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Abstract

All sensory receptors adapt, i.e. they constantly adjust their sensitivity to external stimuli to match the current

demands of the natural environment. Electrophysiological responses of sensory receptors from widely

different modalities seem to exhibit common features related to adaptation, and these features can be used

to examine the underlying sensory transduction mechanisms. Among the principal senses, mechanosensation

remains the least understood at the cellular level. To gain greater insights into mechanosensory signalling,

we investigated if mechanosensation displayed adaptive dynamics that could be explained by similar

biophysical mechanisms in other sensory modalities. To do this, we adapted a fly photoreceptor model to

describe the primary transduction process for a stretch-sensitive mechanoreceptor, taking into account the

viscoelastic properties of the accessory muscle fibres and the biophysical properties of known

mechanosensitive channels (MSCs). The model’s output is in remarkable agreement with the electrical

properties of a primary ending in an isolated decapsulated spindle; ramp-and-hold stretch evokes a

characteristic pattern of potential change, consisting of a large dynamic depolarization during the ramp

phase and a smaller static depolarization during the hold phase. The initial dynamic component is likely to

be caused by a combination of the mechanical properties of the muscle fibres and a refractory state in the

MSCs. Consistent with the literature, the current model predicts that the dynamic component is due to a

rapid stress increase during the ramp. More novel predictions from the model are the mechanisms to explain

the initial peak in the dynamic component. At the onset of the ramp, all MSCs are sensitive to external

stimuli, but as they become refractory (inactivated), fewer MSCs are able to respond to the continuous

stretch, causing a sharp decrease after the peak response. The same mechanism could contribute a faster

component in the ‘sensory habituation’ of mechanoreceptors, in which a receptor responds more strongly to

the first stimulus episode during repetitive stimulation.

Key words: biophysical model; fly photoreceptor; refractory period; sensory adaptation; sensory habituation;

stochastic adaptive sampling; stretch-sensitive mechanoreceptor.

Introduction

Biological sensory receptors have to constantly adapt to

effectively represent the great variation of input intensities

in their intrinsically limited output range (van Hateren &

van der Schaaf, 1996). Environmental stimuli can change

over several orders of magnitude as diurnal animals

navigate through their habitats,1 whereas sensory receptors

can only change across tens of mV in their receptor poten-

tials (Rieke & Rudd, 2009). The significant differences in the

input and output ranges impose common engineering

objectives on all sensory systems: how to effectively represent
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1

Light intensity changes from a few photons per second in a dark

shadow to billions in direct sunlight. Naturally occurring odours

used by animals for mate recognition or food identification must

be detected at concentrations that differ by several log units.

Sound pressure levels range from 1 to 120 dB (7 log units differ-

ence), whereas the frequency range for cochlea hair cells of the

human ear spans from 20 Hz to 20 kHz. Spindle terminals have to

maintain the ability to sense length changes over 3 log units.
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the vast input intensity changes within a limited output

range so that faint signals are not buried in the noise, nor

is the system completely saturated under intense stimuli

(van Hateren & van der Schaaf, 1996; Rieke & Rudd, 2009).

Sensory receptors have evolved with sophisticated adaptive

mechanisms to adjust their responses (Torre et al. 1995). Yet,

there are no commonly accepted explanations of how vari-

ous steps work together to produce the temporal dynamics

to even the simplest step-like stimuli (De Palo et al. 2013),

where adaptation could happen in multiple timescales (Wark

et al. 2009). Part of the reason is because transduction

cascades in different sensory modalities have notable differ-

ences in the molecular components and their reaction

mechanisms, which add to the complexities in comparing

biophysical mechanisms associated with sensory adaptation.

The aim of this paper is to use computational modelling

approaches to investigate common adaptive mechanisms in

sensory receptor cells across different modalities, more specifi-

cally, photoreceptors and stretch-sensitive mechanoreceptors.

Despite the great differences in the physical stimuli these

receptors are specialized to detect, a photoreceptor and a

mechanoreceptor exhibit remarkably similar response dynam-

ics to step-like stimuli (Fig. 1). While this resemblance may be

purely coincidental, here we investigate whether it may be

explained by common underlying sensory mechanisms. In

response to an intense bright square pulse, a fly photorecep-

tor produces a large initial peak in the light-induced current

that quickly drops to a much smaller plateau, which then

slowly adapts before settling to the steady-state (Hardie &

Raghu, 2001). The rapid decrease in the peak component is

called fast adaptation, in which the cell only takes 200–500

ms to transit to the following plateau (Fig. 1A). The exponen-

tial decay during the plateau is called slow adaptation, which

can take place continuously for 10–20 s (Juusola & Hardie,

2001). Similarly, in a primary ending of mammalian muscle

spindle (Fig. 1B), a ramp-and-hold stretch evokes a compara-

ble characteristic pattern of potential change, consisting of a

large dynamic depolarization during the ramp phase and a

smaller static depolarization during the hold phase (Hunt

et al. 1978). The remarkable similarity in the response dynam-

ics from these receptor neurons motivates the question: do

these cells employ generic biophysical mechanisms for their

adaptation process? If so, how much do these generic

mechanisms account for adaptation in the cell responses?

Understanding common and distinct mechanisms for

adaptation in different senses is of great importance for the

reverse engineering2 of these sensory systems, for example,

to achieve modular designs in sensory prostheses. For

greater predictability of the mechanisms underlying recep-

tor responses, white-box biophysical models, which are

assembled from adequate known knowledge of the rele-

vant ion-channel kinetics, are preferable to descriptive

kernel modelling approaches in system neuroscience. How-

ever, few such studies exist in the mechanosensory field due

to the lack of knowledge of the transduction components

in these nerve terminals (Chalfie, 2009).

This paper will show that a stochastic adaptive sampling

mechanism, first developed in a phototransduction model,

can explain a number of dynamic features in mechanosen-

sory adaptation. We will first recap the stochastic adaptive

sampling mechanism, which was obtained from opening a

successful white-box biophysical model for the Drosophila

phototransduction cascade (Song et al. 2012). Then we will

adapt this visual system computational model to the equiv-

alent counterpart for a mechanosensory terminal. Using the

adapted model, we will show how stochastic adaptive

sampling explains several dynamic features in a mechanosen-

sory neuron’s response, namely, the initial peak component

in the ramp-and-hold evoked response and the ‘sensory

habituation’ phenomenon to repeated stimuli experiment.

Model

Fly photoreceptor model: a generic model based on

a stochastic adaptive sampling approach

Combining in vivo single-cell electrophysiology with bio-

physical modelling, a very successful ‘white-box’ mathemati-

cal model was established to describe the input–output

relationships of a fly photoreceptor (Song et al. 2012). The

term ‘white-box’ means that the signalling pathway was

modelled according to the known physiological stoichiome-

tric and kinetic properties of individual components, so that

the molecular reaction dynamics reproduce experimental

results at every stage of verification. A ‘white-box’ model is

constructed across the scales from molecular reactions

through transduction cascades, and up to whole cell

behaviour, so it is expected to replicate the cell’s final elec-

trophysiological outputs with minimal parameter tuning.

Because of its valuable genetic toolbox, the Drosophila

phototransduction cascade is so well studied that a wealth

of knowledge is available for the transduction signalling

pathways, making it an ideal starting point to assemble

such a ‘white-box’ biophysical model (Song et al. 2012). The

model not only correctly replicates the molecular dynamics

for a single photon response, but can also predict the

neuron’s macroscopic response over an enormous range

(102–107 photons s�1) and to time-series stimuli of variable

statistics (Song et al. 2012; Song & Juusola, 2014).

Experimental evidence suggests a quantum mechanism

operates for the detection of light. Most photoreceptors

(if not all) transduce light quanta (photons of suitable

2Reverse engineering, also called back engineering, is the pro-

cess of extracting knowledge or design information from sys-

tems and reproducing it mathematically/materially based on the

extracted information. The process often involves disassembling

something (a mechanical device, electronic component, com-

puter program, or biological, chemical or organic entity), and

analysing its components and workings in detail.
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energies) into unitary events, called elementary responses

or ‘quantum bumps’ (Hecht et al. 1941; Fuortes & Yeandle,

1964; Henderson et al. 2000). The information processing in

a photoreceptor depends on how photons in the light stim-

uli are sampled, how the sampled photons are transduced

into electrical bumps and how these bumps are integrated

together. To mimic such photon sampling and processing in

the light-sensitive and light-insensitive parts of the real

photoreceptor cells, the whole computational model linked

the following four modules (Song et al. 2009, 2012): (i) a

random photon absorption module, describing how incom-

ing photons are distributed across a large population of

sampling units (microvilli); (ii) a stochastic bump module,

describing how photons are transduced into electrical

bumps in each microvillus; (iii) a bump summation module,

summing bumps from all microvilli; and (iv) a Hodgkin–Huxley

module of the photoreceptor plasma membrane, converting

the light-induced current to the cell’s voltage response

(electrophysiological output).

The details of the phototransduction reactions and how

they are mathematically modelled are not the focus of this

paper, but what is important is the systematic view of signal

transduction, obtained from opening the ‘white-box’. The

conceptual understanding of the signal mapping can be

designed into an algorithm with the following heuristic

rules: a huge population of microvilli sample the incoming

photons according to a Poisson distribution; photons are

transduced into bumps inside single microvilli through

stochastic reactions; a photon leads to a bump if the micro-

villus is not in its refractory state, otherwise the photon

energy is lost; all bumps from all microvilli sum up the

macroscopic light-induced current; the bump rate increases

with stimulus photon rate (light intensity), but is con-

strained by structural limits (number of microvilli) and the

length of the refractory period; adaptation is achieved by

either bump adaptation (bumps shrink with increasing light

levels) or quantum efficiency reduction (bump/photon ratio

reduces). These heuristic rules were composed into an

adaptive mechanism, which was termed the stochastic

adaptive sampling mechanism (Song et al. 2012).

The stochastic adaptive sampling mechanism is a dual

multi-scale counterpart to the underlying biophysical ‘white-

box’. This approach is very useful because of its elegant

simplicity and powerful predictability. In the case of the

photoreceptor, it reduces the underlying signal transduction

mechanisms to only four general factors: the size of the quan-

tal events; their latency distributions; their refractory period

distributions; and the number of transduction units. In the

current article, we show that these four factors can easily be

adapted to model mechanosensory transduction, where they

will correspond, respectively, to a singlemechanosensory ion-

channel’s response, the ion-channels’ activation probabilities,

A B

Fig. 1 A photoreceptor and a mechanoreceptor exhibit remarkably similar response dynamics to step-like stimuli. (A) Light-induced-current in

response to bright square pulse in a fly photoreceptor (reproduced from Song et al. 2012). A large initial peak quickly drops to a post-dynamic

minimum, which then recovers to a much smaller plateau. The peak dynamic component is called fast adaptation, which takes only 200–500 ms

before transition to the plateau. The exponential trend at plateau is slow adaptation. (B) In a primary ending of mammalian muscle spindle, a

ramp-and-hold stretch evokes a comparable characteristic pattern of potential change, consisting of a large dynamic depolarization during the

ramp phase and a smaller static depolarization during the hold phase (reproduced from Hunt et al. 1978). 1–7 are numbered in the same way as

in fig. 1 in Hunt et al. (1978), representing different components in the rich response dynamics. They are named as: (1) baseline; (2) peak of initial

dynamic component; (3) peak of late dynamic; (4) post-dynamic minimum; (5) static maximum; (6) end static level; and (7) post-release minimum.

Although for better comparison with the model outputs it is best to use patch-clamped recording of the stimuli-induced ionic flow, as there were

no such data available in the literature for mechanotransduction, we showed sub-optimally the receptor potential of a primary ending of mamma-

lian muscle spindle.
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the ion-channels’ inactivation probabilities, and the number

of channels per nerve terminal.

The relative contributions of these four factors are deter-

mined through balanced positive and negative feedback

interactions in molecular reaction pathways, which can be

abstracted from a modelling point of view. The system’s

behaviour can be predicted as long as the statistics of the

four general factors are known or can be measured. In the

next section, we will describe an adaptation of this generic

model for mechanosensory receptors. In the Results, we will

illustrate the applicability of the generic model to both a

slowly adapting crayfish stretch receptor and a spindle

mechanosensory primary ending.

A generic biophysical model for mechanosensory

primary ending

Mechanotransduction is the process by which mechano-

sensory cells detect physical stimuli, such as tension,

stretch or pressure, and convert them into electrical

responses within the nervous system (Chalfie, 2009).

Primary mechanotransductions occur in specialized

mechanosensory endings, and they share common pro-

cesses (French, 1992). A simplified feed-forward pathway

for mechanotransduction is conventionally viewed as a

three-stage process (French, 1992): (a) the stimulus is

mechanically coupled to the receptor cell, causing a

deformation of the cell’s sensory terminal; (b) the defor-

mation is transduced into an electrical signal (receptor

current or potential) – the common view is that stretch-

sensitive ion-channels within the endings are directly

gated by mechanical stimuli; (c) the receptor potential is

then encoded into action potentials for transmission to

the nervous system. Here, we will describe a generic

feed-forward biophysical model for processes (a) and (b)

(depicted in Fig. 2), but (c) is beyond the focus of this

study. We will tailor the model to reproduce the ramp-

and-hold extension-evoked receptor potential dynamics

of stretch-sensitive mechanoreceptors, for example, a

crayfish slow stretch receptor and a mammalian spindle

primary ending. However, the beauty of this approach is

that the modelling structure would not lose its generality

in describing other mechanotransduction processes.

Viscoelastic model for receptor muscle components

Mechanosensory endings may implement diverse structures

to couple mechanical stimuli to the deformation of their

dendrite membranes. For example, mammalian spindles

directly incorporate the termini of stretch-sensitive afferent

neurons. Their sensory terminals in turn adhere to the

surface of the intrafusal muscle fibres (Bewick & Banks,

2014). Direct observation of isolated or semi-isolated muscle

spindles shows that stretch of the spindle is accompanied by

extension of the sensory region and measureable increase

in the spacing between the turns of the primary-ending

terminals (Boyd, 1976; Poppele & Quick, 1985).

Studying the mechanical properties of the associated

muscle fibres is crucial in understanding how receptor

muscle length changes (stretch stimuli) are mapped to the

tension changes on mechanosensory endings. These tension

changes are closely related to the forces or pressure on the

sensory terminals, composing the gating forces to the me-

chanosensitive channels (MSCs; Chalfie, 2009). Although

both direct experimental measurement (Hunt & Wilkinson,

1980) and theoretical estimate (see Banks in this volume) of

steady-state tension of a cat muscle spindle gives a range of

tension changes, no direct measurement of the tension

temporal profiles has been made. Therefore, tension

profiles normally rely on approximations from viscoelastic

models. A simple form of the models was proposed in the

1960s to describe the adaptive viscoelastic properties of the

intrafusal muscle fibres (Matthews, 1964). The model has

two components connected in series: one Voigt component

consists of elasticity (a spring) and viscosity (a dash-pot) in

parallel; and the other component consists of a pure elastic-

ity (Fig. 3A, reproduced from fig. 1A in Swerup & Rydqvist,

1996). The dendrite terminals are supposed to be attached

to the pure elasticity on the right-hand side (Fig. 3A). More

recently, the same model structure was used to describe the

adaptation in the tension profiles of Astacus astacus stretch

receptor muscle, which show strong analogy to mammalian

muscle spindles (Swerup & Rydqvist, 1996; Suslak et al.

2011). This illustrates the wide applicability of the viscoelas-

tic model for describing the dynamic behaviours of receptor

muscles. To give the model more parameter-fitting free-

doms, the pure elastic spring on the right-hand side was

changed to a non-linear spring in these recent works

Fig. 2 A simplified feed-forward model for mechanotransduction. The extension stimulus exerts tension onto the receptor muscle fibres, described

by a viscoelastic model (adapted from Swerup & Rydqvist, 1996). The tension is then transduced into a receptor current by stochastic sampling of

a large population of mechanosensitive channels (MSCs).

© 2015 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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(Fig. 3A). We will next re-implement this updated model

and slightly modify it when characterizing the possible

tension changes for a mammalian muscle spindle primary

ending.

The stimuli for the viscoelastic model are ramp-and-hold

extensions because of their extensive usage in mechano-

sensory experimental work (Fig. 3B). Principally, the

receptor muscle tension (rm) varies with the extension

(e), given by:

rm ¼ k � e2 ¼ k2 � enþ12 ¼ k1 � e1 þ B� de1
dt

ð1Þ

e ¼ e1 þ e2 ð2Þ

where k is the spring constant of the non-linear spring,

and it is an exponential function of the non-linear

spring’s extension: k ¼ k � en2 ; k1 is the spring constant of

the left-hand spring in Fig. 3A, in parallel of which is a

dashpot with a viscous constant, B; e1 is the extension of

the left-hand spring (Fig. 3A); the total extension of the

muscle (e) is the sum of e1 and e2; extensions are given as

the percentage of initial muscle length.

Combining Eqs 1 and 2, a differential equation for e2 can

be obtained:

de2
dt
¼ k1

e
B
þ de
dt
� k1

e2
B
� k2

enþ12

B
ð3Þ

where e2 can be solved using the Runge–Kutta method.

To replicate the super-sensitivity of tension during the

ramp phase, we introduced an adaptive ramp amplification

factor r for the non-linear spring when it is responding to

ramp stimuli:

de2
dt
¼ r � k1

e
B
þ de
dt
� k1

e2
B
� k2

enþ12

B

� �
ð4Þ

This factor was not implemented in the model described

in Swerup & Rydqvist (1996), but it seems to be necessary

here, so that a richer initial dynamical component can be

introduced in the responses (see Results, ‘Initial peak com-

ponent fast adaptation in a mamalian muscle spindle’).

e2 in Eqs 3 and 4 was then used to calculate the tension

experienced by the receptor muscle (rm) according to Eq. 1.

The tension in the primary ending terminal membrane (r),

where MSCs are localized in high concentration, was

assumed to be directly proportional to rm: r = rm/m, where

m is a constant.

Stochastic adaptive sampling from a huge population of

MSCs

The open probability for the MSCs (P0) is a function of the

tension in the primary ending terminal membrane, r. The

steady-state relationship between P0 and r was calculated

using a Boltzmann function:

P0 ¼ 1

1þ kbe
�s rm

mð Þq½ � ð5Þ

where kb is a constant, s is a sensitivity constant and the

power constant q is 1 in this study. Eq. 5 is the typical

way of mapping rm to P0 (Guharay & Sachs, 1984;

Erxleben, 1989; Swerup & Rydqvist, 1996). However,

crucially, it ignores the dynamical relationship of P0 to r.

Thus, it precludes the introduction of any extra adaptive

dynamics from the MSC openings, if present, and as pre-

dicted in this model.

Here, we introduced a way to implement such dynamics

into the computational model out of stochastic adaptive

sampling, as is present in the fly phototransduction.

Although mechanotransduction and fly phototransduction

share great similarities in response dynamics, the detailed

underlying reaction pathways responsible for these dynam-

ics seem certain to deviate greatly. The fly phototransduc-

tion process uses a second-messenger reaction pathway to

transduce the energy of a photon indirectly to Transient

Receptor Potential channel openings. But, mechanosensory

systems are generally thought to use direct transduction,

which does not involve a chemical intermediate. Therefore,

many properties of the intermediate second-messenger

molecules in the fly phototransduction cascade could be

collapsed into the equivalent activation and inactivation

profiles of the MSCs.

Quantitative analysis of single MSC records reveals that

the sensitivity to stretch can be described by a linear four-

state model with one open (O) and three closed (C) states

(Sachs, 1986). Here, for simplicity, we classify the closed

states into two categories. One category is a refractory state

(R), where the channel is inactivated and cannot be opened

again, even though there is a stimulus. The other category is

A

B

Fig. 3 (A) Viscoelastic model used to represent receptor muscle

(Swerup & Rydqvist, 1996). Total extension is the sum of that from

both linear (left-hand-side spring in A) and non-linear springs (right-

hand-side spring in A). The spring constant of the non-linear spring is

k = k2 9 en. (B) General form of the ramp-and-hold extension. e0 is

extension before ramp, t1 is the end of extension rising phase, a is

rate of rise, t2 and t3 define the falling phase of the ramp, b is the

rate of fall.
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an available state (A), which means that the channel is avail-

able to be opened by an external stimulus. For this model,

the sequence of channel activation is illustrated as follows:

A�!P0;t O�!to R

"  ������
tr

# ð6Þ

The number of newly opened MSCs at each moment in

time is then calculated as:

Na!o;t ¼ Na;t � P
0;t

ð7Þ

where Na?0,t is the number of newly opened channels

at t, Na,t is the number of available channels (closed

channels that are not in their refractory period) at t, P0,t,

is the channel open probability at t, calculated by Eq. 5.

Na,0 is initialized as NT. All opened channels change into

state R after to, where to follows a uniform distribution

between 1 and topen. All channels in state R will change

to state A after tr, where tr follows a uniform distribu-

tion between 1 and tR.

The macroscopic stretch-induced current, or receptor

current (Is), is generated by the ionic flow through all the

simultaneously opened individual MSCs:

Is ¼ No;t � gMSC � ðE � EsrevÞ ð8Þ

where E is the membrane potential and Esrev is the rever-

sal potential for the MSCs. In actual patch-clamp experi-

ments, E is typically voltage-clamped to the cell’s resting

membrane potential. gMSC is the single MSC

conductance.

The iterative implementation of Eqs 6–8 over time is per-

formed according to stochastic sampling principles: at each

moment, the channels that are opened are stochastically

sampled from the available pool, which are indexed for a

time period of to + tr, before they return back to the avail-

able pool again. Furthermore, to and tr are determined

according to their own distribution, respectively. To keep

the model simple, these distributions are assumed to be

uniform.

Logically, in order to transpose the phototransduction

model directly into that for mechanotransduction, it is nec-

essary to imagine digitized sampling of a continuous input

(tension changes). This is harder to conceptualize than sam-

ples of discrete photons. However, as the mechanosensory

response results from direct gating of a population of trans-

duction channels, each with a unitary all-or-none current,

the number of opening channels can be viewed as the sam-

ples of the continuous tension changes. In other words, an

open channel is a discrete sample of the input at a quantum

level. It is this way of thinking that forms the bridge

between mechanotransduction and phototransduction

within the stochastic adaptive sampling framework, as the

commonality is how the number of discrete samples

changes to specific stimuli of varying intensity.

Results and discussion

Simulation of a slowly adapting mechanoreceptor

To verify this modelling framework for a mechanoreceptor,

we first used the model to reproduce the ramp-and-hold

extension-evoked responses of the crayfish slowly adapting

stretch receptor. Crayfish stretch receptors are well studied,

making them the prime choice for testing mechanosensory

models. Experimental measurements of both receptor mus-

cle tensions and the corresponding receptor potentials have

been published (Rydqvist et al. 1990; Rydqvist & Swerup,

1991), and computational models have also been developed

to map the receptor’s input–output relationships (Swerup &

Rydqvist, 1996; Suslak et al. 2011). Thus, simulated results

from the current modelling framework can be compared

against both experimental measurements and simulation

results from previous models. Figure 4 shows such model

validation results, where the left panel in the figure corre-

sponds to tension profiles experienced by the muscle and

the right panel displays the tension-induced-current profiles

from the receptor sensory terminals. The parameters used

for these simulations are listed in Table 1.

In accordance with the actual experimental stimuli, ramp-

and-hold extensions from 3 to 30% (Fig. 4D) were applied

to the present model (Fig. 2) and to the previous model

(Swerup & Rydqvist, 1996). Compared with experimental

recordings, the present model simulations are comparable

to that from the approach of Swerup & Rydqvist (1996). The

present model produced tensions that have the same

dynamics as that produced from the viscoelastic model in

Swerup & Rydqvist (1996); indicating a correct re-implemen-

tation of their model. And vice versa, the current model

deviates from experimental recorded tensions in the same

way as shown in Swerup & Rydqvist (1996). One characteris-

tic difference is that experimental data show a relatively lar-

ger stiffness in the low extension range, resulting in a

typical ‘hump’ in the rising phase of the peak tension

response (black arrow in Fig. 4A, left).

Stochastic sampling of MSCs was implemented to pro-

duce the tension-induced-current profiles (Fig. 4C, right).

Although the present model simulations still deviate from

experimental recordings (Fig. 4A, right), they produce

briefer and better peak dynamics than that shown in

Swerup & Rydqvist (1996). In the modelling framework,

MSC open times, latencies and refractory periods were all

uniformly distributed, with their respective maximum values

listed in Table 1.

Interestingly, refractory periods are much shorter than

channel open times and latencies. In fact, if the refrac-

tory period is reduced to 0 ms, equally good results are

produced (data not shown), indicating that a more

simplified two-MSC state model (open and closed) can

readily account for this slow stretch receptor’s response

dynamics.
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Initial peak component for fast adaptation in a

mamalian muscle spindle

In a mammalian muscle spindle, a primary ending responds

to the simplest ramp-and-hold extension stimuli (Fig. 5E)

with considerably rich temporal dynamics, including initial

peak dynamics (component 2 in Fig. 5C), late peak dynamics

(component 3 in Fig. 5C), and post-dynamic minimum

(component 4 in Fig. 5C). The question is how to reverse

engineer (i.e. design an equivalent) a system that can repro-

duce such rich response dynamics. We present here some

scientific insights gained from simulating the stochastic

adaptive sampling model for MSCs in a mammalian muscle

spindle. The parameters for the model simulations in this

section are listed in Table 2.

The multi-dynamical components are likely the combined

results of both mechanical and ionic mechanisms (Grigg,

1986). The peak component is characterized by a dramatic

drop following the end of the length increase. It was shown

in a previous mechanical model for a muscle spindle that

this drop, also called the dynamic index, is proportional to

the velocity of stretch (Matthews, 1964). To reproduce this

effect, a large adaptive ramp amplification factor (r = 10) is

needed to produce the dynamic component 3 in Fig. 5C,

characterized by a small plateau on top of the initial peak

of the tension profiles (Fig. 5F). Otherwise, the tension

profiles would just produce simple sharp peaks without the

small plateau (Fig. 4C, left). There is no initial dynamic

component in the tension profiles (component 2 in Fig. 5C

is missing in Fig. 5F) if no ionic mechanisms are included.

Just as fast adaptation dynamics emerge out of stochastic

sampling from a huge population of refractory microvilli in

photoreceptors (Fig. 5A,B), the initial peak component in a

primary ending’s receptor potential can be obtained by

stochastic sampling from a population of refractory MSCs

(Fig. 5C,D). In a fly photoreceptor, at the onset of a bright

A

B

C

D

Fig. 4 Tension (left panel), tension-induced-current (right panel) responses to ramp-and-hold extensions of a crayfish slowly adapting stretch

receptor, and the model simulation outputs. (A) Recorded responses from a slowly adapting stretch receptor in response to ramp-and-hold exten-

sions (1500% s�1) of 3–30% of muscle length (D). (B) Model-simulated responses (Swerup & Rydqvist, 1996). (C) Model-simulated responses

(present model). An adaptive ramp amplification factor was added to the model of Swerup & Rydqvist (1996) to produce the tension profiles in

(C, left). Stochastic sampling of MSCs was implemented to produce the tension-induced-current profiles (C, right). MSC opening duration, latency

and refractory period were all uniformly distributed, with their respective maximum values listed in Table 1. Interestingly, compared with channel

opening times and latencies, refractory periods are much shorter. In fact, a ‘0 ms’ refractory period can produce equally good results (data not

shown), indicating that a two-MSC state model (open and closed) can already take account of the slowly-adapting stretch receptor’s response

dynamics. Other parameters used are listed in Table 1. (D) Ramp-and-hold extension stimuli. Results are normalized, as the focus of the paper is

not to fine-tune the parameters to reproduce the response absolute amplitude values, but only the temporal dynamics.
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light stimulus, all microvilli are sensitive to the stimulus,

inducing the large initial increase in the response current.

But as the microvilli become refractory, fewer and fewer of

them are available to sample the subsequent incoming

photons, resulting in a sharp decrease in the number of

activated microvilli (Fig. 5B), and producing the fast adapta-

tion dynamics in the light-induced current response

(Fig. 5A). Similarly, stochastic sampling from refractory

MSCs introduces the extra sharp peak in the dynamic com-

ponent (Fig. 5D replicating dynamical component 2 in

Fig. 5C). At the onset of a stretch stimulus, all MSCs are

responsive. But, as the increased tension is maintained, they

become refractory, and fewer are left available. This results

in the initial rapid fall in receptor current (initial peak

dynamical component 2 in Fig. 5C). Thus, a prediction of

the model is that the common mechanism that may under-

lie both the mechanoreceptor and a fly photoreceptor

responses is that their sampling units (MSCs or microvilli)

are both refractory in nature.

In contrast to the MSCs in a crayfish slow stretch receptor,

which have very short refractory periods relative to their

open time, the MSCs in a muscle spindle have much longer

refractory periods than their open time. For example, to

reproduce the initial peak dynamics of ramp-and-hold

extension-evoked responses of a muscle spindle, the ratio

between MSC refractory period to MSC open time (tr/to = 6)

is sixfold larger than that in a slow stretch receptor (tr/to =

1). This indicates that a crayfish slow stretch receptor and a

muscle spindle would have different groups of MSCs with

distinct channel properties.

In preliminary studies of a more extreme simulation, it

was found that an even longer refractory period (e.g. 120

ms, tr/to = 60) is needed to produce the post-dynamic mini-

mum (component 4 in Fig. 5C, simulation data not shown).

This infers that the initial peak dynamics and the post-

dynamic minimum may result from mechanisms that span

very different timescales. Of course, from a system point of

view, similar response characteristics in the post-dynamic

minimum could result from a differentiator, for which the

mechanic solutions can be many. For example, the system

may combine slow and fast populations of MSCs, or may

have a single population of MSCs with multiple refractory

states. Other equally valid mechanisms have also been sug-

gested, such as current shunting by voltage-gated potas-

sium conductances (Hunt et al. 1978). These possibilities will

be explored in future developments of the model.

Although recent experimental evidence suggests that var-

ious feedback pathways can act as gain control mechanisms

between the input and output of a primary sensory ending

(Bewick & Banks, 2014), this model shows here that some

adaptation phenomena can be accounted for without such

feedback pathways. Certainly, the refractory nature of MSCs

may be related to channel inactivation mechanisms, which

may involve molecular reaction or ionic feedback pathways.

Although the modelling framework presented here cannot

unequivocally elucidate the detailed molecular mechanisms,

it is useful for quantifying the necessary time constants of

MSC activation and inactivation dynamics. This may provide

valuable clues for screening MSC candidates in these

mechanosensory systems.

‘Sensory habituation’ for repetitive stimuli

‘Sensory habituation’ describes the decline in responses of

a primary sensory unit to a repetitive train of identical

stimuli. The mechanisms underlying ‘sensory habituation’

are still mysterious. In a mechanosensory neuron, it may

involve processes working on multiple timescales, includ-

ing combined changes in the underlying graded potentials

and in the spike induction processes (Pasztor & Bush,

1983).

The present computational study shows that stochastic

sampling from a population of refractory MSCs may con-

tribute a faster component in the ‘sensory habituation’ of

mechanoreceptors. Figure 6 shows simulated results, as it

has not yet been possible to undertake experimental valida-

tion of the simulations. This ‘playing’ with the model is an

Table 1 Model parameter values for Fig. 4.

Parameter Description Value (unit) Sources

Viscoelastic elements

k1 Spring constant for

linear spring

200 (kPa) SR96*

k2 Spring constant for

non-linear spring

1100 (kPa) SR96

n Power constant for

non-linear spring

1.2 SR96

B Dashpot constant 12 (kPa) SR96

r Ramp amplification for

non-linear spring

2 tuned

MSCs

kb Boltzmann constant

(linear)

106 SR96

S Sensitivity constant

(linear)

0.00277 (Pa�1) SR96

Q Power constant (linear) 1 SR96

M Tension conversion factor 80 Tuned

gMSC Maximum unit

conductance for

the MSCs

35 (pS) Tuned

E Voltage-clamp potential �70 (mV) SR96

Esrev Reversal potential for

MSC

+10 (mV) SR96

topen Maximum MSC opening

time

10 (ms) Tuned

t1 Maximum MSC response

latency

10 (ms) Tuned

tr Maximum MSC refractory

time

5 (ms) Tuned

NT Total number of MSCs 300 000 Tuned

*SR96 = Swerup & Rydqvist (1996).MSC, mechanosensitive channel.

© 2015 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

Modelling mechanoreceptor’s dynamics, Z. Song et al.250



exercise in exploring the qualitative possibilities expected in

experiments, which can be tested when exact quantification

is carried out.

When stimulated with two identical episodes of ramp-

and-hold extension stimuli (30%, with a ramp rate of

1500% s�1 in Fig. 6C), the tension-induced-current of a me-

chanosensory ending decreases with the second stimulus

(Fig. 6A). As two identical episodes of tension responses

were evoked in the simulations (Fig. 6B), the ‘sensory habit-

uation’ in the tension-induced-current responses must be

caused by the MSC opening dynamics. In fact, to produce

the response decline in the second episode of response, a

relative long refractory period (it is extended 10-fold to

120 ms from 12 ms in the muscle spindles simulation, as

shown in Table 2) has to be used in the simulations. With

this longer refractory period, fewer MSCs are left to

respond to the second stimulus, as many MSCs are still

refractory from the first.

Although adaptive voltage-dependent conductance

changes can also produce such ‘sensory habituation’ phe-

nomenon, stochastic adaptive sampling from refractory

MSCs provides an alternative, and potentially simpler,

explanation that might be explored experimentally. Indeed,

stochastic adaptive sampling also explains ‘sensory habitua-

tion’ in fly photoreceptors in the same way (data not

shown). Whatever the underlying system is being modelled,

whether a fly photoreceptor or a mechanoreceptor, in the

stochastic adaptive sampling framework, this ‘sensory habit-

uation’ effect would be dependent on the number of

refractory units, the distribution of their refractory periods,

the duration of each stimulus and the interval between the

two consecutive stimuli.

A B

C D

E F

Fig. 5 Stochastic sampling from a population of refractory units produces fast adaptation dynamics in a fly photoreceptor’s light-induced current

(A and B) and initial peak dynamic component in a mammalian muscle spindle’s tension-induced-current (D). In a fly photoreceptor, at the onset

of a bright light stimulus, all microvilli are sensitive to respond, inducing a sharp increase in the response. But as the microvilli become refractory,

fewer and fewer are available to sample the next coming photons, resulting in a sharp decrease in the number of activated microvilli (B), and

hence a fast adaptation dynamics in the light-induced current response (A). In a mammalian muscle spindle primary ending, ramp-and-hold exten-

sion stimulus (E) evokes rich dynamics in the receptor potential (C). Although for better comparison with the model outputs it is best to use patch-

clamped recording of the stimuli-induced ionic flow, as there were no such data available in the literature for mechanotransduction, we showed

the receptor potential as a sub-optimal substitute in (C). With such a comparison, at least one can see the dynamic components in the receptor

potential that can already be produced with the stochastic adaptive sampling framework. The multiple dynamical components in the response are

likely the combined results of biophysical mechanisms from different sources. A large adaptive ramp amplification factor (r = 10) is needed to pro-

duce the dynamic component 3 in (C), characterized by a small plateau on top of the tension profile (the small plateau in f replicates the dynamic

component 3 in C). Otherwise, the tension profiles would look like that shown in Fig. 4C, left, i.e. sharp peaks are produced without the small

plateau. Unlike the fly photoreceptor microvilli, the refractory period of MSCs in a mammalian muscle spindle is much shorter, compared with its

own open time. As a result, stochastic sampling from a population of refractory MSCs introduces the extra peak of the initial dynamic component

(D replicates component 2 in C). In comparison, the stochastic sampling from refractory microvilli in a fly photoreceptor produces the post-dynamic

minimum. In this particular simulation, the post-dynamic minimum (component 4 in C) is not produced in the tension-induced-current response.
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Benefits of the stochastic modelling framework

There are some major advantages to this new stochastic

modelling approach. Traditionally, the open probability for

MSCs (P0) has been modelled as a non-linear equation of

terminal membrane tension r, for example, Boltzmann

relationship in Guharay & Sachs (1984), Erxleben (1989) and

Swerup & Rydqvist (1996). However, such calculations only

consider the steady-state relationship between P0 and r,

but ignore the temporal dynamics of P0 subject to changes

in r. In the end, P0 would only be a non-linear static

mapping of the temporal profile of r. This static mapping

cannot replicate the initial peak dynamic component in

Fig. 5C, which requires extra biophysical mechanisms, such

as that in channel openings.

Another traditional approach is to use ordinary differen-

tial equations (ODEs) to model the relationships between P0
and r, so that dynamics from a differentiator can be intro-

duced. But, with such a deterministic approach, the model

would produce exactly the same results with repeated stim-

ulations, as it intrinsically incorporates identical initial con-

ditions and identical input dynamics (r) each time. With

repeated stimuli, therefore, the deterministic ODE would

not be able to produce ‘sensory habituation’ effects with-

out changing the model’s parameters each time. Changing

a model’s parameters may produce to some extent the

experimental results in ‘sensory habituation’, but underly-

ing biological mechanisms are less obvious. The potential

explanations would also be purely dependent on how the

model is parameterized. For example, a complicated model

requires many free parameters, resulting in a vast pool of

alternative parameter combinations to produce similar

effects in final model outputs. An equal number of experi-

mental verifications need to be carried out, which is a

tedious and difficult task.

Stochastic adaptive sampling fromMSCs is a much simpler

modelling framework that incorporates relatively small

numbers of physiologically relevant parameters. Thus, this

current paper shows the power of using this modelling

framework as a general approach to model sensory systems.

Promising and testable scientific insights from a mechano-

sensory receptor were produced, in the same way as

insights were produced into explaining neuron encoding

for fly photoreceptors (Song et al. 2012; Song & Juusola,

2014).

Conclusions

The aim of the current study was to investigate the com-

mon adaptation response profiles seen in photoreceptors

and mechanoreceptors. The motivations for conducting

such research are: (i) to explore if common adaptive mecha-

nisms could be utilized in neurons from different sensory

Table 2 Model parameter values for Fig. 5.

Parameter Description Value (unit) Sources

Viscoelastic elements

k1 Spring constant for

linear spring

100 (kPa) SR96

k2 Spring constant for

non-linear spring

2200 (kPa) SR96

n Power constant for

non-linear spring

1.5 SR96

B Dashpot constant 40 (kPa) SR96

r Ramp amplification for

non-linear spring

10 Tuned

MSCs

Kb Linear constant 10 Tuned

m Tension conversion factor 300 Tuned

gMSC Maximum unit

conductance for the MSCs

35 (pS) Tuned

E Voltage-clamp potential �70 (mV) SR96

Esrev Reversal potential for MSC +10 (mV) SR96

topen MSC opening time (fixed) 2 (ms) Tuned

t1 MSC response latency

(fixed)

0 (ms) Tuned

tr Maximum MSC

refractory time

12 (ms) Tuned

NT Total number of MSCs 100 000 Tuned

MSC, mechanosensitive channel.

A

B

C

Fig. 6 Stochastic sampling from a population of refractory mechano-

sensitive channels (MSCs) can produce ‘sensory habituation’ in a mech-

anoreceptor’s tension-induced-current profile, i.e. the first episode of

response is larger than the second (A). Two episodes of the same

extension pattern were applied sequentially to stimulate the modelled

muscle spindle (C), evoking two episodes of same tension responses

(B). However, the first episode of tension-induced-current response is

larger than the second. The mechanisms underlying this ‘sensory habit-

uation’ are still a mystery. Here, stochastic sampling from a population

of refractory MSCs can reproduce to some extent the ‘sensory habitua-

tion’ effect. The reason is because while many MSCs are still refractory

from responding to the first episode of stimulus, fewer MSCs are left

to respond to the second episode of stimulus.
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modalities; and (ii) to derive system level insights into the

transduction components in mechanosensory nerve termi-

nals, using understandings derived from the well-studied

phototransduction process.

The approach here used computational models to explore

how various sensory mechanisms may work together to gen-

erate coherent adaptive behaviour at the system level. A

general biophysical model was established to map ramp-

and-hold stretch stimuli to a mechanosensory primary

ending’s receptor current. The model took into account the

viscoelastic properties of the accessory receptor muscle fibres

and the biophysical properties of the MSCs. A stochastic

adaptive sampling framework was adapted from phototo-

transduction to describe how a large population of MSCs

collectively produce a complex response pattern to external

mechanical stimuli, i.e. ramp-and-hold stretch evokes a large

and complex dynamic depolarization during the ramp phase

and a smaller plateau depolarization during the hold phase.

The model predicts that the initial dynamic component in

a primary sensory ending’s receptor current is likely a

combined result of both the mechanical properties of the

muscle fibres and the refractory nature of MSCs. Tension

increases more rapidly in the ramp phase, resulting in the

dynamic component. At the onset of the stretch, all MSCs

are sensitive to external stimuli. Later, as they become

refractory (inactivated), fewer MSCs are able to respond to

the continuous stretch, resulting in a sharp decrease in ten-

sion-induced-current after the initial peak response. This

induces the initial peak feature in the dynamic component.

In a further development of the model, the same

mechanism could contribute a faster component in ‘sensory

habituation’ of some mechanoreceptors; with repetitive

stimuli, a receptor responds less strongly to the subsequent

stimulus episodes.

Without any parameter changes, this same model struc-

ture for phototransduction also produced the adaptive

dynamics in the receptor current in a mechanosensory sys-

tem. This adaptation emerged naturally out of a population

of stochastically operating refractory units (MSCs), just as

adaptation emerged from a very large population of refrac-

tory microvilli in fly photoreceptors. What is common in the

two systems are the assumptions that: (i) there is a huge

population of sampling units; (ii) that each sampling unit is

refractory in nature; and (iii) that the units operate stochas-

tically according to their own activation and inactivation

profiles.

This study is focused on developing the model as a test-

bed for scientific insights and practical laboratory evalua-

tions; it provides predictions about adaption dynamics. It

suggests alternative candidate mechanisms to explain

sensory adaptation in single neurons. It is not our intention

to make any claims that these mechanisms are the only

ones to explain the peak dynamics in a primary sensory end-

ing’s response. Other mechanisms, such as voltage-gated

conductances or Ca2+-activated conductances, may provide

alternative or contributory effects in various ways for differ-

ent types of neurons.
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