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Abstract: Desmosomes are intercellular adhesion complexes involved in various aspects of epithelial
pathophysiology, including tissue homeostasis, morphogenesis, and disease development. Recent
studies have reported that the abnormal expression of various desmosomal components correlates
with tumor progression and poor survival. In addition, desmosomes have been shown to act as a
signaling platform to regulate the proliferation, invasion, migration, morphogenesis, and apoptosis
of cancer cells. The occurrence and progression of head and neck cancer (HNC) is accompanied
by abnormal expression of desmosomal components and loss of desmosome structure. However,
the role of desmosomal components in the progression of HNC remains controversial. This review
aims to provide an overview of recent developments showing the paradoxical roles of desmosomal
components in tumor suppression and promotion. It offers valuable insights for HNC diagnosis and
therapeutics development.
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1. Introduction

Desmosomes are membrane structures that mediate cell-cell junction and adhesion.
This complex connects to the cytoplasmic intermediate filaments (IF) through desmosomal
components interactions and acts as a resistance to mechanical stress in tissues [1]. Desmo-
somes are most abundant in the heart and skin tissues, whose dysfunction induces various
desmosome-related diseases, such as skin disease, heart disease, and cancers [2].

The core components of desmosomes are three protein subfamilies: desmosomal
cadherins, armadillo proteins, and plakin proteins [3]. Desmosomal cadherins are a class
of transmembrane proteins composed of desmoglein (DSG) and desmocollin (DSC), which
not only mediate cell adhesion and desmosome assembly but also act as signaling scaffolds
for cell movement [4]. The armadillo family consists of plakophilins (PKP) and plakoglobin
(PG), which binds to an intracellular fragment of desmosomal cadherins. The plakin
family is composed of desmoplakin (DSP), which is connected to IF through the C-terminal
domain [5]. Another essential component is the p53 apoptosis effecter, which is related to
the PMP-22 (PERP). Although PERP has been shown to play a critical role in desmosome
assembly and maintenance, its interaction partners are currently unknown [6,7]. The group
of these specific desmosomal components associated with the cytoskeleton is essential for
maintaining tissue integrity and architecture.

Tumor progression is often accompanied by the loss of cell-cell adhesion [8,9]. More-
over, the desmosomal component reduction is associated with tumor development [10–14].
The decrease of DSG1, DSC2, DSC3, DSG3, PG, PKP1-3, and DSP expression associated with
poor prognosis in patients with multiple cancers such as head and neck cancer, colon can-
cer, skin cancer, esophageal cancer, lung cancer, cervical cancer, and gastric cancer [15–22].
Confusingly, upregulation of several desmosomal components, including DSG2, DSG3,
PKP3, and PKP1, was observed in the development of various human cancers, including
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skin cancer, lung cancer, head and neck cancer, prostate cancer, colon cancer, cervical
cancer, breast cancer, and esophagus cancer, often correlating with accelerated proliferation,
increased metastasis or poor prognosis of tumors [23–32]. The paradoxical roles of desmo-
some family members in tumor progression suggest that their underlying mechanisms in
cancer are two-sided and intricate. In addition to changes in desmosome molecular expres-
sion, subcellular location [29], interacting proteins [33], and post-translational modification
(PTM) [34] may also affect the role of desmosome in cancer, indicating that their function
may depend on the specific tumor microenvironment.

Head and neck cancer (HNC) is a set of cancers in the upper aerodigestive tract,
including the oral cavity, nasopharynx, oropharynx, hypopharynx, and larynx [35]. Most
head and neck cancers are squamous cell carcinomas (SCC). The most important risk factors
of HNC are tobacco and alcohol. However, increasing evidence has confirmed human
papillomavirus (HPV) is a causal factor for HNC [36,37]. Additionally, the risk of HNC
for individuals with cancer susceptibility syndromes [38], body mass index (BMI) [39],
and occupational factors [40] have been also assessed. HNC is the eighth most common
type of cancer in the world. [41,42]. According to Global Cancer Statistics 2020 [43], the
incidence of HNC is about 870,000 cases, accounting for 4.5% of all malignant cancers.
Further elucidating the molecular events involved in HNC development may help identify
potentially effective biomarkers and provide new procedures for targeted therapy. The
pathogenesis of HNC is a multistep process involving the progressive accumulation of
molecular alterations. Altered expression/localization of desmosome family members
also plays a vital role in the development of HNC. In this paper, we summarize the
expression and function of desmosomal components in HNC. In addition, we also discuss
the contradictory roles of desmosomal components in HNC and put forward our views
and prospects.

2. The Loss of Desmosome during HNC Development

HNC development involves multiple histopathological steps and is accompanied by
significant morphological changes in the epithelial tissue. These changes in histopatho-
logical features are one of the critical bases for the clinical diagnosis of HNC. In normal
squamous cells, desmosomes are tightly arranged between the cells. During oral tumorige-
nesis, the number of desmosomes in altered premalignant epithelial cells reduces, resulting
in loose cell-to-cell adhesion. As the tumor progresses, the number of desmosomes in the
infiltrating carcinoma decreases significantly, and cell adhesion is lost [44–46]. A similar
situation exists in the in vitro co-culture 3D model to simulate the tongue tumor [47].

Moreover, during malignant transformation of oral mucosal epithelium, the number of
desmosomes reduced in animal models treated with the chemical carcinogen 9.10-dimethyl-
1.2-benzoanthracene (DMBA) [48,49]. Consistent with these conclusions, Kellokumpu et al.
found an increase in desmosome abundance in tissue samples from HNC patients treated
with radiotherapy [50,51]. In addition, there is a significant correlation between desmosome
loss and tumor metastasis [52–54] (Figure 1).

To determine the contribution of desmosome dysfunction to cancer development,
Beaudry et al. constructed a chronic UVB-induced SCC tumor model in PERP-conditioned
knockout mice [55]. Loss of PERP leads to both compromised desmosome-mediated
intercellular adhesion and reduced desmosomal number. Interestingly, although PERP-
deficient tumors showed distinct downregulation of desmosomal components, adhesion
junction components were maintained [55]. This study suggests that the loss of PERP and
desmosomes promotes cancer through specific mechanisms rather than general changes
in differentiation status. Desmosome loss occurs before the loss of adhesion connections,
and desmosome loss drives early tumor invasion before the downregulation of adhesion
connections [56]. In oral squamous cell carcinoma (OSCC), loss of PERP is related to
increased tumor aggressiveness and worse local control. In addition, the expression of
PERP is downregulated in most invasive SCC but not in actinic keratosis, indicating that
loss of PERP is an early event in oral carcinogenesis [57]. Loss of PERP expression in
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nonneoplastic epithelial cells adjacent to the surgical margin in patients with head and neck
squamous cell carcinoma (HNSCC) is associated with a higher risk of local recurrence [58].
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Figure 1. Loss of desmosomes in the progression of head and neck cancer. Schemes follow the same formatting. Normal
head and neck epithelial cells have tight desmosome junctions to ensure that the epithelial tissue maintains the correct
cell-cell spatial conformation. Activation of oncogenes or suppressing cancer suppressor genes will drive the transformation
of normal epithelial cells into cancer cells. With the malignant progression of head and neck cancer, the desmosomes
and other cell-cell adhesions are lost, and cancer cells lose their in-situ bondage, thus acquiring the ability of invasion
and metastasis.

Alterations in desmosome localization cause the loss of cell-cell adhesion. Desmosome-
related molecules detach from the membrane and accumulate in the cytoplasm, result-
ing in a marked enlargement of the intercellular space [56,59]. Previous studies proved
that desmosome internalization into the cytoplasm contributes to the loss of intercellu-
lar contract and disease progression [60]. The alterations of desmosome expression and
localization are vital manifestations of oral tumor development, which can be used as a
molecular indicator for early diagnosis and treatment. For example, local administration of
heparin-binding epidermal growth factor (HB-EGF), an effective stimulator for preventing
radiation-induced oral mucositis, increased the quality and quantity of desmosome in the
tongue and buccal mucosa of mice [61]. N,N-dimethylformamide (DMF) is an anti-tumor
compound that can induce cancer cells to form better-differentiated phenotypes. Nude
mice with head and neck xenografts treated with DMF show higher cell differentiation and
increased desmosomes [62].

Taken together, strict regulation of desmosome expression and assembly is necessary
for normal tissue homeostasis. Due to the vital role of desmosome in maintaining the
stability of head and neck tissues, the variation of desmosomal components may play an
essential role in the progression of HNC.

3. The Expression and Significance of Desmosomal Components in HNC

The expression and clinical significance of desmosomal components are different in
head and neck cancer (Table 1). The levels of DSC1 [63] and PKP2 [64] are significantly
higher in HNC tissues than para-tumor tissues, and their expression predicts a poor
outcome. These studies indicate that DSC1 and PKP2 play a potential oncogenic role in
the development of HNC. Conversely, the levels of DSC2 [65], DSC3 [66,67], DSG1 [15,68],
PKP3 [64,69,70], and DSP [71,72] are significantly lower in HNC tissues and their expression
indicate a good clinical outcome. The results suggest that these desmosomal components
may work as tumor suppressors in HNC.
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Table 1. The expression of desmosome and their prognostic values in HNC.

Desmosomal
Component Relative Level in HNC Localization in HNC Prognostic Values * Clinicopathological

Parameters Reference(s)

DSC1 High N. A Poor Survival and
Differentiation [63]

DSC2 Low Cytoplasm Poor Lymph node
metastasis [65]

DSC3 Low Cytoplasm(diffuse),
Surface layer Good Differentiation [66,67]

DSG1 Low Cytoplasm, Basal
layer Good Survival [15,67,68]

DSG2 Low Cytoplasm(mainly) Poor Distance metastasis [73]

DSG2 High Membrane and
cytoplasm(mainly) Poor Survival [65,74,75]

DSG3 Low Cytoplasm Poor Lymph node
metastasis [65,66]

DSG3 High Cytoplasm Poor Survival [26,76]
PKP1 High N. A N. A N. A [27]

PKP1 Low Membrane (32%) and
cytoplasm (24%) Good Survival [64,77]

PKP2 High Membrane (38%) and
cytoplasm (57%) Good Metastasis [64]

PKP3 Low Membrane (8%) and
cytoplasm (62%) Good Survival and stage [64,78]

PG High N. A Poor Overall survival [79]

PG Low Basal layer and
parabasal layer Poor Survival [67,80,81]

DSP Low Membrane and
cytoplasm Poor Distant metastasis [82]

* “Poor” refers to the high expression of desmosome molecules that predict a poor prognosis in patients with HNC, while “good” refers to
the high expression of desmosome molecules that predict a good prognosis in patients with HNC.

However, the functional study of gain or loss and immunohistochemistry identifi-
cation of desmosomal components have revealed contradictory roles for some desmo-
some members, including DSG2 [65,73–75], DSG3 [26,65,66,76], PKP1 [27,77,78], and
PG [70,79,83] in HNC, suggesting that the role of the desmosomal components in HNC
may be affected by some other signal transduction molecules or/and modifications related
to the tumor microenvironment. Additionally, like other tumors, subcellular location, PTM,
inactivation by proteolytic cleavage, and the biogenesis of regulating extracellular vesicles
(EVs) may also affect the role of desmosomes in HNC. In the following sections, each
desmosomal component will be discussed in detail (Table 2), aiming to understand their
significance in HNC.

Table 2. The function and mechanism of desmosomes in HNC.

Desmosomal Component Function Regulated Signaling Pathway Reference(s)

DSC1
Low expression of DSC1

decreases proliferation and
invasion.

When suppressing DSC1, the
expression levels of β-catenin,
c-myc and cyclin D1 proteins

were decreased.

[63]

DSC3 The high expression of DSC3
increased cell adhesion.

Membrane localization of DSC3
was significantly enhanced in

TP53 mutated tumors.
[84]

DSG1

Cleavage of DSG1 can promote
loss of junctional integrity.

Overexpression of KLK-5
expression induces processing of

DSG1.
[85]

DSG1 suppresses invadopodia
formation and matrix

degradation.

DSG1 interaction with Erbin
downregulates invadopodia

signaling by dampening
EGFR/Erk activation.

[86]



Biomolecules 2021, 11, 914 5 of 22

Table 2. Cont.

Desmosomal Component Function Regulated Signaling Pathway Reference(s)

DSG2

Knockdown of DSG2 promotes
cell migration and invasion in

ATC cell lines.

Depletion of DSG2 activates the
HGF signaling pathway

(c-Met/Src/Rac1).
[73]

Secreted DSG2 enhances tumor
development.

DSG2 promotes EV release,
down-regulation of miR-146a
increases in IL-8 expression.

[87]

DSG2 enhances the mitogenicity
of EVs to enhance fibroblast cell

growth.

DSG2-EVs activated Erk1/2 and
Akt signaling. [88]

Reduced DSG2 levels correlated
with the diminished strength of

cell-cell adhesion.

DSG2 Protein is diminished by
proteasome inhibition

(Bortezomib).
[89]

PKI166 treatment results in
specific accumulation of DSG2 to

cell-cell borders.

Inhibition of EGFR
down-regulates MMP-dependent

breakdown of DSG2.
[90]

DSG2 aggregates at the cell-cell
borders and enhances
intercellular adhesion.

Inhibition of EGFR and MMP
interferes with the accumulation

of DSG2 in internalized
cytoplasmic pools.

[91]

DSG3

A high calcium-associated DSG3
induction enhanced cetuximab

efficacy.

Cetuximab treatment increased
DSG3 expression. [92]

DSG3 promotes cell migration
and invasion.

DSG3 regulates the activity of
c-Jun/AP-1 as well as

PKC-mediated phosphorylation
of Ezrin-Thr567.

[93]

DSG3 silencing suppressed the
growth of xenografted tumors.

Knockdown of DSG3 increased
the interaction of plakoglobin
with TCF and suppressed the

TCF/LEF transcriptional activity.

[94]

Dsg3/γ-catenin involved in
growth regulation malignant oral

epithelial cells.

Dsg3/γ-catenin showed a mild to
severe decrease of membranous

and gain of cytoplasmic
expressionforming characteristic

perinuclear aggregations in
OSSCs.

[95]

PKP1

The loss of PKP1 expression in
OSCC cells results in increased

cell motility and invasion.

Decreased PKP1 levels are
accompanied by DSP

redistribution from cell borders to
a diffuse cytoplasmic localization.

[96]

Loss of PKP1 altered cell-cell
adhesion.

Expression of Slug induced EMT
characterized by a cadherin

switch and loss of desmosomal
adhesion.

[97]

PKP3 Low expression of PKP3 is
associated with NPC progress.

DNP decreased PKP3 was
verified to be through
upregulating miR-149.

[69,98]
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Table 2. Cont.

Desmosomal Component Function Regulated Signaling Pathway Reference(s)

PG

The high expression of PG
promoted the growth and

inhibited the apoptosis of SCC9
cells.

Overexpression of PG in SCC9
increased expression of Bcl-2 and
inhibition of caspase 3 cleavage.

[99]

The expression of Bcl-2 was
induced by β-catenin and

regulated by PG.

The presence of PG in the nucleus
decreases the level of nuclear

β-catenin.
[100]

PG can display partial tumor
suppressive activity.

PG regulates the expression and
subcellular localization of Nm23. [101]

PG promoted the transcriptional
activity of p53 and induced

14-3-3σ expression.

PG binds to the p53 consensus
sequence in the 14-3-3σ promoter. [102]

PG reduces cell growth,
proliferation, invasion and

migration.

PG inhibits the expression of
SATB1. [103]

DSP DSP were recruited to cell-cell
borders.

EGFR blockade promotes
desmosome assembly. [90]

4. The roles of Desmosome in HNC
4.1. Desmosomal Cadherins

In humans, desmosomal cadherins consist of DSG1-4 and DSC1-3. These proteins in-
clude five extracellular domains (ECs) that allow desmosomes to exhibit calcium-dependent
assembly and adhesion [104]. Following the transmembrane domain, the cytoplasmic side
contains an intracellular anchor (IA) domain and an intracellular cadherin-typical sequence
(ICS) domain. Interestingly, the DSGs have additional sequences, including a proline-rich
linker (PL) region, a repeat unit domain (RUD), and a DSG terminal domain [105]. The DSC
gene is alternatively spliced to produce an “a” and a “b” isoform [106] (Figure 2). DSG2
and DSC2 are widely expressed in various tissues, while other desmosomal cadherins
are mainly present in the stratified epithelium, and their distribution and expression are
related to differentiation and are tissue-specific.

Recently, some experiments have shown that desmosomal cadherin has a tumor-
suppressing effect in HNC. In contrast, others have provided evidence of oncogenic func-
tion, which may reflect context-dependent differences in their role in HNC. It suggests that
the part of desmosomal cadherins in HNC is complicated and contradictory. Next, we will
discuss the function of desmosomal cadherins in HNC from these two aspects (Figure 3).
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Figure 2. Structure of desmosomes. (a) The desmosomes are mainly composed of three protein
subfamilies: desmosomal cadherins, armadillo proteins, and plakin proteins. Desmosomal cadherins
contain DSGs (DSG1-4) and DSCs (DSC1-3) and are involved in crossing the plasma membrane. Both
DSG and DSC contain four highly conserved EC domains, followed by EA. Both DSG and DSC
contain a single transmembrane domain (TM). Intracellular, DSGs and DSCs include IA and ICS.
The DSGs contain an additional PL domain and five duplicate RUD domains. DSC consists of two
isoforms, DSC-a and DSC-b, which have different intracellular segments. DSC-a and DSC-b isoforms
contain the IA domain, while DSC-b has a unique cytoplasmic sequence. (b) Armadillo proteins
contain PG and PKP (PKP1-3). PG and PKP both have a short amino-terminal (head) domain and
carboxyl-terminal (tail) domain. PG contains 12 arm repeats in the middle of the protein, while PKPs
have nine-arm repeats. The PKP arm domain is interrupted between repeats 5 and 6 by a sequence,
introducing a kink throughout the structure. (c) The DP domain indicates that N-head mediates
the interaction of armadillo family proteins, and the C-tail mediates the interaction of intermediate
filaments through GSR.
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Figure 3. Role of desmosome in head and neck cancer. The inhibitor PKI166 inhibits the phosphorylation of EGFR,
DSG2, and PG, and upregulates the expression of DSG2 and DSC2, thereby stabilizing cell-cell adhesion. Cisplatin
upregulates β-catenin and down-regulated PG, leading to cisplatin resistance in head and neck cancer cells. Cetuximab
upregulates the expression of EGFR and DSG3 in head and neck cancer cells. EGFR enhances ADAM-mediated intracellular
hydrolysis of DSG2, resulting in desmosome loss. DSG3 enhances PKC-mediated phosphorylation of c-JUN, AP-1, and
Ezrin. KLK5 cleaves DSG1, causing desmosome breakdown. Transcription factor SNAI2 causes desmosome breakdown
by downregulating DSG3, DSC2, PKP1, and PG. PG inhibits the transcriptional regulation of TCF/LEF in the nucleus.
When PG is recruited to the cell membrane by DSG3, TCF/LEF transcription is activated, and the expressions of target
genes c-MYC, Cyclin D1, and MMP7 are upregulated. PG interacts with p53 to promote the expression of the target gene
14-3-3σ. DSG1 and Erbin inhibit the EGF/EGFR/Erk1/2 signaling pathway. DSG2 promotes extracellular vesicle secretion
by inhibiting CAV1. DSG2 palmitoylation stimulates extracellular vesicle secretion. DSG2 C-terminal and IL8 are present in
extracellular vesicles and encourage the growth of fibroblasts and HNC cells. DSC1 upregulates the expression of c-MYC,
Cyclin D1, and β-catenin. DNP promotes PKP3 expression by inhibiting miR-149. PG can upregulate BCL2.

4.1.1. Desmosomal Cadherins Act as a Suppressor in HNC

Many studies have revealed that upregulation of desmosomal cadherin protein en-
hances cell adhesion and inhibits HNC progression. For example, DSC3 protein and mRNA
are upregulated in TP53-mutated maxillary carcinoma accompanied by a marked increase
in membrane localization, indicating enhanced cell adhesion. TP53 mutated tumors have
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phenotypes that are the opposite of cancer progression and malignant transformation [84].
In addition, OSCC cells exhibited DSG1 cleavage, which was related to the loss of cell-cell
adhesion function. Protease inhibitor treatment and siRNA silencing of serine proteinase
kallikrein 5 (KLK5) expression blocked the hydrolysis process of DSG1, thereby enhancing
cell adhesion [85]. Except for the adhesion function, DSG1, through its interaction with
ErbB2 Interacting Protein (Erbin), downregulates invadopodia signaling by dampening
Epidermal Growth Factor Receptor (EGFR)/Erk activation, which ultimately leads to a
decrease in invadopodia formation and matrix degradation [86]. These reports suggest
that the expression of DSC3 and DSG1 has an inhibitory effect on HNC.

The low expression of DSG2 in HNC is in line with the result of its functional study, in
which DSG2 may act as a tumor suppressor to enhance intercellular adhesion. In support,
after treating OSCC cells with the proteasome inhibitor borosomide, the level of DSG2 is
reduced, and the cell-cell mechanical adhesion is decreased [89]. In addition, OSCC cells
treated with EGFR small molecule inhibitor PKI166 and monoclonal antibody C225 (cetux-
imab) were found to have accumulated levels of DSG2 and DSC2, which were recruited to
cell-cell borders. In this case, inhibition of EGFR downregulates matrix metalloprotease
(MMP)-dependent extracellular domain shedding of DSG2. Furthermore, these morpho-
logical and molecular changes are accompanied by an increase in cell-cell adhesion [90].
Recent studies have further demonstrated that EGFR and MMP inhibition enhances DSG2
on the cell membrane surface by interfering with its accumulation in the internalized
cytoplasmic pool [91]. Moreover, the silencing of multiple ADAM (a disintegrin and met-
alloprotease) family members also prevented the internalization of DSG2. These reports
suggested that EGFR and ADAMs synergistically regulate the cleavage and endocytic
trafficking of DSG2 [90,91]. In addition to enhancing cell adhesion, in anaplastic thyroid
cancer (ATC) knockdown of DSG2 enhanced cell invasion and migration by activating the
hepatocyte growth factor receptor (HGFR, c-Met)/Src/Rac1 signaling axis [73].

In OSCC, there is a potential link between DSG3 and EGFR, and the expression of
DSG3 was significantly increased after treatment with cetuximab, an inhibitor of EGFR.
Furthermore, high calcium-associated DSG3 induction enhanced the efficacy of cetuximab
in cetuximab-low-sensitive cell lines by up to 23% [92]. Differential expression analysis in
oral leukoplakia (OL) tissues and OSCC tissues showed mild to severe loss of the DSG3/γ-
catenin complex and a transition from membranous to cytoplasmic expression, resulting in
perinuclear aggregation, which was directly related to the grade of dysplasia [95].

4.1.2. Desmosome Cadherins Act as an Oncogene in HNC

In contrast, a low expression of DSC1 reduced the proliferation and invasion of HNC
cells accompanied by decreased levels of β-catenin, c-myc, and cyclin D1 proteins [63]. In
addition, DSG2 was also involved in the malignant phenotype of HNC as an oncogenic
gene. We mentioned that DSG2 is highly expressed in HNC, so how does it function?
Overexpression of DSG2 leads to the release of EVs and promotes the progression of tumors.
First, DSG2-EVs activate mitogenic pathways such as ERK1/2 and Akt signaling pathways
and enhance fibroblast cell proliferation [88]. In this report, C-terminal fragments of DSG2
and EGFR were enriched in serum-derived EVs from patients with HNSCC.

Moreover, DSG2 regulates the biogenesis of EVs by controlling the shedding of extra-
cellular domains through MMP and caveolin-1 (CAV1) [88]. Second, in SCC, upregulated
DSG2 promotes tumor growth by down-regulating miR-146a, resulting in increased expres-
sion of Interleukin 8 (IL-8) and release in EVs. In vivo, associations between DSG2 and IL-8
have been demonstrated in patients with HNSCC. Furthermore, the oncogenic ability of
DSG2 in SCC was correlated with the EV level [87]. These results suggest that intercellular
communication can be coordinated through the secretion of DSG2 and EVs, critical for
tumor growth, and may serve as a potential biomarker to guide treatment regimens.

Similarly, in addition to enhancing cell adhesion, DSG3 also promotes cancer pro-
gression through intercellular signaling molecular transduction. How does DSG3 play an
oncogenic role in HNC? Firstly, Brown et al. showed that DSG3 promoted invasion and
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migration of OSCC cells. Mechanisms demonstrated that DSG3 regulates c-Jun/activator
protein 1 (AP-1) activity and protein kinase C (PKC)-mediated phosphorylation of Ezrin-
Thr567, which contributes to the motility of cancer cells [93]. Secondly, DSG3 may facilitate
the proliferation of HNC cells by recruiting PG and subsequently activating the expression
of TCF/LEF downstream target genes c-myc, cyclin D1, and MMP-7 [94]. Finally, buccal
squamous cell carcinoma cells overexpressing full-length or C-terminated (∆238 and ∆560)
mutants of DSG3 migrated more rapidly than empty vector control cells [107].

4.1.3. PTM and Subcellular Locations of Desmosomal Cadherins

PTM and subcellular location may profoundly affect the role of desmosomal cadherins
in HNC. The localization of DSC2, DSC3, and DSG1 on the membrane was significantly
reduced in oral cancer and was internalized into the cytoplasm. However, this significant
difference in localization with normal tissue samples suggests a decrease in desmosome-
mediated intercellular adhesion during the progression of HNC [65]. In addition to the
subcellular location of desmosomal cadherins, post-translational modification can also
affect cell-cell adhesion—the assembly of desmosomes following EGFR inhibition asso-
ciates with decreased tyrosine phosphorylation of both DSG2 and PG. Slightly surprisingly,
phosphorylation of the adherens junction components E-cadherin and β-catenin did not
change after PKI166 treatment. These desmosome-specific alterations in tyrosine phos-
phorylation were accompanied by recruitment of DSP cell-cell borders and tethering of
keratin IF to the plasma membrane [90]. In support, IF-desmosome attachment strengthens
cell-cell adhesion [108]. In addition, DSG2 regulates the biogenesis of EVs in a palmitation-
dependent manner. The palmitoylation of DSG2 alters the trafficking of membrane raft
proteins and early endosomal proteins. In the xenograft model, DSG2 promoted tumor
growth and reduced this effect considerably with overexpression of non-palmitoylated
DSG2 in cells [87]. These phenomena suggest that the post-translational modification of
desmosomal cadherins is crucial in deciding its role in HNC.

4.1.4. Diagnostic and Therapeutic Potential of DSG3 in HNC

Cancer-related deaths are mainly due to metastases, not the primary tumor [109].
HNSCC is one of the most common metastatic cancers [110]. Although some advances
have been achieved in diagnosis and treatment, the five-year survival rate remains low [111].
It is principally attributed to the lack of essential biomarkers for diagnosis, prognosis, and
detection of tumor response to therapy. DSG3 is upregulated in HNSCC [26,76,111,112],
and its potential as a diagnostic and prognostic marker has been studied.

Metastasis to regional lymph nodes is common in HNSCC due to a rich lymphatic
network and many lymph nodes in the neck region [113,114]. Moreover, the diagnosis of
cervical lymph node metastasis is a necessary condition for clinical staging and treatment,
which is also an essential factor affecting the prognosis of HNSCC [36,115–117]. How-
ever, the accurate diagnosis of lymph node metastasis still has limitations. Patients with
clinically negative lymph nodes tend to have a higher recurrence rate [118,119]. Sentinel
lymph node biopsy is a feasible measure to identify patients with negative nodes [120].
In contrast, its potential is limited by the lack of accurate methods and markers to detect
metastatic nodes. DSG3 has been identified as a biomarker for precise detection of HNC
lymph node metastasis and can clearly distinguish clinically positive and negative lymph
nodes [121–124]. In addition, low concentrations of DSG3 can be detected as a reliable
biomarker for HNSCC lymph node metastasis using a 3D-printed microfluidic immunoas-
say [121,125]. These advances suggest that DSG3 can help clinicians identify false-negative
lymph node metastasis to improve diagnostic accuracy and provide treatment strategies
for patients with HNC.

DSG3 protein was differentially overexpressed in HNC cells with 11q13 amplification.
Moreover, the piggyback assays demonstrated that the expression of DSG3 is sufficient
to induce antibody internalization and cell killing in highly expressing cell lines [126]. In
addition, RNAi-mediated DSG3 silencing reduced xenograft tumor growth and metastasis
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in HNC cell lines [26]. It suggests that DSG3 has potential as a drug target for HNC,
offering new advances in inpatient therapy.

4.2. Plakophilins

Armadillo proteins include the plakophilins PKP1, 2, and 3. PKP4 is also often
associated with this family, but its presence in desmosomes is still controversial [127,128].
PKP1 and two each exist as two isoforms, a short “a” form, and a longer “b” form. The
difference is that the longer isoform adds several amino acids in the arm-repeat domain:
PKP1 adds 21 amino acids in the third, and PKP2 adds 44 amino acids in the fourth [129].
Moreover, the identified PKP binding partners are related to the PKP amino-terminal
head domain, while the precise role of the PKP central arm repeating domain remains
unknown [130] (Figure 2). Similar to desmosomal cadherins, PKP1-3 shows a specific
expression pattern in tissues and differentiation [131]. PKP1 is highly expressed mainly in
the suprabasal layers of stratified epithelia, whereas PKP2 is widely expressed in epithelial
and non-epithelial tissues such as myocardium and lymph nodes [132,133]. PKP3 is present
in simply stratified epithelial cells [134]. In addition, PKP1 and PKP2 are localized in the
nucleus, but how these expression patterns and their localization are combined with the
potential functions regulated by various PKP isoforms is unknown.

4.2.1. PKP1 and PKP3 Act as a Suppressor in HNC

Abnormal expression and localization of PKP have been related to various diseases
and cancers. The reduction of PKP1 expression is correlated with aggressive characteristics
in HNC. Furthermore, PKP1 was prominently distributed in the cytoplasm of tumors with
local recurrence regardless of the presence of membrane immunoreactivity [64]. The loss of
PKP3 in both nasopharyngeal carcinoma (NPC) and OSCC were associated with tumor
progression and metastasis [64,69,70]. In addition, PKP3 is more frequently localized in the
cytoplasm of oral cancer tissue than PKP1 [64]. Therefore, PKP1 and PKP3 play a tumor
suppressor role in HNC.

With the development of HNC, desmosome assembly is often disrupted and lost.
PKP plays a crucial role in desmosome stabilization and is also one of the critical pro-
teins involved in tumor development. Therefore, it is necessary to further understand
the mechanisms by which PKP1 and PKP3 are downregulated and how their loss pro-
motes cancer progression (Figure 3). In OSCC, the reduced expression of PKP1 caused
a marked redistribution of DSP from the cell borders to diffuse cytoplasmic localization,
resulting in decreased desmosome assembly and altered cell-cell adhesion, thereby increas-
ing tumor cell motility and invasion [96]. The Snail family of zinc-finger transcription
factors, including slugs, has been shown to play an essential role in epithelial-mesenchymal
transformation (EMT) in various tissues, and slug expression is associated with increased
metastatic behavior of tumor cells, which is similar to the EMT phenotype [135]. A decrease
of DSG3, DSC2, and PKP1 was observed in slug-expressed cells, inducing EMT charac-
terized by desmosome loss of adhesion. Furthermore, detection of the PKP1 promoter
region revealed a putative E-box sequence that may act as a slug-binding element, but
the function of this site needs further investigation [97]. N,N′-dinitrosopiperazine (DNP),
an NPC-specific carcinogen, can inhibit the expression of PKP3 by upregulating miR-149,
increase the migration, invasion, and adhesion of cells, and finally promote NPC metasta-
sis [98]. In conclusion, the mechanism of PKP1 and PKP3 provides new insights into the
metastatic research of HNC and new therapeutic strategies.

4.2.2. PKP2 Acts as an Oncogene in HNC

Interestingly, immunohistochemical results showed that PKP2 expression was more
robust in metastatic tumors than in non-metastatic tumors [64], suggesting that PKP2 plays
a potential oncogenic role in the development of oral cancer. However, further studies are
needed to determine how PKP2 is involved in oral cancer metastasis.
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4.3. Plakoglobin

The other armadillo member in the desmosome is PG, a homolog of β-catenin, also
known as junction plakoglobin (JUP), and gamma catenin (γ-catenin). Structurally, the
protein contains 12 repeat arms with different amino and carboxy-terminal domains on
both sides [136]. Deletion mutation studies indicate that several repeating arms near the
amino and carboxyl terminus of the protein are the key to the binding of desmosomal
cadherin [137,138]. The central armadillo domain of PG interacts with DSP, which binds
intermediate filaments to desmosome plaques [139,140] (Figure 2). In addition, PG is
located in desmosome and adhesion junctions, but its affinity with desmosomal cadherins
is much higher than that of E-cadherin [137]. Similar to PKP, PG also exists in cytoplasm and
the nucleus, and it has some known nuclear functions, such as transcriptional regulation
and inhibition of Wnt/β-catenin signaling [11,141], suggesting that in addition to cell-cell
adhesion, PG may play an essential role in the regulation of nuclear transcription signals.

4.3.1. PG Acts as a Suppressor Gene in HNC

As a strong adhesion and signaling molecule, altered PG has been associated with
various diseases, such as skin, heart, and certain types of cancer. In the tissue models of
tongue tumorigenesis at different stages constructed in vitro, the immunostaining intensity
of PG decreased with the progression of the disease [47]. In OSCC, reduced γ-catenin
expression was associated with poor differentiation, lymph node metastasis, and poor
survival [80,81,142]. In oropharyngeal SCC, PG immunoreactivity showed that abnormal
cytoplasmic localization was negatively correlated with tumor size and was directly as-
sociated with poor patient outcomes [143]. In addition, both integrins (ITG) and JUP are
located around the cell membrane, and their expression ratio may reflect the tumor stage
of SCC. Multivariate logistic regression analysis showed that the expression of ITGA3/JUP
was a significant factor affecting lymph node metastasis of tongue squamous cell carcinoma
(TSCC). Furthermore, a high ITGB4/JUP level showed a significantly higher mortality
rate [144], which was also a significant factor for distant metastasis [145]. These results
suggest that ITGA3/JUP and ITGB4/JUP ratios are potentially effective biomarkers for
predicting lymph node metastasis and prognosis of HNC.

Many reports have suggested that PG can act as a tumor/metastasis suppressor
in HNC. The signal transduction activity of PG can be regulated in combination with
various intracellular partners (Figure 3). Firstly, the subcellular distribution of PG has
a regulatory effect on the carcinogenic potential of β-catenin. In the cytoplasm, PG can
substitute the role of β-catenin in the adhesion complex by interacting with α-catenin,
releasing the oncogenic form of β-catenin, whereas, in the nucleus, PG competes with TCF-
activated β-catenin [94,100]. Moreover, the expression of Bcl-2 was induced by β-catenin
and regulated by PG distribution [100]. Secondly, PG interacts with the tumor suppressor
non-metastatic protein 23 (Nm23), in which α-catenin acts as a bridge. Furthermore,
PG can display partial tumor-suppressive activity by regulating Nm23 expression and
subcellular localization [101]. Thirdly, PG can interact with the transcription factor p53 in
the cytoplasm and nucleus, promote the transcriptional activity of p53, and bind to the
p53 consensus sequence in the 14-3-3σ promoter to regulate the expression of 14-3-3σ [102].
In addition, the oncogenic chromatin remodeling factor SATB1 has been identified as
another target gene of PG and p53, which negatively regulates the expression of SATB1. In
support, overexpression of PG inhibited cell proliferation, migration, and invasion [103].
In conclusion, PG is involved in the development of HNC by regulating the expression of
multiple genes.

4.3.2. PG Acts as an Oncogene in HNC

Even though extensive studies have claimed that PG is a suppressor in HNC, there
was a report showing that PG overexpression was associated with a poor prognosis for
OSCC, indicating an independent prognostic factor [79]. It suggests that PG is oncogenic
in HNC.
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In OSCC, stable overexpression of JUP can promote cell proliferation, invasion, migra-
tion, and inhibit cell apoptosis, but the specific molecular mechanism remains unclear [79].
Consistent with the above, overexpression of PG in PG-deficient TSCC cells (SCC9) leads
to uncontrolled growth and inhibition of apoptosis, induction of expression of Bcl-2, and
inhibition of caspase three cleavages [99].

4.3.3. The Nuclear Translocation of PG

The localization of PG in desmosome proteins mediates cell-cell adhesion, whereas
the cytoplasmic/nuclear form plays a role in signal transduction. PG is shown to exhibit
β-catenin-like activity and modulate Wnt/β-catenin signaling. LEF/TCF transcription
factors mediate the Wnt signaling in the nucleus by recruiting β-catenin, which plays a
vital role in cell proliferation, survival, and migration [146]. Aberrant Wnt/β-catenin/TCF
pathways have been implicated in the progression of various diseases, including can-
cer [147,148]. DSG3 silencing increases PG translocation in the nucleus, where it interacts
with TCF/LEF and inhibits transcriptional activity to suppress carcinogenesis in HNC
cells [94]. Correspondingly, overexpression of Dsg3 contributes to β-catenin-LEF/TCF
interaction and activation [94]. In support, other researchers indicated that PG negatively
regulates the Wnt/β-catenin/TCF signaling pathway [149]. In line with this notion, in
mouse models of chronic rhinosinusitis (CRS), Dsg3 silencing inhibited inflammation by
disrupting the Wnt/β-catenin signaling pathway [150].

4.4. Desmoplakin

DSP is a necessary structure connecting desmosome core protein and intermediate fila-
ment skeleton and is also the most abundant component in desmosomes. DSP has spherical
amino terminus and carboxyl terminus connected by α-helical coiled-coil rod domain. The
amino-terminal domain provides binding sites for PG and PKP [151], and the carboxylate
terminal contains three plakin repeat domains (A, B, C) and a glycine-serine-arginine-rich
domain (GSR) that regulates the binding of DSP to intermediate filaments [152] (Figure 2).
Like DSC, DSP produces DSP I and II by selective splicing of RNA. Two subtypes of DSP
are widely expressed in many tissues, and tissue-specific mouse knockout studies have
shown that Dsp plays a crucial role in the skin and heart [153].

4.4.1. DSP Is Modulated by Signaling Molecules to Regulate Cell Adhesion

Alterations in the expression or function of DSP may affect desmosome assembly
and signal transduction of cancer cells, which may promote tumorigenesis. Compared
with the control group, the invasion and motility of OSCC cells overexpressing Kallikrein-
related peptidase 13 (KLK13) were decreased, accompanied by up-regulation of adhesion
molecules PG, PKP4, DSC2, DSG2, and DSP [154]. Additionally, in OSCC cells treated with
EGFR inhibitors pKI166 and C225, DSP aggregates to the cell-cell borders and increases in
the triton-insoluble cell fraction and contributes to the association of the IF network with
cell-cell attachment sites, supporting the idea that inhibition of EGFR enhances desmosome
assembly [90]. These reports suggest that signal transduction molecules influence the
motility of cancer cells by altering the adhesion function of DSP, but the exact molecular
mechanism remains to be determined.

4.4.2. Prognostic and Metastatic Potential of DSP in HNC

Previous studies have shown that DSP protein dysregulation affects tumor behavior in
various human cancers, including OSCC. DSP is downregulated in human OSCC (Table 1),
and the decrease in DSP staining is associated with loss of differentiation, degree of
invasion, and the presence of lymph node metastasis [71,72]. In the dysplasia tissue, the
basal cells were moderately stained, the upper differentiated cells were intensely stained,
and in the malignant tissue, the whole section was weakly stained [47]. Moreover, the two
DP isoforms showed different subcellular distribution patterns, and the immunoreactivity
to DPII was detected in patients with abnormal cytoplasmic localization [82]. Analysis
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of OSCC using global proteomics showed that the RNA of DSP was strongly correlated
with encoding proteins. Its reduction was associated with a significantly shorter time to
distant metastasis [77]. These findings suggest that DSP may serve as a biomarker to assess
prognosis and metastatic risk of HNC.

5. Concluding Remarks

Desmosomal components play diversified roles in the development of HNC. The
expression and function of desmosome cadherin, armadillo protein, and the desmosome
protein subfamily are not consistent in HNC. Although it is unclear what causes this
inconsistency, several physiological and pathological factors, molecular modifications,
interacting proteins, and subcellular locations seem to determine their role in HNC.

PTM, proteolytic cleavage, and the biogenesis of regulating EVs may be the critical
factors for the role of DSG2 protein in HNC. EVs are messengers in the intercellular
signaling system and play a key role in tumorigenesis and metastasis by altering TME [155].
EVs have great potential in clinical applications, such as manipulation of tumor genetic
pathways [156], tracking the progression of various pathological states as a biomarker [157],
and regulating cell function in vivo [158]. Future studies will focus on how DSG2-regulated
EV biogenesis can be applied to clinical studies. In addition, studies have confirmed that
activation of MMP and ADAM can participate in the shedding of the extracellular domain
of DSG2, and hydrolysis of DSG2 interacts with HER2 or HER3 to activate Akt/mTOR and
MAPK (mitogen-activated protein kinase) signaling pathways, promoting the proliferation
of intestinal epithelial cells (IEC) [159]. However, the role of DSG2-cleaved fragments in
cancer and the effect of this hydrolytic expression pattern on HNC progression requires
further investigation. Given that DSG2 enhances oncogenesis, PTM may play a role in the
ability of DSG2 to promote these properties, but the specific molecular mechanisms need
to be clarified.

Overexpression of DSG3 may be conducive to its oncogenic signaling activity, leading
to accelerated movement and proliferation of cancer cells. However, many questions
remain unanswered. For example, what mechanisms regulate its gene expression in cancer
cells? Is the overexpression of DSG3 in cancer involved in post-translational regulation,
such as DSG2? Interacting proteins and nuclear translocation may dominate the role of
PG in HNC. Several desmosomal components, such as PKP1, PKP3, and DP, appear to
be responsible for the gene/protein dysregulation in the development or/and cell-cell
adhesion of HNC.

Recently, the non-adhesion and non-junction functions of desmosomal components in
signal transduction of HNC deserve attention. In addition to interactions between desmo-
some protein molecules, identifying new acting partners can affect downstream signaling
networks. Currently, there is only limited evidence of specific roles of desmosome proteins
in certain features, characterization of new participants, the role of post-translational mod-
ifications, and identification of novel signaling pathways that will contribute to a better
understanding of the role of desmosome HNC progression. Additionally, HPV is a newly
identified causal factor for HNC and other cancers, and its effect on desmosomal compo-
nents should be examined. In cervical cancer, the high expression of DSG2 was associated
with HPV-positive status [160], suggesting that DSG2 may be involved in HPV-induced
cervical carcinogenesis. Varga et al. [161] revealed that DSG3, as one of prognostic panel
genes, has the ability to differentiate high-risk HPV-positive CIN1 (cervical intraepithelial
neoplasia) and cancer cases. E6 and E7 early gene products contribute to the oncogenic
potential of high-risk HPV [162]. Eszter et al. [163] found that the expression of DSC1 was
significantly downregulated in the presence of HPV 16 E6 and E7 oncoprotein. Mechanism
studies have shown that HPV oncoprotein can downregulate the transcriptional activity
of the promoter of the DSC1 gene. However, the effect of HPV infection on desmoso-
mal components and its mechanism in HNC have not been reported; this remains to be
further studied.
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We hope that summarizing and analyzing desmosome molecules can help better
understand how these factors are involved in the development and growth of HNC and
further provide some helpful hints for making potential factors as therapeutic targets or
diagnostic/prognostic markers.
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