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INTRODUCTION 
 

Ovarian cancer, about 90% originated from ovarian 

surface epithelium, is one of the most common 

malignant tumors in the female reproductive system, 

with a very low five-year survival rate and the highest 

mortality rate among all kinds of female tumors [1]. The 

molecular mechanisms in ovarian cancer development, 

recurrence and metastasis are complex and changeable, 

leading to insufficient innovation in early clinical 

diagnosis and treatment models [2]. As the most 

common pathological type among ovarian carcinomas, 

ovarian serous cancer (OSC) accounts for 80–95% of 

ovarian malignancies [3]. Although current therapeutic 

strategies for OSC have improved significantly, the 5-

year survival rate of OSC is still much lower than other 

gynecological malignancies, with a relapsing rate of ~ 

70% of patients [4]. Elucidating the molecular 

mechanism of OSC may help us understand the patho-

genesis and progress of OSC and identify new targets for 

effective treatment. However, relatively little is known 

about the molecular events leading to the development 

of this highly invasive disease [5]. 

 

Epithelial-mesenchymal transformation (EMT), one of 

the core biological process in the occurrence and 

development of epithelial ovarian cancer (EOC), has 

been considered as the crucial mechanism of ovarian 

surface epithelial cells participating in ovarian tumor 

growth, migration, invasion, metastasis and drug 

resistance formation [6]. Moreover, it is necessary to 

explore more meaningful biomarkers for early clinical 

diagnosis and EMT biological mechanism related to the 

pathogenesis, early prevention and treatment of OSC. 

 

The main features of EMT are loss of epithelial 

phenotype and acquisition of stromal features [7], which 

makes epithelial cells lose intercellular connection, 
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ABSTRACT 
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invasion and progression of OSC. In this study, two core genes (BUB1B and NDC80) among the 16 hub genes 
have been identified to be involved in the molecular regulation of EMT and associated with the poor early 
survival of OSC at stages I+II. Through the Gene Regulatory Networks (GRN) analysis of 15 EMT regulators and 
core genes, it was revealed that TFAP2A and hsa-miR-655 could elaborately modulate EMT development of 
OSC. Next genetic variation analysis indicated that EMT regulator ELF3 would also serve as a crucial part in the 
occurrence and progression of OSC. Eventually, survival investigation suggested that TFAP2A, ELF3 and hsa-miR-
655 were significantly associated with the overall survival of progressive OSC patients. Thus, combined with 
diversified bioinformatic analyses, BUB1B, NDC80, TFAP2A, ELF3 and hsa-miR-655 may act as the key 
biomarkers for early clinical diagnosis and prognosis evaluation of OSC patients as well as potential therapeutic 
target-points. 
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reduce adhesion, and obtain mesenchymal characteristics 

[8]. The dissociation of cell connections during the EMT 

process is not a "collapse" caused by simple cytoskeletal 

changes, but a more fine-tuned way in that first is the 

dissociation of adhesive connections, then the 

cytoskeletal changes and the multi-step dissociation of 

tight connections process [9]. EMT plays an essential 

role in wound healing, stemness acquirement, tissue 

fibrosis and in OSC deterioration covering cancer 

invasiveness progression, distant metastasis, relapse and 

drug resistance developments [10]. Previous studies 

have shown that EMT transcriptional regulators, such as 

CDH1/E-cadherin, CDH2/N-cadherin, ZEB1, ZEB2, 

SNAI1, SNAI2, TWIST1 and TWIST2, are essential for 

promoting cell invasion, migration, proliferation and 

angiogenesis [11, 12]. During EMT conversion, tumor 

cells undergo obvious cytoskeletal reconstruction based 

on the expression of various transcription factors and 

activation of surface receptors related to EMT phenotype 

[13]. Dr. Ruby Huang's research indicated that AXL, 

when activated as an EMT regulator, could interact with 

other proteins, thus forming an intracellular signal to 

enhance the invasion, migration and proliferation of 

ovarian cancer cells as the crucial signal of EMT 

promoting cancer development [14]. ARK5/NUAK1 and 

HOXA10, as the regulatory factors in EMT cascade 

loop, were remarkably upregulated, when compared with 

adjacent normal tissues, thus enhancing invasiveness of 

ovarian cancer [15]. In the main signaling pathways 

closely related to EMT, BIRC5, CTNNB1 and relevant 

other proteins could also enhance the migration and 

proliferation of ovarian cancer cells with the expression 

of EMT markers [16, 17]. Meanwhile, PARP-1, also as a 

core EMT regulator, could play an important role in 

OSC progression [18, 19]. However, another EMT 

regulator ELF3, when up-regulated, could mediate the 

EMT signal molecules cascade to increase the 

expression of epithelial markers and decrease the 

mesenchymal markers in ovarian cancer [20]. Therefore, 

EMT is closely involved in the process of tumor 

development, invasion, metastasis and recurrence of 

OSC [13]. Nevertheless, the relation of expression 

profile of transcription factors and proteins associated 

with EMT to the diverse pathological features of OSC 

has not been comprehensively investigated. 

 

In this study, the obvious common differential 

expression genes (co-DEGs) from the gene expression 

data of 3 OSC datasets in the Gene Expression Omnibus 

(GEO) database were screened for Gene Ontology (GO) 

and Kyoto Encyclopedia of Gene and Genome (KEGG) 

functional enrichment analysis. Through the protein-

protein interactions (PPIs) network co-expression 
interaction of co-DEGs, we carried out the integrated 

bioinformatics analysis to find those core genes with a 

significant hint for early clinical diagnosis on OSC. 

Then, co-expression analyses for core genes and 15 

EMT regulators involved in the multiple pathological 

features of ovarian cancer were conducted to detect the 

critical regulatory role of these genes and regulators in 

the occurrence and progression of OSC. Next, ovarian 

specific co-expression regulation analysis, KEGG 

function enrichment analysis, genetic variation, mutation 

count, overall survival status, and GRN analysis would 

be managed respectively. In summary, based on 

comprehensive bioinformatics analyses [21–23], this 

study would assist with exploring the potential 

biomarkers, elucidating the mechanisms underlying 

relevant pathophysiological events and finally exploiting 

effective and reliable targeted therapies for OSC. 

 

RESULTS 
 

DEGs identification with data normalization 

 

Three expression profiles (GSE36668, GSE54388, and 

GSE69428) were obtained from the GEO database, and 

the specific details were listed in Supplementary Table 

1. These datasets, covering OSC tissues and normal 

ovary tissues, were both from patients with OSC, with 

GSE36668 including 4 OSC tissues and 4 normal ovary 

tissues, GSE54388 containing 16 OSC tissues and 6 

normal ovary tissues, GSE69428 consisting of 10 OSC 

tissues and 10 normal ovary tissues (Supplementary 

Table 1). We evaluated these datasets by Principal 

component analysis (PCA) after data normalization 

(Figure 1A–1C and Supplementary Videos 1–3). Then, 

the heatmaps of gene expression in GSE36668, 

GSE54388 and GSE69428 were shown in 

Supplementary Figure 2A–2C. After gene annotation, 

the DEGs were screened in each data series with Log 

FC≥1 or Log FC≤-1 and p-value<0.05 as the criteria for 

selection. The GSE36668 dataset included 2058 DEGs, 

covering 1199 upregulated and 859 downregulated 

genes (Figure 1D); the GSE54388 dataset included 1637 

DEGs consisting of 1008 upregulated and 629 

downregulated genes (Figure 1E); the GSE69428 dataset 

included 1344 DEGs consisting of 613 upregulated and 

731 downregulated genes (Figure 1F) as shown in 

Volcano plots. The details of significant DEGs from 

each dataset were displayed in Supplementary Table 2. 

Moreover, the overlap of co-DEGs in three datasets 

contained 279 genes, as Venn diagrams showed, 

consisting of 216 upregulated co-DEGs (Figure 1G) and 

63 downregulated co-DEGs (Figure 1H) when compared 

with normal ovary samples. 

 

Functional annotation and PPIs network of co-DEGs 

 

279 co-DEGs were subjected to GO enrichment for 

biological process (BP), molecular function (MF) and 

cellular component (CC) analyses according to criterion 



 

www.aging-us.com 3114 AGING 

of p-value<0.01. The BP analysis of co-DEGs was 

mainly focused on the cell division (GO:0051301), 

mitotic nuclear division (GO:0007067) and DNA 

replication (GO:0006260) (Supplementary Table 3 and 

Figure 2A). For CC analysis, the co-DEGs were notably 

enriched in the midbody (GO:0030496), nucleoplasm 

(GO:0005654) and cytoplasm (GO:0005737) 

(Supplementary Table 3 and Figure 2B). Concerning the 

 

 
 

Figure 1. The distribution of expression situation and DEGs identification among GSE36668, GSE54388 and GSE69428 after 
normalization. (A–C) Whole transcriptomes were subjected to PCA on expressed genes to assess sample diversity and relatedness between 

OSC tissues (black dot) and normal ovary tissues (red dot). See also Supplementary Videos 1–3 (Supporting Information). (D, E) Volcano  
plots represent DEGs between OSC tissues and normal ovary tissues. Red dots indicate upregulation in DEG (LogFC≥1, p-value<0,05), and 
green dots indicate down regulation (LogFC≤-1, p-value<0.05). Three-way Venn diagram based on whole transcriptomes represents the 
distribution of the up expressed genes (G) and the down expressed genes (H) among these datasets. 
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MF analysis, the co-DEGs were mostly enriched in 

protein binding (GO:0005515), microtubule binding 

(GO:0008017) and microtubule motor activity 

(GO:0003777) (Supplementary Table 3 and Figure 2C). 

In addition, we utilized the DAVID to categorize co-

DEGs in the KEGG database. Subsequent results 

indicated that the co-DEGs were significantly involved 

in 12 signaling pathways, such as cell cycle (hsa04110), 

DNA replication (hsa03030), and biosynthesis of amino 

acids (hsa01230) (Supplementary Table 3 and Figure 2D). 

 

Then, PPIs network was constructed to explore the 

interaction relationship among co-DEGs in the 

pathogenesis of OSC. The interaction score≥0.09 (high-

confidence interaction score) for nodes was considered as 

a pronounced PPIs network (Figure 3). The backbone 

 

 
 

Figure 2. Functional annotation of co-DEGs between OSC tissues and normal ovary tissues using GO terms of BP, CC, MF and 
KEGG pathway. Bubble map for Go terms of BP (A), CC (B), MF (C) and KEGG pathway (D). 
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network of co-DEGs consists of 134 nodes with an 

estimated clustering coefficient of 0.671 and PPIs 

enrichment (p-value<1.0e-16). Moreover, the topological 

parameters of co-DEGs PPIs network were displayed in 

Table 1, including the Avg. clustering coefficient (Figure 

4A), closeness centrality (Figure 4B), betweenness 

centrality (Figure 4C), shortest path length distribution 

(Figure 4D), the distribution of the node degree (Figure 

4E) and topological coefficients (Figure 4F). 

 

Core genes identification 

 

Next, Degree>40 was set as criterion to screen hub genes. 

Simultaneously, based on the module analysis, nine 

 

 
 

Figure 3. PPIs co-expression network from 279 co-DEGs. The sphere color and size represent the degree of nodes with the line color 

indicating the combined score among them. 
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Table 1. Topological parameters for co-DEGs PPIs network. 

Topological parameters Comprehended values 

Number of nodes 134 

Clustering co-efficient 0.617 

Network density 0.103 

Network heterogeneity 1.098 

Network centralization 0.407 

Shortest paths 10572(59%) 

Characteristic path length 2.303 

Avg. number of neighbors 13.642 

 

 
 

Figure 4. Backbone network PPIs topology parameters. (A) Avg. clustering coefficient. (B) Closeness centrality. (C) Betweenness 
centrality. (D) Shortest path length distribution. (E) Distribution of the node degree. (F) Topology coefficient. 
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significant modules were obtained (Supplementary Table 

4). The seed nodes in these nine modules were also 

regarded as hub genes. According to the cut-off criteria, 

we collected 16 hub genes totally (Supplementary Table 

5). Overall survival impacts of hub genes on patients with 

OSC at all stages were performed by Kaplan-Meier 

plotter (Supplementary Figure 3). A survival forest map 

for hub genes was shown as Supplementary Figure 3A 

and the hub genes-related survival curves were presented 

in Supplementary Figure 3B–3Q. As a result, we 

discovered 13 hub genes which were significantly 

associated with the overall survival of OSC patients 

among 16 hub genes, except for VIM [HR=0.92 (0.79-

1.08), logrank P=0.3] (Supplementary Figure 3C), 

SPARCL1 [HR=1.15 (0.96-1.37), logrank P=0.13] 

(Supplementary Figure 3E), and CDCA8 [HR=1.14 

(0.97-1.34), logrank P=0.13] (Supplementary Figure 3N). 

Additionally, the expression levels of the hub genes in 

different pathological stages of ovary cancer samples 

were displayed in Supplementary Figure 4. The results 

indicated that among different pathological stages there 

had been notable alterations in the expression levels for 

NDC80 [Pr(>F)=0.0496] (Supplementary Figure 4F), 

MCM2 [Pr(>F)=0.000134] (Supplementary Figure 4G), 

KAT2B [Pr(>F)=0.0365] (Supplementary Figure 4I), 

CHTF18 [Pr(>F)=0.000685] (Supplementary Figure 4K), 

and BUB1B [Pr(>F)=0.00954] (Supplementary Figure 

4P). The dynamic overall trends revealed that the 

expression of above hub genes decreased gradually with 

the continuous progression of ovary cancer 

(Supplementary Figure 4). Then, the GEPIA2 database 

was used to verify the expression levels of BUB1B, 

CHTF18, KAT2B, MCM2 and NDC80 (Supplementary 

Figure 5). As shown in Supplementary Figure 5, except 

for CDCA8 (Supplementary Figure 5E), the expression 

levels of the other genes (Supplementary Figure 5A–5D) 

were statistically significant between ovary cancer tissues 

and normal ovary tissue from TCGA (The Cancer 

Genome Atlas) and GTEx (the genotype-tissue 

expression) data. Consequently, BUB1B, MCM2, 

KAT2B and NDC80 were identified as the key genes in 

diagnosis and prognosis of OSC patients. 

 

Then, the prognostic impact information of key genes on 

patients with OSC at different stages was explored by 

Kaplan-Meier plotter database (Figure 5). The key 

genes-related survival forest map at early stages (stages 

I+II) was shown in Figure 5A and relevant survival 

curves were respectively presented in Figure 5B–5E. 

The higher expression levels of NDC80 [HR=2.83 (1.19-

6.73), logrank P=0.014] (Figure 5B), MCM2 [HR=2.49 

(1.04-5.95), logrank P=0.034] (Figure 5C) and BUB1B 

[HR=2.82 (1.2-6.64), logrank P=0.013] (Figure 5E) 
were notably related to poor overall survival at early 

stages in OSC patients. Meanwhile, the key genes-

related survival forest map at advanced stages (stages 

III+IV) was shown in Figure 5F and relevant survival 

curves were respectively presented in Figure 5G–5J, 

indicating that only one of four key genes was notably 

associated with the overall survival of OSC patients at 

advanced stages (Figure 5G–5J), in that high expression 

of MCM2 [HR=0.84 (0.71-1), logrank P=0.048] (Figure 

5H) was associated with improved overall survival in 

OSC patients at advanced stages. In summary, BUB1B 

and NDC80 were deemed as the core genes for early 

diagnosis of patients with OSC. 

 

Association of expression patterns of core genes with 

EMT regulators 

 

The heatmap of expression levels of core genes and 

EMT regulators in GEO datasets revealed that the 

expressions of core genes and EMT regulators have 

exhibited significantly differences between OSC tissues 

and normal ovary tissues (Supplementary Figure 6). 

Further analyses indicated that correlation between core 

genes and EMT regulators were statistically significant 

(Figure 6A–6C, P<0.05). And then STRING analyses 

for co-expression of core genes and EMT regulators 

verified that the core genes were closely related to the 

expression modulation of EMT regulators (Figure 6D). 

Meanwhile, functional KEGG enrichment analysis 

revealed that core genes and EMT regulators were 

mainly associated with adherens junction (hsa04520), 

Hippo signaling pathway (hsa04390), and Thyroid 

cancer (hsa05216) (Figure 6E and Supplementary  

Table 6). Furthermore, another online instrument 

NetworkAnalyst for ovary-specific PPIs network could 

also make out the notable roles of transcriptional 

regulation of core genes and EMT regulators in the 

development of ovarian cancer (Figure 6F). 

 

Characteristic alteration of core genes and EMT 

regulators 

 

The cBioPortal assay validated that variation, mutation 

count of the 2 core genes and 15 EMT regulators related 

to overall survival status were notably altered in 146 

(47%) of queried patients or samples. Alterations in 

ELF3, including amplification and missense mutations 

(Supplementary Figure 7), were most often (8%) among 

them. Relevant gene amplification was accounted for 

the highest percentage among the different types of 

mutation, gene amplification, deep deletion and 

multiple alterations (Figure 6G). 

 

GRN analysis for TF, miRNA, core genes and EMT 

regulators 

 
In order to further confirm the main functions of core 

genes and EMT regulators, the potential modulation 

relationship among core genes, EMT regulators and TFs 
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Figure 5. Overall survival impact of key genes on patients with OSC at different stages. (A) Survival prognosis forest map related 

to key genes at early stages (stages I+II) in OSC patients. Each point in the forest plot represents the Hazard ratio (HR) of the gene, and the 
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lines on both sides of the point represent the 95% confidence interval (95%CI). Survival curves were constructed by the Kaplan-Meier plotter 
based on the low and high expression of the key genes in OSC patients, including (B) NDC80, (C) MCM2, (D) KAT2B and (E) BUB1B. (F) Survival 
prognosis forest map related to key genes at advanced stages (stages III+IV) in OSC patients. Kaplan-Meier overall survival analysis for OSC 
patients with the expression of key genes, covering (G) NDC80, (H) MCM2, (I) KAT2B and (J) BUB1B. Logrank p-value<0.05 was considered 
statistically significant. 

 

 
 

Figure 6. Correlation analysis of the core genes and EMT regulators in datasets (A) GES36668, (B) GES54388, (C) GSE69428. (D) The PPIs 
network of core genes and EMT regulators. The red color indicates core genes, and the green color predicts EMT regulators. (E) KEGG 
pathway enrichment analysis of core genes and EMT regulators. Only the enriched pathways with FDR<0.05 were presented. The green lines 
represent percentage of count in gene set and the red lines represent -Log10 (FDR). (F) The ovary-specific PPIs integrated network of core 
genes and EMT regulators, the red color indicates core genes, the green color predicts EMT regulators and the purple color represents 
transcription factors. (G) An overview of the alteration of the core genes and EMT regulators in the genomics datasets of OSC in the TCGA 
database. 
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were discriminated based on TF and gene target data 

derived from the ENCODE ChIP-seq data (Figure 7A). 

Concurrently, a regulatory network among core genes, 

EMT regulators and miRNAs was compiled from the 

miRNA-gene interaction data collected from TarBase 

and miRTarBase (Figure 7B). 

 

TF-miRNA coregulatory interaction network 

 

We constructed a TFs-miRNAs coregulatory network 

by collecting regulatory interaction information from 

the RegNetwork repository, containing 2 core genes, 15 

EMT regulators, 30 TFs and 13 miRNAs with 152 

edges (Figure 7C). The above analysis discovered that 

the transcription factor TFAP2A could monitor one core 

gene interacting with six EMT regulators (Figure 7D), 

and hsa-miR-655 could regulate two core genes (Figure 

7E) among them. 

Core genes, EMT regulators, miRNA and TF 

validation 

 

The expression of core genes including BUB1B 

(Supplementary Figure 8A) and NDC80 (Supplementary 

Figure 8B) were significantly increased in OSC patients 

among GSE36668, GSE54388 and GSE69428 datasets. 

BUB1B (Supplementary Figure 9A) and NDC80 

(Supplementary Figure 9C) were validated at a 

transcription level in multiple cancer types based on the 

Oncomine database in that BUB1B (Median rank 132, p-

value=1.54e-06) (Supplementary Figure 9B) and 

NDC80 (Median rank 192.5, p-value=4.04e-08) 

(Supplementary Figure 9D) were highly expressed in 

ovary cancer samples compared with normal ovary 

tissues. As for prognostic value of core TF, EMT 

regulator and miRNA, high expression of TFAP2A 

[HR=0.83[0.7-0.99], logrank P=0.033] was associated 

 

 
 

Figure 7. GRN analysis of core genes and EMT regulators. (A) Network of TFs-core genes and EMT regulators was obtained from 

ENCODE database. (B) Network of miRNAs-core genes and EMT regulators was obtained from TarBase and miRTarBase database. (C) 
Integrative regulatory network of TFs-miRNAs-core genes and EMT regulators. (D) Core genes and EMT regulators regulated by TFs. (E) Core 
genes and EMT regulators modulated by miRNAs. 
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with the improved overall survival in OSC patients by 

Kaplan-Meier plotter (Figure 8A). However, the high 

expression of hsa-miR-655 [HR=1.68[1.33-2.13], 

logrank P=0.000013] and ELF3 [HR=1.23[1.04-1.44], 

logrank P=0.014] was linked with worse overall survival 

in OSC patients (Figure 8A). The expression levels of 

the EMT regulator and core TF were presented based on 

TCGA and GTEx data (Figure 8B, 8D), with consistent 

expression trend in three datasets (Supplementary Figure 

8C, 8D). Moreover, the protein levels of EIF3 (Figure 

8C) and TFAP2A (Figure 8E) were significantly higher 

in ovary cancer tissues than in normal ovary tissues 

based on HPA database. Furthermore, in the CCLE 

database, the expression levels of BUB1B 

(Supplementary Figure 10A), NDC80 (Supplementary 

Figure 10B), ELF3 (Supplementary Figure 10C), 

TFAP2A (Supplementary Figure 10D) and hsa-miR-655 

(Supplementary Figure 11A) were confirmed among 

different ovarian cancer cell lines. Additional qRT-PCR 

also detected the consistent expression trend in SKOV3 

cell line with CCLE (Supplementary Figure 10E–10H). 

Then, we explored the decreased expression of hsa-miR-

655 and increased expression of has-miR-200a in 

ovarian cancer from the miRCancer database. At the 

same time, compared with normal blood samples, we 

also found the expression of hsa-miR-655 decreased and 

hsa-miR-200a increased in blood samples of patients 

with ovarian cancer (Supplementary Figure 11B, 11C 

and Supplementary Table 8). 

 

All above-mentioned observations confirmed that 

BUB1B and NDC80 may be used as the key biomarkers 

at early stages for patients with OSC, and TFAP2A, 

ELF3 and hsa-miR-655 could play crucial roles in the 

EMT occurrence and pathological prognostic factors for 

OSC patients. 

 

DISCUSSION 
 

Since the ovary is located deep in the pelvis, about 70% 

of ovarian cancer cases have reached the advanced stage 

when they get diagnosed and distant metastases have 

already occurred, leading to its mortality rate ranking 

first among all kinds of gynecological malignant tumors 

[3]. Most patients with ovarian cancers may relapse 

after surgery or first line chemotherapy, and sometimes 

even after second line chemotherapy due to the  

ability of ovarian cancer stem cells to escape from  

these therapies or due to the reduced host 

immunosurveillance [24, 25]. Among them, OSC, as a 

common EOC and one of the most lethal gynecological 

tumors, accounts for 80–95% of ovarian malignancies 

[26]. Therefore, it is important to find reliable tumor 

biomarkers and explore the precise molecular 

mechanism of OSC for early clinical diagnosis, 

treatment and prognosis [27]. In recent years, with the 

help of large-scale screening and the rapid development 

of bioinformatics, hundreds of genes alterations have 

been revealed to be closely related to the diagnosis, 

therapy and prognosis of tumors [22, 28, 29]. 

 

In our study, three datasets for OSC samples, namely 

GSE36668, GSE54388 and GSE69428, were selected 

and downloaded from GEO database. Then we set up 

comprehensively bioinformatic scheme to perform co-

DEGs, GO and KEGG pathway functional enrichment, 

PPIs network and overall survival analysis at different 

pathological stages. Through the PPIs network 

regulation of co-DEGs and the prognostic investigation 

of the hub genes-related survival rates at different 

pathological stages, we identified two core genes 

(BUB1B and NDC80) associated with the early 

diagnosis and prognosis of OSC. One of them, BUB1B, 

a key component of the mitotic checkpoint complex, is 

localized to the kinetochore and plays a pivotal role in 

inhibiting anaphase-promoting complex/cyclosome 

(APC/C), delaying the onset of anaphase and ensuring 

proper chromosome segregation. In addition, BUB1B 

was also remarkably enriched in cell cycle and in 

Human T-cell leukemia virus (HTLV)-1 infection on 

KEGG pathway database [30, 31]. Another core gene, 

NDC80, encodes a component of the NDC80 

kinetochore complex, which consists of a N-terminal 

microtubule binding domain and a C-terminal coiled-

coiled domain able to interact with other components of 

the complex. Its molecular functions are to organize and 

stabilize microtubule-kinetochore interactions for 

proper chromosome segregation. And NDC80 was 

notably enriched in cell cycle, covering overall mitotic 

phase at the metaphase, anaphase, and prometaphase 

transition [32, 33], with impairment function of mitotic 

spindle checkpoint found in many types of cancer. 

Moreover, emerging evidence also suggests that 

dysregulation of cell cycle signaling cross-cascade is 

commonly been observed in a broad range of human 

cancers [34, 35]. Especially, relevant co-DEGs were 

also most striking in cell cycle pathway associated 

highly with the tumorigenesis and progression of ovary 

cancer [36, 37]. 

 

Since the EMT plays a complex role in tumor 

metastasis and recurrence by enhancing cell invasion 

and migration or other possible accesses [38], it is 

crucial to elucidate molecular mechanisms regulating 

EMT biological events for improving treatment of 

patients with OSC [11]. Consequently, we screened 15 

EMT regulatory factors involved closely in the diverse 

pathological features of ovarian cancer. Then, we 

explored gene alteration characteristics and GRN of two 
core genes and 15 EMT regulators. Subsequently, it was 

demonstrated that the EMT regulator ELF3 was the 

most frequent in genetic variation, thus eliciting the 
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Figure 8. Multidimensional validation and efficacy evaluation with the core TF, EMT regulator and miRNA. (A) Survival 

prognosis forest map related to TFAP2A, hsa-miR-655 and ELF3 in patients with OSC. (B) The expression level of ELF3 from ovary cancer 
samples (red) and normal ovary samples (gray). (C) Validation of ELF3 from the HPA database. (D) The expression level of TFAP2A from ovary 
cancer samples and normal ovary samples. (E) Validation of TFAP2A from the HPA database. 
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development and relapse of OSC. Meanwhile, in the 

GRN analysis for core genes and EMT regulators, it was 

also found that TFAP2A and hsa-miR-655 could exert a 

crucial function in the EMT modulation of ovarian 

cancer. 

 

What was also intriguing was that TFAP2A could 

modulate the expression of target EMT regulator ELF3, 

positively, via interacting with their transcription start 

site (TSS) through the TF-miRNA comprehensive 

regulation analysis. Simultaneously, it has been 

demonstrated that TFAP2A could influence the 

transcription of target genes involved in many different 

types of cancer [39]. For example, relevant studies 

indicated that TFAP2A promotes the proliferation, 

migration and invasion of breast cancer cells [40],  

and Shi et.al revealed that TFAP2A promotes 

nasopharyngeal carcinoma cell proliferation and  

inhibits apoptosis [41]. Furthermore, microRNAs, as 

endogenous transcripts with almost 22 nucleotides in 

length, are considered as possible causative agents in 

cancer [42]. However, previous studies have identified 

hsa-miR-655 as a novel EMT-suppressive microRNA 

[43, 44]. Additionally, there is emerging evidence that 

women with endometriosis have a higher risk of 

developing ovarian cancer due to original disease 

progression and malignant transformation. Namely, 

endometriosis may be one of the main causes of ovarian 

cancer [45]. 

 

Overall, by integrating multiple microarrays of gene 

expression profiles, BUB1B and NDC80 have been 

identified to be vital in early stages for OSC 

development. TF-miRNA comprehensive investigations 

for core genes and EMT regulators elucidated  

that TFAP2A, hsa-miR-655/200a and ELF3 could 

exert crucial function and prognostic potential in  

the development and progression of OSC. Eventually, 

our investigation into bioinformatics for the core  

genes related to EMT biological process in OSC  

may bring an unusual perspective for the early 

diagnosis and prognosis evaluation of patients with 

OSC. 

 

CONCLUSIONS 
 

In summary, BUB1B and NDC80 activation could play 

a pivotal role in the occurrence and development of 

OSC at stages I+II, and thus might serve as early 

clinical diagnosis biomarkers for patients with OSC. 

Furthermore, the gene variation and GRN analysis 

revealed that ELF3, TFAP2A and hsa-miR-655/200a 

could collectively coordinate BUB1B and NDC80 to 

modulate EMT biological process on the development 

and progression of OSC, which may serve as the 

potential therapeutic target-points. 

MATERIALS AND METHODS 
 

Microarray data collection 

 

The raw expression profiles of GSE36668 [46], 

GSE54388 [20] and GSE69428 [47] were downloaded 

from GEO database (https://www.ncbi.nlm.nih.gov/geo/) 

based on microarray platform GPL570 (Affymetrix 

Human Genome U133 Plus 2.0Array). Details of each 

microarray data were provided in Supplementary Table 

1. A microRNA expression profile (GSE31568) of blood 

was collected from ovarian cancer patients [48]. The 

dataset GSE31568 based on the platform of GPL9040 

(febit Homo Sapiens miRBase 13.0) containing 15 

samples with ovarian cancer and 70 samples without 

cancer was also downloaded from GEO database. 

 

Data preprocessing and Differential Expression 

Genes (DEGs) analysis 

 

All data were normalized using NormalizeBetweenArray 

function from R package ‘LIMMA’ of the bioconductor 

project [49]. Data before and after normalization were 

shown in Supplementary Figure 1A–1C respectively. 

Next, we performed differential genes analyses (LogFC≥1 

or LogFC≤-1, adjusted p value<0.05) by comparing OSC 

with normal ovary using ‘LIMMA’ R package. 

 

Screening co-DEGs and construction the PPIs 

network 

 

The selected DEGs were separately uploaded to an 

online tool (http://bioinformatics.psb.ugent.be/webtools/ 

Venn/), which could identify the co-DEGs among 

GSE36668, GSE54388 and GSE69428 datasets. Then, 

we utilized the online database STRING (Version 11.0, 

https://string-db.org/) to visualize the PPIs among co-

DEGs [50]. To avoid an inaccurate PPIs network, we 

used a cutoff ≥0.9 (high-confidence interaction score)  

to obtain the striking PPIs and visualized in Cytoscape 

Version 3.6.1 [51]. Next, these most significant 

modules in the PPIs network were screened using 

MCODE, a package of Cytoscape, which could identify 

clusters in large protein networks according to the 

topology to build significant function modules. The 

criteria for selection included 5 aspects: MCODE 

score>5, node score cut-off=0.2, degree cut-off=2, Max 

depth=100, and k-score=2. 

 

Analyzing the backbone network 

 

The NetworkAnalyzer package in Cytoscape was utilized 

to explore the topological parameters and centrality 

measures such as the Avg. clustering coefficient, 

distribution of the node degree, topological coefficients, 

shortest path length distribution, betweenness centrality, 

https://www.ncbi.nlm.nih.gov/geo/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://string-db.org/


 

www.aging-us.com 3125 AGING 

and closeness centrality for directed and undirected 

networks of co-DEGs PPIs backbone network. 

 

Functional enrichment analyses of co-DEGs 

 

The co-DEGs were further analyzed via the Database 

for Annotation, Visualization and Integrated Discovery 

(DAVID, version 6.8, https://david.ncifcrf.gov/) to 

perform the GO and KEGG [52, 53]. The R ggplot2 

package was adopted to visualize these data. 

 

Hub genes identification and analysis 

 

The hub genes were selected for degree>40 nodes or seed 

genes of PPIs network significant function modules. In 

order to prove the hub genes related to OSC prognosis, 

overall survival analyses were performed using Kaplan-

Meier Plotter (http://kmplot.com/analysis/). Patients with 

OSC were categorized into high-expression group and 

low-expression group, according to the expression of 

specific genes. The overall survival related to hub genes 

was analyzed for OSC patients at all stages in above 2 

groups. The analysis results were visualized in the forms 

of survival prognosis forest map and survival curves. 

Logrank p-value<0.05 was regarded as statistically 

significant. Then, Gene Expression Profiling Interactive 

Analysis (GEPIA2, http://gepia2.cancer-pku.cn/#index) 

was performed to explore the alteration among ovary 

cancer samples at different pathological stages. ANOVA 

was accomplished to evaluate the statistical significance 

of variations. Pr(>F)<0.05 was regarded as statistically 

significant. 

 

Key and core genes validated 

 

We first identified the key genes from hub genes by 

Logrank p-value<0.05 in overall survival and by 

Pr(>F)<0.05 in different pathological stages of patients 

with ovary cancer. Furthermore, we also analyzed 

patients with OSC for key genes in high-expression and 

low-expression groups at early stages (stages I+II) and 

advanced stages (stages III+IV). Simultaneously, we 

utilized GEPIA2 to confirm the expression of the key 

genes between OSC tissues and normal ovary tissues. 

According to the Hazard ratio and Logrank p-value of 

key genes in overall survival analysis for early stages 

(stages I+II) and advanced stages (stages III+IV), we 

defined the core genes from the key genes for early 

diagnosis in patients with OSC. 

 

EMT regulators selection and analysis 

 

In order to identify the EMT-related regulatory genes in 
OSC development, we have compiled 15 EMT-related 

regulatory factors from published literatures [11–15, 18–

20]. Then we systematically evaluated the expressed 

EMT-associated regulators and core genes in datasets 

GSE36668, GSE54388 and GSE69428, and then R 

ComplexHeatmap and dendextend packages were 

adopted to visualize them. Meanwhile, we used the R 

ggcorrplot package to estimate the correlation of core 

genes and EMT regulators. Then, Online database 

STRING was used to analysis the PPIs network and 

functional enrichment of core genes and EMT regulators. 

Next, we used another online tool NetworkAnalyst 

(http://www.networkanalyst.ca/) to visualize ovary 

specific PPIs network of core genes and EMT regulators. 

Furthermore, the online database cBioPortal for cancer 

genomics (https://www.cbioportal.org/) was used to 

analysis the genetic variation, mutation count and overall 

survival status related to the core genes and EMT 

regulators in OSC. 

 

GRN analysis of core genes and EMT regulators 

 

We complied TF, core gene and EMT regulator co-

network and analyzed the GRN by uploading the core 

gene and EMT regulator to NetworkAnalyst. The TF and 

gene target data were derived from the ENCODE 

(Encyclopedia of DNA Elements) ChIP-seq data. Only 

those objects with peak intensity signal <500 and the 

predicted regulatory potential score <1 could be selected 

using BETA Minus algorithm. Next, we complied 

miRNAs-core genes and EMT regulators co-network. The 

miRNA-gene interaction data validated by comprehensive 

experiments were collected from TarBase and 

miRTarBase. Soon after, we established the TF-miRNA 

integrated modulation network. Then, the integrated 

network was respectively visualized in Cytoscape to 

identify the core TF, EMT regulator and miRNA. 

 

Core genes, TF, EMT regulators and miRNA 

validation 

 

We used Oncomine (http://www.oncomine.com) to 

evaluate the core genes on transcriptional level in 

multiple cancer types and relevant studies. The overall 

survival analyses related to core TF, EMT regulator and 

miRNA were performed using Kaplan-Meier Plotter. 

Then, we evaluated the significant core TF, EMT 

regulator expression among the GRN analysis and further 

validated using immunohistochemistry (IHC) from the 

Human Protein Atlas database (HPA, https://www. 

proteinatlas.org/). Simultaneously, we utilized the 

GEPIA2 to affirm the expression of core TF or EMT 

regulator between OSC tissues and normal ovary tissues. 

 

Experimental validation using quantitative real-time 

PCR in ovarian cancer lines 

 

We explored the expression of core TF, EMT regulator 

and miRNA among different ovarian cancer cell lines in 

https://david.ncifcrf.gov/
http://kmplot.com/analysis/
http://gepia2.cancer-pku.cn/#index
http://www.networkanalyst.ca/
https://www.cbioportal.org/
http://www.oncomine.com/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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Cancer Cell Line Encyclopedia (CCLE). Then, ovarian 

cancer cell line (SKOV3) was obtained from American 

Type Culture Collection (Manassas, VA, USA)  

and maintained in Roswell Park Memorial Institute 

(RPMI)-1640 medium (Sigma-Aldrich, St Louis, MO, 

USA) with 10% fetal bovine serum (FBS) in a 

humidified atmosphere containing 5% CO2 at 37° C. 

Simultaneously, the human ovarian surface epithelium 

cells (HOSEC) were used as control. Total RNA was 

isolated by using a RNeasy Mini Kit (Qiagen) and 

cDNA was extracted by reverse transcription kit 

(Takara, Dalian, China). Gene expression was measured 

by qRT-PCR (Lightcycler96, Roche, Basel, Switzerland) 

using a SYBR Green™ Premix Ex Taq ™ II (Takara, 

Dalian, China) and following the manufacturer’s 

instructions. The primers used were shown in 

Supplementary Table 7. 

 

Statistical analyses 

 

The significances of differences between two groups 

were analyzed using non-parametric test or t-test  

based on data distribution characteristics in Graphad 

Prism 8. The log-rank test was used to identify the 

differences in overall survival rate at different  

stages between low-expression and high-expression 

groups of hub genes using Kaplan-Meier Plots. 

Logrank p-value<0.05 was considered statistically 

significant in survival rate. Correlation analysis  

was calculated using R ggcorrplot package. All 

analyses were conducted using software R Studio 

3.5.3. P-value < 0.05 was considered statistically 

significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Normalization of the raw data in GEO database. (A) Normalization of GSE36668 dataset. (B) Normalization 

of GSE54388 dataset. (C) Normalization of GSE69428 dataset. Blue represents raw data and red represents data after normalization. 
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Supplementary Figure 2. The heatmap of gene expression in (A) GSE36668, (B) GSE54388 and (C) GSE69428. Red indicates a relatively high 

expression and blue indicates a relatively low expression. 
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Supplementary Figure 3. Overall survival impact of hub genes on patients with OSC at all stages. (A) Survival prognosis forest 

map related to hub genes at all stages in OSC patients. (B–Q) Kaplan-Meier analysis for overall survival involved in the key genes expressed in 
OSC patients, covering (B) ASPM, (C) VIM, (D) TOP2A, (E) SPARCL1, (F) POLE2, (G) NDC80, (H) MCM2, (I) KIF11, (J) KAT2B, (K) DLGAP5, (L) 
CHTF18, (M) CDK1, (N) CDCA8, (O) CDC20, (P) CCNB1 and (Q) BUB1B. Logrank p-value<0.05 was considered statistically significant. 
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Supplementary Figure 4. The expression levels of hub genes in ovary cancer samples at different pathological stages. The hub 
genes (A) ASPM, (B) VIM, (C) TOP2A, (D) SPARCL1, (E) POLE2, (F) NDC80, (G) MCM2, (H) KIF11, (I) KAT2B, (J) DLGAP5, (K) CHTF18, (L) CDK1, 
(M) CDCA8, (N) CDC20, (O) CCNB1 and (P) BUB1B were analyzed respectively from the GEPIA2. ANOVA was performed to assess the 
statistical significance of variations. Pr(>F)<0.05 was considered statistically significant. 
 



 

www.aging-us.com 3134 AGING 

 
 

Supplementary Figure 5. The expression levels of key genes in ovary cancer samples and normal ovary samples. Based on 

TCGA and GTEx data from GEPIA2, we validated the expression levels of the key genes in ovarian cancer (n = 426, red) and normal tissues (n 
=88, gray). (A) NDC80, (B) MCM2, (C) KAT2B, (D) BUB1B and (E) CHTF18. 
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Supplementary Figure 6. The heatmap of differentially expressed core genes and EMT regulators between OSC tissues (red) and normal 
ovary tissues (green) in the datasets of (A) GSE36668, (B) GSE54388, (C) GSE69428. Blue indicates a relatively low expression and red 
indicates a relatively high expression. 
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Supplementary Figure 7. The genetic variation, mutation count and overall survival status related to the core genes and EMT 
regulators are shown as a visual summary for a set of serous ovarian cancer samples from the TCGA database. 
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Supplementary Figure 8. Validation of core genes with relevant TF and EMT regulator in GSE36668, GSE54388 and GSE69428 
datasets. The expression level analyses of (A) BUB1B, (B) NDC80, (C) TFAP2A, and (D) ELF3. 
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Supplementary Figure 9. Oncomine analysis of NDC80 and BUB1B expression in cancer tissues vs normal tissues. Validation of 
BUB1B (A) and NDC80 (C) on a transcriptional level in multiple cancer types and relevant studies. Heatmap represents BUB1B (B) and NDC80 
(D) expression in ovarian cancer samples vs normal ovary samples. 1. ovarian carcinoma, Anglesio Ovarian, Mol Cancer Res, 2008; 2. ovarian 
carcinoma, Sieben Ovarian, J Clin Oncol, 2005; 3. Ovarian serous Adenocarcinoma vs Normal Lu Ovarian, Clin Cancer Res, 2004; 4. Ovarian 
serous Cystadenocarcinoma vs Normal TCGA Ovarian, No Associated Paper, 2013. 
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Supplementary Figure 10. The expression levels of core genes relevant with TF and EMT regulator in ovarian cancer cell 
lines. Analysis for BUB1B (A), NDC80 (B), ELF3 (C) and TFAP2A (D) from the CCLE in five different ovarian cancer cell lines. qRT-PCR assay was 
adopted to evaluate the expression of BUB1B (E), NDC80 (F), ELF3 (G) and TFAP2A (H) in SKOV3 compared with HOSEC as normal control. 
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Supplementary Figure 11. The expression level of hsa-miR-655. Analysis of hsa-miR-655 (A) from the CCLE in five different ovarian 

cancer cell lines. (B) The hsa-miR-655 expression and (C) the differential expression in blood miRNAs from ovarian cancer patients modulating 
core genes and EMT regulators compared with normal explored in GSE31568. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 3, 8. 

 

Supplementary Table 1. Details of ovarian serous cancer associated microarray datasets from GEO database. 

Reference sample GEO Platform Normal ovary Ovarian serous cancer 

Elgaaen et al (2012) Ovarian GSE36668 GPL570 4 4 

Yeung et al (2017) Ovarian GSE54388 GPL570 6 16 

Yamamoto et al (2015) Ovarian GSE69428 GPL570 10 10 

 

Supplementary Table 2. The details of significant DEGs from GSE36668, GSE54388 and GSE69428 datasets. 

 

Supplementary Table 3. GO Terms and KEGG functional enrichment analyses of co-DEGs. 

 

Supplementary Table 4. Module analysis of co-DEGs using MCODE of Cytoscope. 

MCODE_Cluster MCODE_Node_Status MCODE_Score name TopologicalCoefficient 

Cluster 1 Clustered 21.32307692 CDK1 0.24610988 

Cluster 1 Clustered 21.32307692 CCNB1 0.28399209 

Cluster 1 Clustered 21.32307692 CDC20 0.29765066 

Cluster 1 Clustered 21.32307692 KIF11 0.32624113 

Cluster 1 Clustered 21.32307692 TOP2A 0.33646245 

Cluster 1 Clustered 21.32307692 CDCA8 0.34704034 

Cluster 1 Clustered 21.32307692 BUB1B 0.36419753 

Cluster 1 Seed 21.32307692 ASPM 0.36976744 

Cluster 1 Clustered 21.32307692 DLGAP5 0.38181271 

Cluster 1 Clustered 21.32307692 NDC80 0.35257453 

Cluster 1 Clustered 21.32307692 KIF2C 0.40125 

Cluster 1 Clustered 21.32307692 CENPF 0.40493421 

Cluster 1 Clustered 21.32307692 TTK 0.40350877 

Cluster 1 Clustered 21.32307692 KIF20A 0.40773229 

Cluster 1 Clustered 18.8034188 RRM2 0.34723854 

Cluster 1 Clustered 21.32307692 NUSAP1 0.41392318 

Cluster 1 Clustered 20.51 NCAPG 0.40590278 

Cluster 1 Clustered 20.37 TPX2 0.40785714 

Cluster 1 Clustered 20.37 CEP55 0.41801471 

Cluster 1 Clustered 20.69565217 UBE2C 0.42312009 

Cluster 1 Clustered 19.98290598 PBK 0.44112903 

Cluster 1 Clustered 18 ESPL1 0.39016897 

Cluster 1 Clustered 20.44 KIF4A 0.45512821 

Cluster 1 Clustered 19.60474308 KIF15 0.44137931 

Cluster 1 Clustered 19.49275362 SPAG5 0.45767196 

Cluster 1 Clustered 20.69565217 MELK 0.46383929 

Cluster 1 Clustered 18.90952381 NUF2 0.45238095 

Cluster 1 Clustered 19.76284585 KIF23 0.43717728 

Cluster 1 Clustered 17.81052632 PRC1 0.41557223 

Cluster 1 Clustered 18.81904762 PTTG1 0.46615385 

Cluster 1 Clustered 18.90952381 MKI67 0.48839662 

Cluster 1 Clustered 17.90526316 CDCA3 0.50185185 
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Cluster 2 Clustered 14 KNTC1 0.48070175 

Cluster 2 Clustered 14 CENPU 0.47387387 

Cluster 2 Clustered 14 ZWINT 0.45855856 

Cluster 2 Clustered 14 RCC2 0.48841699 

Cluster 2 Clustered 14 CDCA5 0.48841699 

Cluster 3 Clustered 5.727272727 PCNA 0.23539618 

Cluster 3 Clustered 5.785714286 MCM10 0.22094361 

Cluster 3 Clustered 5.5 FEN1 0.31566265 

Cluster 3 Clustered 5 DTL 0.34993614 

Cluster 3 Clustered 5 DNA2 0.40613027 

Cluster 3 Clustered 5 TIMELESS 0.41666667 

Cluster 3 Clustered 5.785714286 ORC6 0.35030864 

Cluster 3 Clustered 5 RMI2 0.44387755 

Cluster 3 Seed 6 CHTF18 0.53571429 

Cluster 3 Clustered 5.785714286 CDC7 0.30892857 

Cluster 3 Clustered 5 RAD51AP1 0.52857143 

Cluster 4 Clustered 7.418181818 MCM3 0.26919476 

Cluster 4 Clustered 8 MCM7 0.26763285 

Cluster 4 Seed 8 MCM2 0.25791624 

Cluster 5 Clustered 3.771428571 RFC4 0.19430761 

Cluster 5 Seed 4.581818182 POLE2 0.2029321 

Cluster 5 Clustered 4 ISG15 0.50641026 

Cluster 6 Clustered 2 LAMC1 0.66666667 

Cluster 6 Seed 2 SPARCL1 0.83333333 

Cluster 6 Clustered 2 STC2 0.83333333 

Cluster 7 Seed 2 VIM 1 

Cluster 7 Clustered 2 TNNI3 1 

Cluster 7 Clustered 2 TNNT1 1 

Cluster 8 Seed 2 KAT2B 0.43333333 

Cluster 8 Clustered 2 E2F3 0.53333333 

Cluster 8 Clustered 2 MEF2C 0.75 

Cluster 9 Clustered 2 GAPDH 1 

Cluster 9 Clustered 2 TPI1 1 

Cluster 9 seed 2 GPI 1 
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Supplementary Table 5. Hub genes evaluated by PPI network analysis Degree>40 or the seed genes in MOCODE 
analysis of Cytoscape. 

Entrez 

ID 

Gene 

symbol 
Description Alternate names Chromosome Map location 

63922 CHTF18 chromosome transmission 

fidelity factor 18 

C16orf41|C321D2.2|C321D2.3| 

C321D2.4|CHL12|Ctf18|RUVBL 

16 16p13.3 

4171 MCM2 minichromosome 

maintenance complex 

component 2 

BM28|CCNL1|CDCL1|D3S3194|

MITOTIN|cdc19 

3 3q21 

5427 POLE2 polymerase (DNA directed), 

epsilon 2, accessory subunit 

DPE2 14 14q21-q22 

8404 SPARCL1 SPARC-like 1 (hevin) MAST 9|MAST9|PIG33|SC1 4 4q22.1 

7431 VIM vimentin CTRCT30|HEL113 10 10p13 

8850 KAT2B K(lysine) acetyltransferase 

2B 

CAF|P/CAF|PCAF 3 3p24 

983 CDK1 cyclin-dependent kinase 1 CDC2|CDC28A|P34CDC2 10 10q21.1 

891 CCNB1 cyclin B1 CCNB 5 5q12 

991 CDC20 cell division cycle 20 CDC20A|bA276H19.3|p55CDC 1 1p34.1 

3832 KIF11 kinesin family member 11 EG5|HKSP|KNSL1|MCLMR| 

TRIP5 

10 10q24.1 

7153 TOP2A topoisomerase (DNA) II 

alpha 170kDa 

TOP2|TP2A 17 17q21-q22 

55143 CDCA8 cell division cycle associated 

8 

BOR|BOREALIN|DasraB| 

MESRGP 

1 1p34.3 

701 BUB1B BUB1 mitotic checkpoint 

serine/threonine kinase B 

BUB1beta|BUBR1|Bub1A| 

MAD3L|MVA1|SSK1|hBUBR1 

15 15q15 

259266 ASPM asp (abnormal spindle) 

homolog, microcephaly 

associated (Drosophila) 

ASP|Calmbp1|MCPH5 1 1q31 

9787 DLGAP5 discs, large (Drosophila) 

homolog-associated protein 5 

DLG7|HURP 14 14q22.3 

10403 NDC80 NDC80 kinetochore complex 

component 

HEC|HEC1|HsHec1|KNTC2| 

TID3|hsNDC80 

18 18p11.32 

 

Supplementary Table 6. KEGG enrichment of core genes and EMT regulators. 

Pathway ID Description Count in gene set 
False Discovery 

Rate 

hsa04520 Adherens junction 4 of 71 1.77E-05 

hsa04390 Hipposignaling pathway 3 of 152 0.0059 

hsa05216 Thyroid cancer 2 of 37 0.0067 

hsa05205 Proteoglycans in cancer 3 of 195 0.0067 

hsa05213 Endomettrial cancer 2 of 58 0.008 

hsa05130 Pathogenic Escherichia coli infection 2 of 53 0.008 

hsa05412 Arrhythmogenic right ventricular cardiomyopathy 2 of 72 0.0103 

hsa05100 bacterial invasion of Epithelial cells 2 of 72 0.0103 

hsa05215 Prostate cancer 2 of 97 0.0142 

hsa04514 cell adherion molecules(CAMs) 2 of 139 0.0254 

hsa05226 Gastric cancer 2 of 147 0.0257 

hsa05206 MicroRNAs in cancer 2 of 149 0.0257 

hsa05202 Transcriptional misregulation in cancer 2 of 169 0.0284 

hsa04015 Rap1 signaling pathway 2 of 203 0.0373 
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Supplementary Table 7. Primers used for the real-time PCR. 

Gene Primers Sequences (5'-3') 

β-actin Forward CCACGAAACTACCTTCAACTCC 

Reverse GTGATCTCCTTCTGCATCCTGT 

ELF3 Forward GCAAACACCCTGGACTTGAC 

Reverse CTGTCCTCTCATCACGGTGC 

TFAP2A Forward ATATCCGTTCACGCCGATCC 

Reverse CCTCGCAGTCCTCGTACTTG 

BUB1B Forward GGGATGGGTCCTTCTGGAAA 

Reverse GGCATTCAGAATCCGCACAA 

NDC80 Forward CCTGGTGTTTTGATGACCGC 

Reverse TCCAGTTTCCTGACACGACC 

 

Supplementary Table 8. The details of differential expression for miRNAs from GSE31568. 
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Supplementary Videos 
 

Please browse Full Text version to see the data of Supplementary Videos 1, 2, 3. 

 

Supplementary Video 1. Multidimensional dynamic scaling for GSE36668 dataset. Related to Figure 1A. 

 

Supplementary Video 2. Multidimensional dynamic scaling for GSE54388 dataset. Related to Figure 1B. 

 

Supplementary Video 3. Multidimensional dynamic scaling for GSE69428 dataset. Related to Figure 1C. 

 


