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Exercise fatigue is a common physiological phenomenon in human activities. The
occurrence of exercise fatigue can reduce human power output and exercise
performance, and increased the risk of sports injuries. As physiological signals that are
closely related to human activities, surface electromyography (sEMG) signals have been
widely used in exercise fatigue assessment. Great advances have been made in the
measurement and interpretation of electromyographic signals recorded on surfaces. It
is a practical way to assess exercise fatigue with the use of electromyographic features.
With the development of machine learning, the application of sEMG signals in human
evaluation has been developed. In this article, we focused on sEMG signal processing,
feature extraction, and classification in exercise fatigue. sEMG based multisource
information fusion for exercise fatigue was also introduced. Finally, the development
trend of exercise fatigue detection is prospected.
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INTRODUCTION

Exercise fatigue is a physiological phenomenon that originates from human activities and results
in decreased physical performance (Nijs et al., 2011). The main manifestation of exercise fatigue
is muscle fatigue which was defined as the “failure to maintain the force output, leading to a
reduced performance” (Asmussen, 1993). Muscle strength declines progressively during exercise,
so fatigue occurs before the task failure (Gandevia, 2001). There are many examples of application
fields involving muscle fatigue, including sports (Simsek, 2017; Kuniszyk-Jozkowiak et al., 2018; Liu
et al., 2019; Hedayatpour et al., 2021; Liu and Li, 2021; Rodriguez-Rosell et al., 2021), rehabilitation
(Gaudet et al., 2018; Kim et al., 2018; Meng et al., 2019; Na et al., 2020; Fundaro et al., 2021;
Sato et al., 2021), and occupation (Alberto et al., 2018; Fang et al., 2021; Ji and Huang, 2021; Yu
et al., 2021; Gonzalez-Zamora et al., 2022). Physiological signals, biochemical assessments, and
questionnaires are used to monitor exercise fatigue (Halson and Shona, 2014). Questionnaires are
subjective. Invasive biochemical tests cause discomfort to the subjects. Noninvasive physiological
testing with scientific and statistical approaches can provide confidence and certainty.

Muscle fatigue is divided into central and peripheral components. Peripheral fatigue is caused
by changes in the neuromuscular junction. Central fatigue originates in the central nervous system
(CNS). The production of skeletal muscle force depends on contractile mechanisms, and failure of
nervous, ion, vascular, and energy systems can contribute to the development of muscle fatigue
(Wan et al., 2017). During sustained contractions, metabolic changes in the muscle affect the
propagation of action potential. These changes result in a progressive reduction of muscle fiber
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conduction velocity (CV). This is one of the main causes of the
changes in amplitude and spectral EMG variables during fatigue.
This physiological variable provides a relevant means to describe
and quantify the muscle fatigue (Marco et al., 2017).

Exercise fatigue can be detected through surface
electromyography (sEMG) (Chang et al., 2012). Constant
exercise load results in the rise of EMG activity during
fatigue (Chlif et al., 2018). Electrical currents generated by
muscle contractions can be monitored in the form of EMG
signals and displayed on a computer (Barszap et al., 2016).
Bioelectricity is detectable when muscle contracts (Tang et al.,
2020). Electromyographic techniques are used in sports and
rehabilitation accepted by researchers (Cortez et al., 2017; Pakosz
and Konieczny, 2020; Quittmann et al., 2020). EMG can be
recorded by needles inserted into the muscle (Kwon et al., 2018)
or electrodes placed over the skin surface (Zeng et al., 2021).
Compared with invasive EMG, sEMG is more popular among
researchers (Khan et al., 2019; Yamagishi et al., 2019; Silva et al.,
2020).

This review offers an overall summary of the assessment of
human exercise fatigue based on sEMG signals and highlights
signal processing, feature extraction, and classification. The
possibilities for future work on exercise fatigue with sEMG will
also be discussed in this study.

ACQUISITION OF SURFACE
ELECTROMYOGRAPHY AND
PREPROCESSING

The sEMG is a biological electric signal generated by muscle
contraction that can be harvested by electrodes. The sEMG
signals are the most intuitive physiological signals of muscle
activity and the best means to detect muscle fatigue. The sEMG
signal is a kind of pseudorandom physiological signal that is
very weak. The voltage of the sEMG signal range from 50 µV
to 100 mV and the frequency is varied from 10 to 500 Hz
(Pancholi and Joshi, 2018). The electrode skin impedance which
is one of the noises that affects the quality of EMG signals must
be as low as possible to obtain effective signals (Sae-Lim et al.,
2019). Pancholi and Joshi (2018) obtained sEMG signals from
five different arm muscles using hardware based on ADS1298
IC (Texas Instruments) and ARM cortex M4 series processor
with 4,000 Hz sampling frequency. De la Pena et al. (2019)
recorded sEMG-related muscle fatigue in sports training using
a portable prototype with a 5,000 Hz sampling rate. Zhao et al.
(2020) acquired sEMG data based on a software platform for
visualizing sEMG information on muscle fatigue during upper
limb rehabilitation training. In Makaram et al. (2021), Biopac
MP 36 (Biopac Systems Inc. CA, United States) was used to
acquire brachii muscle of 52 healthy participants’ sEMG during
dynamic contractions at an acquisition rate of 10,000 Hz. Wang
L. et al. (2021) used wearable sampling electrodes that the
sampling frequency is 200 Hz to collect sEMG signals in real-
time during the driving tasks. Chen et al. (2021b) used the MP160
physiological record analysis system produced by the American
company BIOPAC to analyze the fatigue of miners.

Exact electrode positioning is vital for obtaining reliable EMG
signals. A study showed high correlations between all electrode
sites and clavicular movements. The traditional electrode site
record more informative signals in subjects (Zanca et al., 2014).
All trunk muscles were affected by electrode position changes, but
the abdominal muscles were more affected than the back muscles
(Huebner et al., 2015). Ghapanchizadeh et al. (2016) found that
the optimal signal from the flexor carpi radialis muscles was
presented at 90% and for the extensor carpi radialis muscles was
shown at 90% of the electrode position over the forearm length.
The muscle moves away from its uncontracted position directly
under the EMG electrode when contracts. Elsais et al. (2020) used
ultrasound to track the relative motion between skin and muscle
to quantify the magnitude of the movement between them and
inform protocols for surface EMG placement.

The raw sEMG data collected will inevitably be mixed
with power line interference and motion artifacts (Zheng and
Hu, 2019). Therefore, effective preprocessing is required before
feature extraction of these signals (Ahmadizadeh et al., 2021).
Common methods of sEMG preprocessing include filtering
(Zhao et al., 2020), normalization, and windowing (Fang et al.,
2020). Tapia et al. (2017) used independent component analysis
(ICA) and empirical mode decomposition (EMD) to process
sEMG signals. (Wu et al., 2017) achieved better accuracy for
the diagnosis of muscular fatigue through ensemble empirical
mode decomposition (EEMD) by Hilbert transform (HT). Zhang
et al. (2019) decomposed sEMG signals by principal component
analysis (PCA) into principal components and weight vectors
that improve the validity of parameters. In Avian et al. (2022),
Discrete Wavelet Transform (DWT) is used to process the sEMG
signal to increase model performance.

The increase from baseline represents the onset of muscle
activity. Muscle activity onset can be estimated from EMG
and ultrasound (Dieterich et al., 2017). Gupta et al. (2014)
determined the onset of medial gastrocnemius muscle activity
using visual and automated methods during a stretch-shorten-
cycle muscle action. Zhang and Zhou (2012) proposed a novel
method of muscle activity onset detection based primarily on
the sample entropy (SampEn) analysis of the surface EMG. Liu
et al. (2015) presented an unsupervised EMG learning framework
based on a sequential Gaussian mixture model (GMM) to detect
muscle activity onsets. Appropriate signal preprocessing method
is helpful to improve the effectiveness of feature extraction.

FEATURE EXTRACTION

Feature extraction from the sEMG signal plays an important role
in the accuracy of fatigue detection. Time domain, frequency
domain, time-frequency domain, and nonlinear parameters are
four major types in sEMG-based signal processing (Too et al.,
2018b; Yousif et al., 2019; Bukhari et al., 2020).

TIME-DOMAIN FEATURE ANALYSIS

The calculation of time-domain features is the most popular
approach for sEMG feature extraction that is directly calculated
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with time as the independent variable. In the time domain,
the sEMG signal is usually regarded as a random signal whose
mean value is zero and variance varies with signal intensity. As
the calculation of time-domain features is simple and intuitive,
it is a widely used feature extraction method of sEMG signal
in human movement (Harmon et al., 2021). The typical time-
domain features of sEMG signals mainly include the root
mean square (RMS) (Cui et al., 2021), integrated EMG (iEMG)
(Alam et al., 2020), zero-crossing rate (ZCR) (Kim et al.,
2018), waveform length (WL), variance of electromyography
(VAR) (Whittaker et al., 2019), and mean absolute value (MAV)
(Chapman et al., 2019).

With the occurrence of muscle fatigue, the time domain
features of sEMG generally show an upward trend over time
(Goubault et al., 2022). RMS and iEMG not only reflect the
amplitude changes of the sEMG signal in the time domain
but also clearly reflect the biomechanical properties and muscle
energy changes in the exercise process (Silvetti et al., 2017;
Wu et al., 2017). Therefore, RMS and iEMG are often used to
indicate muscle activation intensity and human motion state
(Triwiyanto et al., 2018).

FREQUENCY-DOMAIN FEATURE
ANALYSIS

The frequency-domain features are spectrum or power spectrum
(PS) features that are obtained by fast Fourier transform (FFT) to
the original sEMG signals, thus the frequency band distribution
of the signals can be observed directly (Chandra et al., 2020).
Researchers believe that frequency domain analysis is more
meaningful than time domain analysis in both static and dynamic
motion. To quantitatively describe the spectrum and PS features
of sEMG signals, the mean frequency (MF) (Hou et al., 2021) and
median frequency (MDF) (Park and Park, 2021) are generally
used that decrease linearly over time. The deeper the muscle
fatigue, the faster the MF decreases. Both MF and MDF can
represent the frequency of measured muscle CV, but in practical
application, MDF is more sensitive than MF in reflecting muscle
activity and functional state. MF can also get good results in
muscle fatigue detection (Chai et al., 2019). Significant changes
in the PS indicate muscle fatigue, and the PS drifts from high
frequency to low frequency. For example, after maximum weight
training, the peak value of the sEMG signal will increase and
drift to the lower frequency band. During extreme contraction,
there is a decrease in muscle fiber action potential and possible
emission frequency.

TIME-FREQUENCY DISTRIBUTIONS

To make up for the deficiency of Fourier transform analysis
of non-stationary signals, time-frequency features of sEMG
signals are introduced. The analysis of time-frequency features
is important to the estimation of muscle fatigue state, and
it is usually necessary to analyze both the time-domain
and frequency-domain features of sEMG signals to obtain

comprehensive information of muscle physiological changes.
Traditional sEMG time domain and frequency domain analysis
methods only describe the time domain or frequency domain
features, but the time-frequency domain feature analysis method
can overcome this limitation. At present, the available time-
frequency analysis methods for sEMG signal mainly include
Short-time Fourier Transform (STFT), Wavelet Transform
(WT), Choi William distribution (CWD), and Wigner-Ville
distribution (WVD), used for visual observation of signal
frequency content evolution over time. WVD is a common
bilinear time-frequency distribution, which is the most common
type of Cohen’s time-frequency distribution. Instantaneous
frequency parameters commonly used are instantaneous mean
frequency (IMNF) (Triwiyanto et al., 2017) and instantaneous
median frequency (IMDF) (Yousif et al., 2019), which show a
downward trend with the deepening of fatigue degree. Average
instantaneous MF has higher stability and sensitivity than
frequency-domain features. Yousif et al. (2019) applied IMNF
and IMDF to assess the muscles fatigue of the male runner during
400 m running with three types of running strategies.

NON-LINEAR PARAMETERS

The sEMG complexity and entropy decrease linearly with the
increase of fatigue degree. The complexity of Lempel-Ziv [C (n)]
(Jo et al., 2018) is the speed at which new patterns appear with
the increase of the length of time series, indicating the degree
of randomness of the series, which decreases linearly in the
process of dynamic motion. In dynamic motion, approximate
entropy rises first and then decreases for most people. Marginal
spectrum entropy (MSE) (Jero and Ramakrishnan, 2019) is a
useful real-time muscle fatigue assessment method with the
advantages of fast, reliable assessment of muscle fatigue and anti-
noise. Compared with approximate entropy and MDF, MSE can
be calculated quickly, the data length robustness is better, and
muscle fatigue can be assessed reliably. It has high stability for
different individuals and good noise resistance. SampEn (Cui
et al., 2017), proposed by Richman and Moorman in 2000,
measures the probability of generating new patterns in signals by
measuring the complexity of time series. SampEn has a strong
anti-noise ability and can reduce data deviation. The higher
the complexity of the sequence, the higher the entropy. The
multi-scale entropy (Fan et al., 2018) of sEMG signals decreases
as the load increases, which more accurately represents the
complexity of the muscle system. Compared with the traditional
SampEn, it can more objectively reflect the working status and
fatigue grade of the muscle. Multi-scale entropy analysis has a
small amount of calculation and can adapt to the complexity
of dynamic muscle contraction under time-varying loads. In
practical work, normalized average multi-scale entropy can be
used as a quantitative index to measure the dynamic fatigue
degree of muscles. Recurrence quantification analysis (RQA)
(Chen et al., 2018) is used to determine the percentage of line
segments (%DET) reflecting the periodicity of signals. The RQA
software is used to calculate and determine the percentage of
line segments. Under dynamic and static loads, %DET increases
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linearly with the occurrence of muscle fatigue. Lejun et al.
(2018) used C(n) to evaluate fatigue in all-out cycling exercises.
Cui et al. (2017) used SampEn to investigate the fatiguing
features of muscle-tendon units (MTUs) within skeletal muscles
during static isometric contraction tasks. Hernandez and Camic
(2019) investigated the effect of fatigue status and contraction
type on the complexity of the sEMG signal, using SampEn
and Detrended Fluctuation Analysis (DFA). Kahl and Hofmann
(2016) compared the performance of different fatigue detection
algorithms quantifying muscle fatigue based on sEMG signals.
Fatigue detection algorithms including spectral moments ratio
(SMR), SampEn, fuzzy approximate entropy (fApEn), and RQA
(%DET) were calculated. After identifying the extracted features
from the sEMG signal, the next important step is classification to
detect the fatigue state.

CLASSIFICATION

With the development of machine learning, machine learning
algorithms were widely applied to exercise fatigue classification.
Classification in this article normally refers to supervised
learning where individuals are classified based on their features.
Some classification algorithms based on sEMG are listed in
Table 1, mainly including fuzzy logic (FL) (Li, 2017), hidden
Markov model (HMM) (Shahmoradi et al., 2017), k-nearest
neighbor (KNN) (Bukhari et al., 2020), support vector machine
(SVM) (Chen et al., 2021b), linear discriminant analysis (LDA)
(Ahmed et al., 2020), and artificial neural network (ANN)
(Subasi and Kiymik, 2010).

Support vector machine is a popular machine learning
classification method because it is simple, fast, and stable, and
shows better accuracy than other methods (Karthick et al., 2018;
Wang et al., 2018; Greco et al., 2019; Wang, 2021). Since the
features extracted from the sEMG signal are the input of the
classifier, the accuracy of classification results is closely related
to the feature extraction method. Dimension reduction plays a
crucial role in index extraction, which can reduce the calculation
time. Common dimension reduction methods include PCA (Qi
et al., 2020) and ICA (Too et al., 2018a).

Khan et al. (2019) used the random forest trained by
distributive power frequency of the sEMG signal of the vastus-
lateralis muscle to predict muscle fatigue. They obtained a

high accuracy in fatigue classification. Wang et al. (2020)
proposed a muscle fatigue classification method based on
sEMG signals to detect muscle fatigue by the Convolutional
Neural Network–Support Vector Machine (CNN-SVM), Support
Vector Machine, Convolutional Neural Network, and Particle
Swarm Optimization–Support Vector Machine algorithms.
CNN-SVM algorithm achieves the highest accuracy rate in
muscle fatigue classification.

Zhang et al. (2021) detected muscle fatigue based on the
Multidimensional Feature Fusion Network (MFFNet), which is
composed of Attention Frequency domain Network (AFNet)
and Attention Time-domain Network (ATNet). The result shows
77.37% higher than other classifiers. Bharathi et al. (2022)
developed an automated muscle fatigue detection system and
acquired 58 healthy volunteers’ signals under dynamic muscle
fatiguing contractions. The extreme learning machine (ELM)
model performs well with a 94.09% result. Wang J. H. et al. (2021)
proposed a new muscle fatigue recognition model based on the
long short-term memory (LSTM) network. Rejith et al. (2016)
estimated the elbow kinematics under fatigue using sEMG by
Multi-layered Perceptron Neural Network (MLPNN) which gave
a classification accuracy of 60.12%. Chen et al. (2021a) studied
fatigue of miners with physiological signals by extreme gradient
boosting (XG-Boost).

SURFACE ELECTROMYOGRAPHY
BASED MULTISOURCE INFORMATION
FUSION FOR EXERCISE FATIGUE

Multi-sensor fusion based on sEMG can collect more dimensions
of human activities from multiple dimensions. Thus, it is
more comprehensive than fusion methods that use data
from a single sensor. Qi et al. (2018) proposed a method for
driving fatigue assessment based on the electroencephalogram
(EEG) and EMG. Zhao et al. (2020) proposed a wearable
monitoring device by integrating electrocardiogram and
electromyogram (ECG/EMG) sensors to acquire data for
monitoring fatigue during rehabilitation training. Martinez-
Aguilar and Gutierrez (2019) analyzed cortico-muscular and
cortico-cardiac coupling to study the development of muscular
fatigue by electromyography (EMG), electrocardiography (ECG),
and electroencephalography (EEG). Bilgin et al. (2015) presented

TABLE 1 | Machine learning algorithms for fatigue classification.

References Subjects Channels Location Model Accuracy (%)

Shahmoradi et al., 2017 6 1 Anterior deltoid muscle HMM 95.3

Chen et al., 2021b 40 1 Brachioradialis of the forearm RF 90

Wang et al., 2020 20 5 Lower limbs CNN-SVM 86.69

Subasi and Kiymik, 2010 14 1 Biceps brachii ANN 90

Bharathi et al., 2022 58 1 Biceps brachii ELM 94.09

Zhang et al., 2021 10 1 Upper limb MFFNet 77.37

Wang J. H. et al., 2021 20 4 Lower limbs LSTM 95.18

Rejith et al. (2016) 30 1 Bicep muscle MLPNN 60.12

Chen et al., 2021a 55 1 Brachioradialis of the forearm XG-Boost 89.47

Frontiers in Systems Neuroscience | www.frontiersin.org 4 August 2022 | Volume 16 | Article 893275

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-16-893275 August 11, 2022 Time: 11:15 # 5

Sun et al. Application of sEMG in Exercise Fatigue

a muscle fatigue detection method based on the frequency
spectrum of EMG and mechanomyogram (MMG). Scano et al.
(2020) studied the combined use of NIRS and sEMG in muscle
fatigue assessment.

DISCUSSION AND CONCLUSION

Fatigue detection based on surface EMG has important
application value in sports training, rehabilitation treatment, and
movement recognition. This article aimed to provide an overview
of sEMG signal processing, feature extraction, and classification
in exercise fatigue. In real-time detection, portability of the
device, removal of artifacts, feature extraction, and classification
techniques should be properly investigated. Using appropriate
methods can remove noise to improve EMG signal quality. With
the increase in the number of EMG channels and features, it
is necessary to choose a reasonable dimensionality reduction
method. The methods should greatly reduce the computational
complexity of the classifier and preserve maximum information
of the signal. Classification techniques have been extensively
studied, but their timeliness and generalization still have

research significance. A combination of processing methods and
pattern recognition techniques may be helpful to increase the
classification speed and accuracy. And the adaptability of good
algorithms to fresh samples needs further study. Finally, we
propose that the current review can be used as a guide for further
improving exercise fatigue assessment based on sEMG for various
applications of the human body.
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