did decrease PER2-
bioluminescence amplitude, while in the remaining two amplitude increased (Figure 3C). With the 
model, we addressed the third question: Do circadian phase differences predict the opposite effects of 

the 2hOnOff intervention on amplitude? Surprisingly, when systematically varying the phase of ‍
→
F PERI ‍ 

during the baseline prior to the 2hOnOff intervention (Figure 4—figure supplement 2C), we found 
that at phase advances larger than 2.5 hr, the model predicted an increase of PER2 amplitude during 
the subsequent 2hOnOff protocol instead of a decrease (illustrated in Figure 4—figure supplement 
2A for a 6 hr phase advance). Circadian phase differences among animals might relate to individual 
differences in period length of their free-running rhythms that accumulate over time. We did not find 
evidence for a difference in PER2 bioluminescence or LMA phase at the end of the baseline recording 
(2.5 days under DD) between animals that showed a decrease in PER2-bioluminescence amplitude 
compared to animals that showed an increase. However, during the first day of recovery following 
the 2hOnOff protocol (5.5 days under DD), we observed a ca. 2 hr phase advance in bioluminescence 

Table 2. Fit statistics for the suprachiasmatic nuclei lesion (SCNx), 2hOnOff, and 6 hr sleep 
deprivation (SD) experiments using a single force (‍

→
F WAKE‍ or ‍

→
F PERI ‍) or two forces combined (‍

→
F WAKE‍ 

and ‍
→
F PERI ‍).

Bayesian information criterion (BIC) for each model (lower is better; a BIC difference between two 
competing models larger than 10 is considered strong support for the model with the lower value). 
Residual sum of squares (RSS) minimized by the model (lower values reflect a better fit). Support 
of the driven harmonic model compared to a flat model using Bayes factor (>100 is considered a 
‘decisive’ support for the driven harmonic model). Values should be compared only within the same 
experiment because variance and sample size differed among the experiments.

BIC RSS

Bayes factor
(model vs. 
flat)

SCNx

‍
→
F ‍=‍

→
F WAKE‍ –287.0 11.94 2.47e32

‍
→
F ‍=‍

→
F PERI ‍ –224.5 13.60 6.48e18

‍
→
F ‍=‍

→
F WAKE +

→
F PERI ‍ –427.5 8.36 7.87e62

2hOnOff

‍
→
F ‍=‍

→
F WAKE‍ –28.5 11.96 1.82e24

‍
→
F ‍=‍

→
F PERI ‍ –536.8 1.29 4.41e86

‍
→
F ‍=‍

→
F WAKE +

→
F PERI ‍ –540.1 1.27 2.27e87

6 hr SD

‍
→
F ‍=‍

→
F WAKE‍ 18.2 92.50 9.15e-17

‍
→
F ‍=‍

→
F PERI ‍ –205.9 4.16 5.80e48

‍
→
F ‍=‍

→
F WAKE +

→
F PERI ‍ –311.9 2.46 6.23e71

https://doi.org/10.7554/eLife.69773
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and 1 hr phase advance in LMA in the two mice that increased their amplitude during the preceding 
2hOnOff protocol (Figure 4—figure supplement 2B, left) compared to the four mice for which we 
observed the anticipated decrease in PER2 amplitude (Figure  4—figure supplement 2B, right). 
Whether these differences in phase contributed to the opposite response cannot be answered with 
the current data set. Nevertheless, the model yielded a perhaps counterintuitive but testable hypoth-
esis by demonstrating that phase angle between the sleep-wake distribution and peripheral circadian 
clock-gene rhythms is an important variable in predicting outcome and emphasizes the importance of 
carefully controlling the initial conditions.

Discussion
In this study, we assessed the contribution of the sleep-wake distribution to circadian peripheral 
PER2 rhythmicity. We presented four key findings, supporting the notion that sleep-wake state is 
indeed an important factor in determining the circadian amplitude of peripheral changes in PER2: 
(1) spontaneous sustained bouts of waking and sleep were associated with increased and decreased 
PER2 bioluminescence, respectively; (2) a single SD acutely increased PER2 bioluminescence and 
during subsequent recovery dampened its circadian amplitude; (3) repeated SDs temporarily rein-
stated robust rhythmicity in PER2 bioluminescence in behaviorally arrhythmic mice; and (4) mathe-
matical modeling suggests that PER2 dynamics is best understood as a harmonic oscillator driven 

by two forces: a sleep-waking-dependent force (‍
→
F WAKE‍) and an SCN-independent and sleep-wake-

independent, circadian peripheral force (‍
→
F PERI ‍).

How does wakefulness increase PER2?
Per2 transcription can be initiated from its cognate E-boxes by CLOCK/NPAS2:ARNTL. This tran-
scriptional activation is at the core of the TTFL and drives the circadian changes in PER2. Enforced 
wakefulness not only affects Per2 levels but also modulates the expression of other components of 
the TTLF (Mang and Franken, 2015; Hor et al., 2019). The SD-evoked increase in Per2 expression 
could therefore be mediated through other clock genes in the circuitry, as was demonstrated by the 
differential SD-evoked response in Per2 levels in mice lacking the core clock genes Npas2 and both 
Cry1 and –2 genes (Franken et al., 2006; Wisor et al., 2002).

Apart from a TTFL-mediated activation, Per2 transcription can be induced by other signaling mole-
cules directly acting on elements within the Per2 promotor (Schibler et  al., 2015). For example, 
ligand-bound glucocorticoid receptors can induce Per2 transcription by binding to their glucocorticoid 
response elements (Cheon et al., 2013; So et al., 2009). Similarly, cAMP response element (CRE)-
binding protein (CREB), heat-shock factor 1 (HSF1), and serum-response factor (SRF) can directly acti-
vate Per2 transcription through CREs, heat-shock elements, and CArG-boxes, respectively, present in 
the Per2 gene (Gerber et al., 2013; Saini et al., 2012; Tamaru et al., 2011; Travnickova-Bendova 
et  al., 2002). Through these pathways, Per2 responds to stress, light, temperature, blood-borne 
systemic cues, and cellular activation as an immediate early gene (IEG). Because of this, Per2 can 
appear rhythmic even in the absence of a functional TTFL, provided these signaling pathways fluc-
tuate cyclically (Kornmann et al., 2007). In behaviorally arrhythmic SCNx animals, the residual PER2 
rhythms we observed might similarly result from SCN-independent corticosterone (Andrews, 1968) 
or body temperature (Satinoff and Prosser, 1988) rhythms, or, alternatively, might be TTFL-driven 
locally (Sinturel et al., 2021).

Important for the current study is that several of the pathways known to directly influence Per2 
expression are activated by either spontaneous and/or enforced waking (e.g., corticosterone 
[Mongrain et al., 2010], temperature [Hoekstra et al., 2019], Hsf1 and Srf [Hor et al., 2019], pCREB 
[Cirelli and Tononi, 2000]) and are therefore good candidates linking sleep-wake state to changes 
in PER2. The observed changes in PER2 bioluminescence were rapid and suggest that increases in 
protein can occur within an hour of spontaneous wakefulness. Other studies document that PER 
genes can indeed be rapidly transcribed and translated. For instance, a light pulse given at CT14 leads 
within an hour to a significant increase in Per2 transcript in the SCN (Yan and Silver, 2002). One study 
reported a large increase in hepatic Per2 transcript levels within 1 hr after food presentation in fasted 
rats (Wu et al., 2010), underscoring the ability of this transcript to rapidly adapt to homeostatic need. 
Per2 translation is not solely dependent on de novo transcription and, for example, in the SCN, light 
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was shown to promote Per2 translation (Cao et al., 2015), suggesting that transcription would not be 
necessary to increase PER2 protein levels. Such mechanism could also underlie the very fast (<30 min) 
1.5-fold increase in PER2 protein observed in fibroblasts after serum shock (Cao et al., 2015).

Finally, as the PER2 protein levels measured are the net result of translation and degradation, 
also sleep-wake-dependent changes in PER2-degradation rate may contribute both to its increase 
during wakefulness and its decrease during sleep. PER2 degradation is crucial in setting TTFL period 
and the timing and stability of the circadian sleep-wake distribution (Chong et al., 2012; D’Ales-
sandro et al., 2017). One established pathway leading to PER2 degradation involves Casein kinase 
1 (Csnk1)-mediated phosphorylation (Eide et  al., 2005) followed by the recruitment of the ubiq-
uitin ligase β-transducin repeat-containing proteins (Btrc) (Masuda et al., 2020; Ohsaki et al., 2008; 
Reischl et al., 2007). Other kinases, such as Salt-inducible kinase 3 (Sik3) (Hayasaka et al., 2017), and 
phosphorylation-independent ubiquitin ligases, such as Transformed mouse 3T3 cell double minute 2 
(Mdm2) (Liu et al., 2018, p. 2), also target PER2 for degradation. Using a modeling approach to esti-
mate the role of Btrc in circadian period length, Reischl et al., 2007 estimated a linear decay rate of 
0.18/hr for PER2 degradation, which is not inconsistent with the approximately 0.10/hr net decay rate 
we observed for the PER2 bioluminescence during sleep. However, the dynamics of PER2 degradation 
have been assessed in a circadian context exclusively, and effects of sleep-wake state have not been 
quantified previously.

The obvious next step is to determine which pathway(s) contributes to the wake-driven changes 
in PER2 protein. We already established that the SD-incurred increase in Per2 in the forebrain partly 
depended on glucocorticoids (Mongrain et al., 2010). Along those lines, restoration of daily gluco-
corticoid rhythms in adrenalectomized rats reinstates PER2 rhythms in several extra-SCN brain areas 
(Segall and Amir, 2010). To determine the contribution of the aforementioned wake-driven factors, 
a genetic screen could be deployed where one-by-one the regulatory elements in the Per2 promoter 
are mutated, and the effect of sleep-wake driven Per2 changes is assessed. This approach has already 
been taken for the GRE and CRE elements in the Per2 promoter to test their respective roles in 
circadian phase resetting and integrating light information (Cheon et  al., 2013; So et  al., 2009; 
Travnickova-Bendova et al., 2002).

Insights from the model
The model accurately captured the main features of peripheral PER2 dynamics observed in all three 
experiments, thereby giving further credence to the notion that sleep-wake state importantly contrib-
utes to the changes in PER2 observed in the periphery. Moreover, it demonstrated that the large 
amplitude of the circadian PER2 rhythm in intact mice is likely the result of the momentum gained 
in the harmonic oscillator through the daily recurring sleep-wake distribution. This is conceptually 
different from a currently accepted scenario, in which direct and indirect outputs from the SCN 
assure phase coherence of locally generated self-sustained circadian rhythms (Schibler et al., 2015). 
According to this model, loss of amplitude observed at the tissue level in SCNx mice is caused by 
phase dispersion of the continuing rhythms in individual cells. Among the SCN outputs thought to 
convey phase coherence are feeding, LMA, and changes in temperature. Because these outputs all 
require or are associated with the animal being awake, it can be argued that in both models the circa-
dian sleep-wake distribution is key in keeping peripheral organs rhythmic.

The harmonic oscillator model further showed that, although important, the sleep-wake force alone 
was not sufficient to predict PER2 dynamics. In addition to account for the residual PER2 rhythms 
observed in undisturbed SCNx mice, the SCN-independent and sleep-wake-independent circadian 

force greatly improved the performance of the model. The synergistic effect of both forces (‍
→
F PERI ‍ and 

‍
→
F WAKE‍) was needed to explain the rapid response to the SDs observed in the SCNx experiment and 
also in maintaining robust circadian rhythms during the SDs in the 2hOnOff experiment as illustrated 
in Figure 4B and C, respectively. Furthermore, this synergistic effect greatly depended on the relative 
phase of the two forces as we could illustrate in silico for the 2hOnOff experiment: a relative subtle 

change in the phase of ‍
→
F PERI ‍ might underlie the increase (instead of the predicted decrease) in PER2 

amplitude in two of the six mice recorded.

Which pathways set the phase of ‍
→
F PERI ‍ and whether it is truly independent of ‍

→
F WAKE‍ , as assumed 

in the model, our current results cannot answer. In an earlier modeling effort using a similar approach 
in SCN-intact, light-dark entrained mice, we also required a second force to correctly predict the 
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phase of the observed rhythm in brain Per2 expression (Curie et al., 2013). In that publication, we 
based the second force on the pattern of corticosterone production sharply peaking at ZT11 just prior 

to the light-dark transition. The phase of ‍
→
F PERI ‍ in the 2hOnOff experiment, which followed a more 

gradual, sinewave function of which values became positive shortly after ZT11 (extrapolated from 

the preceding LD cycle), seems consistent with this. In the SCNx experiment, the phase of ‍
→
F PERI ‍ was 

positioned ~7 hr earlier with a positive driving force starting at the end of each of the SDs. As SD is 

accompanied by an increase in corticosterone (Mongrain et al., 2010), the phase of ‍
→
F PERI ‍ could be 

associated with corticosterone signaling also in the SCNx experiment. Thus in intact mice, the SCN 

output would dictate the phase of corticosterone production in the adrenals (and thus that of ‍
→
F PERI ‍), 

while in SCNx mice the phase of the corticosterone rhythm can be reset by stressors such as SD. As 
PER2 and Per2 levels in the SCN seem insensitive to SD (Curie et al., 2015; Zhang et al., 2016), this 

could explain why the phase of ‍
→
F PERI ‍ is maintained in sleep-deprived SCN-intact mice. Moreover, ex 

vivo experiments demonstrated that the adrenal gland can generate bona fide circadian rhythms in 
corticosterone release independent of the SCN (Andrews, 1968; Engeland et al., 2018; Kofuji et al., 
2016), even though SCNx is generally thought to abolish rhythms in circulating corticosterone levels 
(Moore and Eichler, 1972). While rhythmic corticosterone release represents a plausible candidate 

contributing to ‍
→
F PERI ‍ , especially considering its role in synchronizing peripheral clocks (Balsalobre 

et al., 2000; Cuesta et al., 2015; Dickmeis, 2009; Le Minh et al., 2001), our current results cannot 

rule out other sources underlying or contributing to ‍
→
F PERI ‍ . Above we argued that also wakefulness 

(i.e., ‍
→
F WAKE‍ in the model) could influence peripheral PER2 through corticosterone signaling, further 

complicating the issue. Indeed, adrenalectomy was found to reduce (but not abolish) the SD-induced 
increase in Per2 expression in the forebrain (Mongrain et al., 2010). However, enforced but not spon-
taneous wakefulness is accompanied by increases in corticosterone and the model could predict PER2 
dynamics without having to distinguish between the two types of waking. Therefore, other candidate 

signals among those listed above must be considered to understand the biological basis of ‍
→
F PERI ‍ and 

‍
→
F WAKE‍ .

Model optimization yielded an unexpected short 21.8 hr period for the natural frequency of the 

PER2 oscillator, which, in addition, differed from the 23.7 hr period we set for ‍
→
F PERI ‍ . While in the 

intact mice of the 2hOnOff experiment it is difficult to independently determine ‍
→
F PERI ‍ ’s period, 

we estimated a 23.7 hr period length for the residual PER2 rhythmicity observed during baseline in 

SCNx mice, which we assume is driven by ‍
→
F PERI ‍ . In intact mice kept under constant conditions, SCN 

output drives behavioral sleep-wake rhythms and synchronizes peripheral clock-gene rhythms forcing 
the entire system to oscillate at the intrinsic period of the SCN. Similarly, in behaviorally arrhythmic 
SCNx mice, we assume that the period of the observed residual PER2 rhythm reflects that of the only 

remaining driver, ‍
→
F PERI ‍ , as ‍

→
F WAKE‍ is no longer rhythmic and direct effects of the SCN are absent. 

Ex vivo experiments showed that periods vary among tissues and do not depend on whether tissues 
were obtained from an intact or SCNx mouse (Cederroth et al., 2019; Yoo et al., 2004), pointing to 

tissue-specific TTFLs, which we assume to underlie the intrinsic rhythmicity of both ‍
→
F PERI ‍ and PER2 

bioluminescence in our experiments. The difference in period length of ‍
→
F PERI ‍ and that of the intrinsic 

PER2 oscillator therefore suggests that ‍
→
F PERI ‍ is not of renal origin; that is, the tissue that contributed 

most to the bioluminescence signal we recorded.

Tissue specificity of the relationship between sleep-wake state and 
PER2
Our data demonstrated that both central and peripheral PER2-bioluminescence dynamics are affected 
by sleep-wake state, not only after SD but also after spontaneous periods of wakefulness. Despite this 
general observation, we found clear tissue-specific differences: the 6 hr SD elicited an immediate 
increase in the central PER2 signal, while in the periphery this increase occurred several hours later, 
confirming our earlier findings in brain versus liver and kidney (Curie et  al., 2015). Tissue speci-
ficity was also observed after spontaneous bouts of wakefulness: in the brain, PER2 bioluminescence 
immediately increased after the animal woke up and continued to do so until the end of the waking 
bout, whereas in the kidney the increase in PER2 bioluminescence became apparent only 5–10 min 
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after the transition. Similar differences in PER2 dynamics were observed after falling asleep, albeit in 
opposite direction. Also, the model suggested a tissue specificity as central dynamics of the 6 hr SD 
experiment could not be accurately predicted with the parameters optimized on peripheral PER2-
bioluminescence data. In its current form, the model describes the global effects of external forces 
(the sleep-wake distribution and the SCN-independent circadian force) on the behavior of the oscil-
lator, but not their acute effects. Translated into molecular terms, the model only makes predictions 
on the TTFL aspect of PER2 regulation, not on PER2 as an IEG. Accordingly, the model cannot capture 
the fast changes at the transitions. Similarly, the short-lasting high levels of PER2 observed in the brain 
immediately after the 6 hr SD might reflect an IEG response rather than the state of the TTFL oscil-
lator, which would explain why the model could not predict it. As sleep-wake states are brain states, 
it stands to reason that changes in brain PER2 levels capture more of the acute IEG effects than in the 
periphery. One could test this hypothesis by quantifying the PER2 response after activating a periph-
eral tissue, provided this can be achieved without affecting sleep-wake state as well.

Do changes in bioluminescence reflect changes in PER2 levels?
The method we implemented to quantify PER2 protein levels presents advantages over previous 
methods used. It enabled us to acquire data at a time resolution needed to link changes in PER2 
to sleep-wake state transitions in individual mice. Moreover, because of the within-subject experi-
mental design, there is a substantial reduction in data variability, and, as illustrated with the effects 
of individual phase on PER2 amplitude in the 2hOnOff experiment, we could assess the presence 
of individual differences in the initial conditions that might influence experimental outcome. Finally, 
the number of mice needed for these experiments has been greatly reduced while obtaining better 
quality data.

A limitation of this method is the assumption that changes in bioluminescence reflect changes in 
PER2 protein levels. Using western blot, we previously validated that changes in bioluminescence 
during baseline and after a 6  hr SD indeed reflect changes in PER2 protein (Curie et  al., 2015). 
Nevertheless, substrate availability can importantly contribute to the signal as demonstrated in the 
experiment in which we delivered luciferin in the drinking water. Even the use of osmotic mini-pumps 
does not guarantee constant delivery as its release rate is temperature dependent (Alzet, manu-
facturer’s notes) and bioluminescence’s increase during wakefulness might therefore result from the 
accompanying increase in temperature during this state. Arguments against a possible temperature 
effect on bioluminescence changes come from a study in which, using the same osmotic mini-pumps, 
the expression of two clock genes known to oscillate in anti-phase could be confirmed (Ono et al., 
2015), which would not be possible if temperature was the main determinant of bioluminescence. 
In the current data, the circadian rhythm in wakefulness in the CAG-Luc and Pkg1-Luc mice was not 
accompanied by changes in bioluminescence. Moreover, we observed that the circadian rhythms of 
subcutaneous temperature and PER2 bioluminescence are ca. 4 hr out of phase (Figure 1—figure 
supplement 6), supporting that the large circadian changes in bioluminescence are not driven by 
changes in luciferin availability. Moreover, the lack of an increase in bioluminescence during wake 
bouts in Pkg1-Luc mice demonstrates that changes in rate-limiting availability of luciferin did not 
contribute to the fast sleep-wake-evoked changes in PER2.

Conclusions
In this study, we used a unique combination of methods allowing us to collect high-resolution data of 
sleep-wake state in conjunction with PER2 levels and found that the sleep-wake distribution profoundly 
affects PER2 bioluminescence both short and long term. Such behavior-dependent plasticity of the 
time-keeping machinery in tissues peripheral to the SCN enables the organism to respond to chal-
lenges as time-restricted feeding experiments have demonstrated (Damiola et al., 2000; Saini et al., 
2013). Besides its importance in regulating feeding and energy homeostasis (Bass and Takahashi, 
2010), the clock circuitry also plays a prominent role in sleep homeostasis (Franken, 2013). PER2 
seems perfectly suited as an integrator of sleep-wake state and circadian time because it is sensitive 
to a variety of sleep-wake-driven signals. Our model suggests that having a large amplitude rhythm 
protects from acute disturbances of sleep as observed in the 2hOnOff experiment, while sleep-
depriving arrhythmic SCNx mice had immediate and large effects on PER2. These rapid effects could 
only be achieved through the synergistic effect of a second force that we found to be independent of 
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the SCN and the sleep-wake distribution. The coordination of the sleep-wake force and this second 
force in the model was critical in predicting the effects of sleep-wake interventions on PER2. Research 
on the nature of this second force would therefore be important to facilitate phase resetting and 
normalize disrupted clock gene rhythms under conditions of jet lag and shift work, complementing 
strategies aimed at altering the timing of the central pacemaker.

Materials and methods
Mice and housing conditions
To measure peripheral PER2-bioluminescence levels, we made use of the Per2Luc KI construct (Yoo 
et al., 2004). The KI construct was originally generated on a C57BL/6J-129 mixed background and 
subsequently brought onto a C57BL/6J (B6) background by backcrossing for at least 11 generations. 
These mice were then crossed with outbred SKH1 mice (Crl:SKH1-Hrhr; Charles River) to create hair-
less Per2Luc KI mice. We used male homozygous Per2Luc KI B6 and hairless heterozygous Per2Luc KI 
SKH1-B6 hybrid (here referred to as SKH1 mice) mice. Mice were kept under a 12 hr light/12 hr dark 
cycle with light- and dark onset referred to as Zeitgeber time (ZT)-0 and -12, respectively. Age at time 
of recording varied between 12 and 24 weeks. Food and water was available ad libitum, and after 
surgery mice were singly housed. All experiments were approved by the Ethical Committee of the 
State of Vaud Veterinary Office Switzerland under license VD2743, 3201, and 3402.

Source of bioluminescence and luciferin’s route of administration
Because Per2Luc KI mice express ubiquitously luciferase and the RT-Biolumicorder cannot discriminate 
between different sources of bioluminescence, we assessed which peripheral organ(s) was/were the 
major source of bioluminescence. Two male heterozygous Per2Luc SKH1 mice were implanted with 
an osmotic mini-pump (model 1002; 35 mg/mL luciferin) and 5 days later lightly anesthetized with 
2.5% isoflurane and imaged for 60 s (Xenogen IVIS Lumina II) around ZT6. The main source of dorsal 
bioluminescence overlapped with the expected location of the kidney, whereas ventrally almost no 
bioluminescence was detected (see Figure 1—figure supplement 2A). Most bioluminescence quan-
tified during the experiment is of dorsal origin due to the orientation of the mouse relative to the 
PMT, suggesting that the kidneys are the main source of peripheral bioluminescence in Per2Luc SKH1 
mice. To confirm our previous report that the main source of central bioluminescence was the brain 
(Curie et al., 2015), we imaged one male B6 PER2::LUC mouse at ZT3 again using the IVIS system 
(Figure 1—figure supplement 2). When luciferin is infused centrally and the skull is thinned and a 
glass cone mounted, all emitted bioluminescence originates from the head of the mouse, with no 
detectable signal from the periphery. For details on the surgery see ‘Surgical procedures and exper-
imental design.’.

In a second pilot experiment, we investigated the optimal route of luciferin administration. Although 
luciferin administration via drinking water has been used before to measure bioluminescence (Saini 
et al., 2013, Iwano et al., 2018, Hall et al., 2018, Sinturel et al., 2021), we were concerned that 
this route could limit luciferin availability in a circadian fashion because drinking behavior has a strong 
circadian rhythm (Bainier et al., 2017). To address these concerns, we made use of mice expressing 
constitutively luciferase under control of the synthetic CAG promotor (Cao et  al., 2004, Jackson 
catalog number 008450), thus allowing for testing of circadian fluctuating levels of luciferin. Mice 
received luciferin via the drinking water or via an osmotic mini-pump and served as their own control. 
Four male CAG-Luc mice were housed for two subsequent experiments in constant darkness in the 
RT-Biolumicorder. During the first experiment, 0.5 mg/mL luciferin was dissolved in the drinking water. 
At the end of this experiment, mice received subcutaneously an osmotic mini-pump (Alzet, model 
1002) under light anesthesia (isoflurane; 2–4% mixed with O2) containing 70 mg/mL of luciferin and 
could recover for 2 days before bioluminescence and activity was monitored for the second experi-
ment in the RT-Biolumicorder.

Surgical procedures and experimental design
Experimental design of the three main experiments is depicted in Figure 1—figure supplement 1 
with the upper panel (Experiment 1) illustrating the central and peripheral recordings of PER2 biolu-
minescence alongside EEG/EMG and LMA before, during, and after a 6 hr SD, and the middle and 
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bottom panels (Experiment 2 and 3) the SCNx and the 2hOnOff experiments, respectively. In the 
latter two experiments, peripheral PER2 bioluminescence and LMA were recorded.

Sleep-wake state determination in parallel with PER2 bioluminescence
Mice were implanted with EEG and EMG electrodes under deep ketamine/xylazine anesthesia. Three 
gold-plated screws (frontal, parietal, and cerebellar) were screwed into the skull over the right cere-
bral hemisphere, where the cerebellar screw served as a reference for the other two electrodes. Two 
additional screws were used as anchor screws. For the EMG, a gold wire was inserted into the neck 
musculature along the back of the skull. For brain delivery of D-luciferin, a cannula (Brain Infusion Kit1, 
Alzet) was introduced stereotaxically into the right lateral ventricle (1 mm lateral, 0.3 mm posterior 
to bregma, and 2.2 mm deep) under deep anesthesia (ketamine/xylazine; intraperitoneally, 75 and 
10 mg/kg, respectively), and connected to the mini-pump. A depression (diameter 2 mm) was made in 
(but not through) the skull in a region of the left frontal cortex (approximate coordinates 2 mm lateral 
to midline, 2 mm anterior to bregma), in which a glass cylinder (length 4.0 mm; diameter 2.0 mm) 
was positioned and fixed with dental cement. The EMG and three EEG electrodes were subsequently 
soldered to a connector and cemented to the skull. The cerebellar screw served as a reference for 
the parietal and frontal screw and the EMG. After the first recovery day, mice were habituated to 
the weight of the wireless EEG recording system by attaching a dummy of same size and weight 
to their connector. Two days before habituation to the RT-Biolumicorder, mice were implanted with 
the osmotic mini-pump (model 1002, Alzet; luciferin 35 mg/mL) under light anesthesia. 8–10 days 
post-surgery, mice were placed in the RT-Biolumicorder at the end of the light phase (~ZT10-ZT12) 
for 2 days in LD to habituate to the novel environment. At the end of the second habituation day, 
the dummy was replaced with a wireless EEG (NeuroLogger, TSE Systems GmbH). After two-and-
a-half days of baseline recording in constant darkness, mice were sleep deprived for 6 hr at a time 
they were expected to rest (ZT0 under LD conditions) by gentle handling as described (Mang and 
Franken, 2012). In short, mice are left undisturbed as long as they do not show signs of sleep. Sleep 
is prevented by introducing and removing paper tissue, changing the litter, bringing a pipet in the 
animal’s proximity, or gentle tapping of the cage. As opposed to what the term might suggest, mice 
are not handled. After SD, mice were placed back into the RT-Biolumicorder for the subsequent two 
recovery days.

SCNx experiment
Four SKH1 mice were recorded over the course of the experiment and served as their own control. 
Briefly, their PER2-bioluminescence rhythm was monitored before SCNx (once), under undisturbed 
conditions post-SCNx (twice), and after the second measure under SCNx conditions, the mice were 
subjected to the repeated 4 hr SDs.

Bilateral lesion of the two SCNs was performed stereotaxically (Kopf Instruments, 963LS, Miami 
Lakes, FL) under ketamine/xylazine anesthesia (intraperitoneal injection, 75 and 10 mg/kg, at a volume 
of 8 mL/kg). Two electrodes (0.3 mm in diameter) were introduced bilaterally at the following coordi-
nates (position of the frontal electrode: anteroposterior using bregma as reference: ± 0.2 mm lateral, 
+ 0.5 mm bregma, depth: –5.9 mm; the second electrode was positioned 0.7 mm posterior to the 
frontal one). Electrolytic lesions (1 mA, 5 s) were made using a direct current (DC) lesion device (3500, 
Ugo Basile, Comerio, Italy). After lesion, mice were housed in constant dark (DD) conditions for at 
least 10 days to verify absence of circadian organization of overt behavior. Activity was quantified 
using passive infrared sensors (Visonic SPY 4/RTEA, Riverside, CA). ClockLab software (Actimetrics, 
Wilmette, IL) was used for data acquisition and analyses.

Surgeries for tethered EEG/EMG recordings
SKH1 mice (n = 8) were implanted with EEG and EMG electrodes as described previously (Mang and 
Franken, 2012) to determine sleep-wake state. The surgery took place under deep xylazine/ketamine 
anesthesia. Briefly, six gold-plated screws (diameter 1.1 mm) were screwed bilaterally into the skull 
over the frontal and parietal cortices. Two screws served as EEG electrodes, and the remaining four 
screws anchored the electrode connector assembly. As EMG electrodes, two gold wires were inserted 
into the neck musculature. The EEG and EMG electrodes were soldered to a connector and cemented 
to the skull. Mice recovered from surgery during several days before they were connected to the 
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recording cables in their home cage for habituation to the cable and their environment, which was at 
least 6 days prior to the experiment. The habituation to the room and the recovery from the 2-day SD 
procedure took place under LD 12:12 conditions.

During the baseline recording and SD days, red light at very low intensity was present to allow 
the experimenters to observe the mice. Mice were sleep deprived for 2 hr according to the ‘gentle 
handling’ method.

Mice for bioluminescence data collection
SKH1 mice (n = 6) were implanted with an osmotic mini-pump (Alzet, 1002, luciferin concentration: 
35 mg/mL; blue flow moderator) 2 days before the habituation. At the end of the light phase (~ZT10-
ZT12), mice were moved from their cage to the RT-Biolumicorder for 2–3 days of habituation in LD. 
They were housed for 2.5 days in DD, after which the 2hOnOff protocol was initiated at light onset 
(ZT0) under the preceding LD conditions. At the start of each SD, mice were moved from the RT-Biolu-
micorder and placed into a novel cage that was in the same room as the EEG-implanted mice. Fifteen 
minutes before the end of each SD, mice were brought back to their RT-Biolumicorder cage.

Bioluminescence recordings in Pkg1-Luc mice
The adenoviral vector used in the experiment was constructed by cloning the cassette flanked by 
PacI sites from vector prLV1 (Du et  al., 2014) into vector pCV100, an E1/E3-deleted replication-
incompetent first-generation adenovirus vector based on human adenovirus serotype 5 (a variant of 
pGS66 [Schiedner et al., 2000] with an additional deletion of Ad5 nt 28133–30818). In this construct, 
firefly luciferase is expressed from a bidirectionally active, minimal Pgk1 promoter (note: the other 
side of the promoter carries Renilla luciferase cDNA, which was not used/measured in the framework 
of this study). See Supplementary file 1 for the construct sequence. Liver cells were transduced with 
the pCV100 vector (2.1e10 to 4.5e11 adenoviral particles) via tail vein injection using an illuminated 
restrainer according to Saini et al., 2013 and Sinturel et al., 2021. Male C57BL/6J mice kept under 
LD 12:12 were injected 2–5 days prior to pump implantation, and pump was implanted 3 days prior 
to commencing experiment in DD in the RT-Biolumicorder. To allow passage of photons emitted from 
liver, mid-section of mice’ backs was shaved.

Data collection of sleep-wake state
Simultaneous recording of sleep-wake state and PER2 bioluminescence
Batteries (hearing aid; Ansmann, 312 PR41, 1.45 V 180 mAh) were inserted into the NeuroLogger. This 
insertion was timed with the clock of the computer that controlled the RT-Biolumicorder to post hoc 
align the EEG/EMG signals with the bioluminescence signal. In addition, time stamps provided by the 
SyncBox (NeuroLogger, TSE) were used to verify the start and end time of the EEG/EMG recording. 
The cerebellar electrode was used as a reference for both EMG and EEG. Data were sampled at 
256 Hz. The frontal signal was subtracted from the parietal signal (EDF Browser) to support sleep-
wake state determination by enhancing the identification of slow waves and theta waves within the 
same trace. The data were subsequently loaded in Somnologica (Somnologica 3, MedCare) to deter-
mine offline the mouse’s behavior as wakefulness, REM sleep, or NREM sleep per 4 s epochs based 
on the EEG and EMG signals. Wakefulness was characterized by EEG activity of mixed frequency and 
low amplitude, and present but variable muscle tone. NREM sleep (NREM) was defined by synchro-
nous activity in the delta frequency (1–4 Hz) and low and stable muscle tone. REM sleep (REM) was 
characterized by regular theta oscillations (6–9 Hz) and EMG muscle atonia.

2hOnOff experiment
EEG and EMG signals were recorded continuously for 96 hr. The recording started at the beginning 
of the subjective rest phase, ZT0 of the preceding LD cycle. The analog EEG and EMG signals were 
amplified (2000×) and digitized at 2 kHz and subsequently down-sampled to 200 Hz and stored. Like 
the EEG and EMG traces obtained with the NeuroLogger, the data were imported in Somnologica 
and sleep-wake state was determined per 4  s epochs. LMA was monitored with passive infrared 
activity (Actimetrics) and recorded with ClockLab (Actimetrics).
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Data analysis
Route of luciferin administration
Circadian time was determined to inspect the circadian changes in bioluminescence relative to LMA. 
To this end, the period length per mouse was determined based on activity measurements (1 min 
resolution) by chi-square analysis in ClockLab. Subsequently, the activity and bioluminescence data 
were folded according to the period. The activity data were binned per 10 min, and activity onset was 
visually determined for each mouse and set at CT12. The aligned activity and bioluminescence data 
were subsequently averaged per circadian hour across mice.

Spontaneous sleep-wake state and bioluminescence
Bioluminescence and activity were sampled at a resolution of 4 s, which is the same resolution of the 
epochs for sleep-wake state determination. Data processing was subsequently performed in MATLAB 
2017b (The MathWorks, Inc, Natick, MA) and R (version 4.0.0). Linear trends were removed from 
the signal by the build-in function detrend in MATLAB and R (pracma package). Subsequently, the 
bioluminescence signal was expressed relative to the overall mean per mouse to account for inter-
individual differences. Changes in PER2 would be expected to occur at a slower rate than 4 s. There-
fore, sleep-wake and bioluminescence data are averaged per blocks of 3 min.

For the sleep-wake transition analysis, 3 min intervals in which the mouse was awake for more than 
50% (i.e., 23 or more 4 s epochs) were deemed awake, otherwise as asleep. Based on this new 3 min 
sleep-wake sequence, clear sleep-to-wake and wake-to-sleep transitions were selected according to 
the following criteria: at least 9 min (three 3 min intervals) of the initial state had to be followed by at 
least 15 min (five 3 min intervals) of the other state. Transitions were followed both forward and back-
ward in time as long as state did not change. Bioluminescence for all 3 min intervals of a transition was 
expressed as a percentage of the level reached at the transition; that is, the average between the level 
reached in the last 3 min prior to the transition and the first 3 min after the transition. Transitions were 
aligned according to time of the state transition (time 0) and then averaged first within and then across 
mice. Average time courses were reported for the longest time spent in state after the transition to 
which all mice contributed.

2hOnOff experiment
Bioluminescence data obtained 5 min before and 10 min after the SDs were excluded from analysis. 
Subsequent data normalization of the bioluminescence data was as above. To determine the influence 
of the 2hOnOff protocol on the strength of the ongoing circadian oscillation of the circadian distribu-
tion of sleep and wake, as well as on PER2 bioluminescence, an estimation of amplitude by sinewave 

fitting was done (MATLAB, 
‍
fit = Y0 + a ∗ sin

(
2∗pi

b ∗ t + c
)
‍
).

Modeling PER2 bioluminescence with a damped harmonic oscillator
The temporal dynamic of PER2 bioluminescence was modeled according to the equation of motion 
describing a driven damped harmonic oscillator:

	﻿‍
d2x
dt2 + γ dx

dt + ω2
0x = F‍�

where x is the displacement of the oscillator, γ is the damping constant of the model, and ‍ω
2
0‍ is 

the string constant defining the natural frequency of the model. The driving forces used in this model 

are the LMA representing waking ‍
→
F WAKE‍ , and a circadian force ‍

→
F PERI ‍ , represented as a sinewave. 

The momentary force exerted on the oscillator is represented as the sum of these two forces (see 
Figure 4A):

	﻿‍ F
(
t
)

= βLMAt + Asin
(
ωt + φ

)
‍�

where ‍β‍, ‍A‍, and ‍φ‍ are respectively the coefficient applied on LMA amount, the amplitude of the 
circadian sinewave force, and the phase of the circadian sinewave force. These coefficients were the 
free parameters to be optimized in the model. ‍ω‍ is the angular velocity of the sinewave and was set 
to 2*pi/23.7, based on the residual PER2-bioluminescence rhythm present in the baseline of SCNx 
mice. To solve this equation and optimize for parameters that best describe the observed PER2 

https://doi.org/10.7554/eLife.69773
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bioluminescence, we proceeded as follows: the relative bioluminescence data from both experiments 
were averaged across mice using 30 min bins. LMA was averaged across mice using 6 min bins. LMA 
could not be measured directly during SDs and was estimated by assessing the increase in LMA during 
SDs measured in EEG-implanted mice, which was found to be 2.4 times higher compared to average 
baseline levels. Thus, the SD effect was estimated using 2.4 times the mean activity observed during 
baseline (i.e., 181.9 and 180.2 for the SCNx and 2hOnOff, respectively).

To solve the second-order ordinary differential equation (ODE) of the driven harmonic oscillator, 
we transformed it into the following system of two first-order ODEs describing the change of position 
and speed of our oscillator:

	﻿‍

x
′

1 = x2

x
′

2 = F − γx2 − ω2
0x1‍�

We then used the fourth-order Runge–Kutta (RK4) numerical method to approximate the solution 
using a fixed time step of 0.1 hr. In the SCNx experiment, initial values of speed (‍x2

(
0
)
‍) and position 

(‍x1
(
0
)
‍) were set to 0. For the 2hOnOff experiment, the model was generated for 20 days prior exper-

iment to reach a steady state using replication of LMA observed in baseline (T0–T24). The position 
and speed of the oscillator at the end of the 20 days were taken as initial values for the fitting. We 
optimized the model for the following parameters: intercept (equilibrium position of the oscillator), 
natural frequency, damping constant, and coefficient for the force exerted by LMA, amplitude of 
circadian force and phase of circadian force. We optimized the fitting by minimizing the RSS between 
predicted position of our model and the observed PER2-bioluminescence level. The box-constrained 
PORT routines method (nlminb) implemented in the optimx/R package (Nash and Varadhan, 2011) 
was used to minimize the RSS.

The goodness of fit of the model was assessed as follows. We assumed that the model errors follow 
a normal distribution and computed a BIC value for the model according to

	﻿‍
BIC = n ln

(
RSS

n

)
+ k ln

(
n
)
‍�

where n is the number of observations, and k is the number of optimized parameters +1 of the 
model. We approximated the Bayes factor (BF) between our model and a flat model (linear model with 
intercept only) as follows:

	﻿‍
BF ≈ exp

(
− 1

2
(
BICflat − BICmodel

))
‍�

To compute confidence interval of our model parameters, we used 500 Monte Carlo simulations 
and calculated a confidence interval for our parameters based on 95% empirical quantiles (95% CI). 
The method was adapted from the code of Marc Lavielle (Inria Saclay [Xpop] and Ecole Polytechnique 
[CMAP], Université Paris-Saclay, France) for nonlinear models, available here: http://sia.webpopix.org/​
nonlinearRegression.html.

Statistics
Statistics were performed in R (version 4.0.0), SAS (version 9.4), and Prism (version 7.0), with the 
threshold of significance set at α = 0.05. Performed statistical tests are mentioned in the text and 
figure legends.
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