pubs.acs.org/jacsau

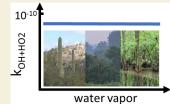
0.000

. . . .

Is the Reaction Rate Coefficient for $OH + HO_2 \rightarrow H_2O + O_2$ Dependent on Water Vapor?

William H. Brune* and Jena M. Jenkins

Cite This: JACS Au 2024, 4, 4921-4926


ACCESS I

III Metrics & More

Article Recommendations

SI Supporting Information

ABSTRACT: A critical reaction affecting the oxidation chemistry in the middle-to-upper atmosphere occurs between hydroxyl (OH) and hydroperoxyl (HO₂). The reaction rate coefficient for OH + HO₂ \rightarrow H₂O + O₂, here called $k_{\rm OH+HO2}$, has challenged laboratory kineticists for 50 years. However, several measurements from the past 30 years had approached a rough consensus until the publication of a new study that examined, for the first time, the water vapor dependence of this reaction. According to the study, $k_{\rm OH+HO2}$ is not the recommended value of 11.0 \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹, but instead, a water-dependent (\sim 1 \times 10⁻¹¹ + 2.17 \times 10⁻²⁸[H₂O]) cm³ molecule⁻¹ s⁻¹. Our study examines the water dependence of $k_{\rm OH+HO2}$ using water vapor photolysis

of moist air at atmospheric pressure in a flow tube, with direct detection of both OH and HO_2 . The observed OH decays were due only to the OH reaction with HO_2 and, to a lesser extent, the OH loss to the flow tube wall and trace impurities. The resulting k_{OH+HO2} is $(8.54 \pm 2.90) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, 68% confidence, independent of water vapor and lower than but consistent with the recommended value.

KEYWORDS: hydroxyl, hydroperoxyl, reaction rate coefficient

1. INTRODUCTION

The atmosphere's primary oxidant, the hydroxyl radical (OH), comes from solar radiation dissociating ozone (O₃) into molecular oxygen (O₂) and excited-state O (O(1 D)), which then reacts with water vapor (H₂O) to produce 2 OH molecules. OH then reacts with hundreds of chemical species, often producing a hydroperoxyl radical (HO₂). HO₂ reacts with nitric oxide (NO) or O₃, producing OH. Because the reactions lead to rapid cycling between OH and HO₂, the sum of them, OH + HO₂, is often called HO_x. This cycling continues until HO₂ or OH termination reactions form more stable chemical species. One of the most important termination reactions is reaction:

$$OH + HO_2 \rightarrow H_2O + O_2 \tag{R1}$$

This reaction terminates both OH and HO₂, returning the radicals to water vapor.

This reaction influences atmospheric chemistry in several ways. First, throughout most of the troposphere, away from urban areas and other large NO sources, this reaction removes from the troposphere a sizable amount of HO_x , about 15% near Earth's surface, growing to ~50% above 10 km altitude.¹ Second, extreme amounts of OH and HO_2 were recently found to be produced directly by lightning and weaker electrical discharges in thunderstorm outflow anvil clouds.² This lightning-generated OH, called LOH, is calculated to be responsible for 2–16% of global OH oxidation, but this calculation depends heavily on the reaction rate coefficient of OH + $HO_2 \rightarrow H_2O + O_2$, here called $k_{\rm OH+HO2}$. This reaction removes over half of the OH before it can react with carbon

monoxide (CO) or other chemical species. Thus, the value of the reaction rate coefficient is critical for determining the atmosphere's oxidation capacity and thus lifetimes of CO, methane (CH_4) , and other atmospheric constituents.

The value of the IUPAC recommended reaction rate coefficient in Atkinson et al.³ for the reaction of OH + HO_2 \rightarrow H_2O + O_2 is

$$k_{\rm OH+HO2}^{\rm IUPAC} = 4.8 \times 10^{-11} \exp(250/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$$

where T is temperature. At T=298 K, $k_{\mathrm{OH+HO2}}^{\mathrm{IUPAC}}=11.0\times10^{-11}$ cm³ molecule⁻¹ s⁻¹. This recommendation is based on six studies that measured OH and in some cases also $\mathrm{HO_2}$.^{4–9} Two early studies that estimated $\mathrm{OH}+\mathrm{HO_2}\to\mathrm{H_2O}+\mathrm{O_2}$ by looking at the effects of secondary chemistry on the reactions of OH with either hydrogen peroxide ($\mathrm{H_2O_2}$) or ozone ($\mathrm{O_3}$) found rate coefficients of (1–3) \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹.^{10,11} A 2020 study by Assaf and Fittschen¹² using direct measurements of OH and $\mathrm{HO_2}$ measured 10.2 \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹, consistent with the IUPAC recommendation. None of these studies examined the reaction rate coefficient as a function of water vapor over a substantial range.

A 2023 study did. Speak et al. 13 used two different laboratory systems and theoretical calculations to study

Received: September 26, 2024 Revised: November 14, 2024 Accepted: November 15, 2024

Published: November 22, 2024

Table 1. Characteristics of Laboratory Setup and Experiments

component	characteristics	uncertainty (68% confidence)
flow tube	material: fused quartz; I.D.: 4.6 cm; length: 105 cm	
flow amount	flow: 50 LPM; pressure: 950–1000 hPa; $T=294$ K; $R_{\rm e}\sim1500$; measured centerline velocity: 86 cm s ⁻¹ ; radial flow profile: not quite fully developed laminar flow	<5%
stable gases	air (dewpoint: -40 °C; CO \sim 20 ppbv; OH reactivity <0.5 s ⁻¹); HPLC-grade water (400–15,000 ppmv)	N/A
detection	OH: LIF in 6 hPa detection cell, sampled through 1 mm hole perpendicular to flow and 0.5 cm from flow tube centerline	±20%
	HO_2 : NO + $HO_2 \rightarrow OH + NO_2$, OH LIF in detection cell	±20%
	O ₃ : UV absorption, Thermo 49C	±5%
	H ₂ O, pressure, temperature: Vaisala HMT310	±5%
signals	OH signal: online 5–500 cts s ⁻¹ ; off-line 0.2 cts s ⁻¹	
	HO_2 signal: online 20–2000 cts s ⁻¹ ; off-line 0.2 cts s ⁻¹	
OH/HO ₂ source	UV Hg lamp (Atlantic Ultraviolet 16007-V177); placed 0.5 cm above quartz flow tube; 185:254 nm < 0.1; 8 mm slit perpendicular to flow; $flux_{254 \text{ nm}} < 10^{15} \text{ photons cm}^{-2} \text{ s}^{-116}$	
	UV varied by covering with FEP sheets (0.12 mm thick)	
OH decays	five 5 cm steps between 15–35 cm from HO_x sampling inlet; OH decay found by least-squares fit to $log(OH)$ versus reaction time for each experiment	±20%
wall loss and impurities	OH: 0.9 s^{-1} ; impurity: 0.35 s^{-1} ; total: 1.25 s^{-1}	$\pm 0.3 \text{ s}^{-1}$
	HO_2 : <0.3 s ⁻¹	
initial radical ranges	OH: $3.5 \times 10^9 - 2.6 \times 10^{10} \text{ cm}^{-3}$	
	HO_2 : $7.2 \times 10^9 - 1.0 \times 10^{11} \text{ cm}^{-3}$	
	O ₃ : 0-70 ppbv, except 3 experiments at ~120 ppbv	
number of experiments	OH wall loss: 22	
	OH + HO ₂ rate coefficient: 51	

 $k_{\rm OH+HO2}$ and its water dependence. They determined the $k_{\rm OH+HO2}$ to be $\sim 1 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ when water vapor was $\sim 10^{16}$ cm⁻³, increasing to 8×10^{-11} cm³ molecule⁻¹ s⁻¹ when water vapor was greater than 3×10^{17} cm⁻³. The water vapor dependence was determined to be 2.17×10^{-28} cm⁶ molecule⁻¹ s⁻¹. If this result is correct, then OH in the upper troposphere and the impact of lightning-produced OH on global OH oxidation must be reassessed.

on global OH oxidation must be reassessed. In response to the Speak et al. 13 results, Chen et al. 14 used the same method as Assaf and Fittchen 12 for determining $k_{\rm OH+HO2}$, but this time, the experiments were performed with either no added water vapor or $[{\rm H_2O}] = 6.32 \times 10^{16} {\rm cm}^{-3}$. In both cases, they obtained $k_{\rm OH+HO2} = (11.0 \pm 0.12) \times 10^{-11} {\rm cm}^3$ molecule $^{-1}$ s $^{-1}$, indicating that $k_{\rm OH+HO2}$ is independent of water vapor.

In this study, we examine the reaction rate coefficient for $OH + HO_2 \rightarrow H_2O + O_2$ and its water vapor dependence over a range of water vapor concentrations using the simplest, near-atmospheric-like chemistry we could imagine. It involves flowing mixtures of atmospheric pressure air and water vapor past a moveable ultraviolet radiation source and detecting both OH and HO_2 at the end of the flow tube. By varying the water vapor concentrations and HO_x production and directly measuring the OH and HO_2 decays, we were able to determine the k_{OH+HO2} and its water vapor dependence. We compare and contrast our results with those of the previously mentioned references.

2. EXPERIMENTAL DESIGN AND EXECUTION

Our experiments use the discharge-flow method for measuring the decay of OH in the presence of excess HO₂. Details of this apparatus can be found in Jenkins et al.¹⁵ Relevant details for this study are listed in Table 1. The experimental apparatus consists of a flow tube used primarily for research on OH, HO₂, NO, NO₂, O₃, and other products of electrical discharges including sparks and corona. However, instead of a fixed discharge to create OH and a moveable one for HO₂ as has been used before, a moveable mercury (Hg) lamp, positioned just above the quartz flow tube, emits both the 185

and 254 nm radiation to create both OH and $\rm HO_2$ in a disc filling the flow tube cross section and ~ 1 cm thick along the tube length. Less than 20% of the 185 nm radiation is absorbed even at the tube bottom, resulting in a fairly uniform distribution of OH and $\rm HO_2$ throughout the tube's cross-section. Both OH and $\rm HO_2$ were measured by the Ground-based Hydrogen Oxides Sensor (GTHOS), with its inlet sampling from the center of the flow at the end of the flow tube. 15,17

GTHOS measures OH by laser-induced fluorescence (LIF) in air that was pulled through a 1 mm pinhole past two detection chambers at 6 hPa pressure. OH absorbs the laser radiation in the $Q_1(2)$ line at 307.9948 nm (called online) and its fluorescence was detected by a gated microchannel plate set at right angles to the laser beam and the flow. The laser was pulsed at 3 kHz, has an average power of 0.5–7 mW, and was passed through the airflow 32 times with a multipass cell. For this experiment, the laser power was \sim 1 mW and the beam diameter at the center of the detection cell was \sim 4 mm. To distinguish the OH fluorescence signal from background signals, 25 s of online were followed by 5 s of offline, with the laser wavelength shifted, alternately, -0.008 or +0.008 nm from the online wavelength. HO₂ is detected when NO is added upstream of the detection cell and reacts with HO₂ to produce OH, which is detected by LIF.

For each experiment, OH and HO_2 were measured as the UV lamp was moved further away from the GTHOS inlet in five steps, collecting signal for 30 s at each step. A linear least-squares fit to the logarithm of these OH data as a function of the reaction time gave a slope equal to the OH decay (s^{-1}).

In the flow tube, the stable gas composition is N_{ν} , O_{ν} and $H_{\nu}O$. Photolysis by the UV lamp initiates fairly simple chemistry, as shown in the following reaction sequence, where "P" indicates HO_{κ} production and "R" indicates OH reactions.

$$H_2O + UV(185 \text{ nm}) + O_2 \rightarrow OH + HO_2$$
 (P1)

$$O_2 + UV(185 \text{ nm}) + 2O_2 \rightarrow O_3 + O_3$$
 (P2)

$$O_3 + UV(254 \text{ nm}) \rightarrow O(^1D) + O_2$$
 (P3)

$$O(^{1}D) + H_{2}O \rightarrow OH + OH$$
 (P4)

$$OH + O_3 \rightarrow HO_2 + O_2 \tag{R2}$$

$$OH + OH \xrightarrow{M} HOOH + O_2 \text{ or } H_2O + O$$
 (R3)

$$OH + (wall \& impurity) \rightarrow (R4)$$

$$OH + HO_2 \rightarrow H_2O + O_2 \tag{R1}$$

No reactions with $\rm H_2O_2$ as a reactant are listed because only small amounts of $\rm H_2O_2$ would be produced and the modeled $\rm H_2O_2$ for these conditions does not exceed 5 × 10 9 cm $^{-3}$. Thus, the OH + $\rm H_2O_2$ reaction frequency, with a rate coefficient of $k_{\rm OH+H2O2}=1.7\times10^{-12}$ cm 3 molecules $^{-1}$ s $^{-1}$, is negligible. With O $_3$ less than 70 ppbv (1.7 × 10 12 cm $^{-3}$), R2 and R3 affect the OH decays by less than 4%, although their contributions are still subtracted from the calculated decay slopes of individual experiments. More than 95% of each OH decay is due to R1 and R4.

The frequency for R4 is half the total OH decay for $[HO_2]_{initial} < 2 \times 10^{10} \text{ cm}^{-3}$, but shrinks to less than 20% for $[HO_2]_{initial} > 5 \times 10^{10} \text{ cm}^{-3}$. Thus, the frequency for R4 is a large enough fraction that it must be quantified and subtracted from the calculated OH decay slope. To measure this frequency, we decreased HO_2 and OH by reducing water vapor and/or UV flux. The lower HO_2 reduced the contributions of R1, R2, and R3 to the OH decays while maintaining enough OH to measure the OH decay slope.

In these measurements, the contribution of R1 to the OH wall decay slope varied from 10 to 35% if the IUPAC reaction rate coefficient was used. (Note: in the Discussion, we describe the impact of using the reaction rate coefficient from Speak et al. 13 in this analysis.) Once $k_{\rm OH+HO2}$ was found, it was used to correct the wall loss frequency, which was then used to find an updated value of $k_{\rm OH+HO2}$. The updated $k_{\rm OH+HO2}$ was then used to find a new value for the wall loss frequency. In the second iteration, the new wall loss frequency was less than 1% different from the previous value, so the iterations were stopped, and the updated $k_{\rm OH+HO2}$ was adopted as the reported value. The resulting average OH wall loss/impurity frequency is (1.25 \pm 0.3) s $^{-1}$, 68% confidence.

In the experiments to find the loss frequency for the wall loss and impurity, HO_2 increased slightly, while OH decreased. HO_x , the sum of OH and HO_2 , decreased less than OH, suggesting that some of the OH loss is due to reactions that cycle OH into HO_2 . The HO_x decay will not be influenced by reactions with impurities that cycle HO_x between OH and HO_2 , but it will be influenced by terminal losses of OH and HO_2 . From the analysis of the HO_x decays, the loss frequency of R4 due to wall loss is $\sim 0.9 \, \mathrm{s}^{-1}$, leaving $\sim 0.35 \, \mathrm{s}^{-1}$ for an impurity reacting with OH to form HO_2 . The measured CO accounts for less than half of that impurity.

Reaction P1 produces equal amounts of OH and HO_2 , but in the \sim 0.2 s between the GTHOS inlet and the first accessible measuring point, OH had dropped more than HO_2 because of greater wall and impurity losses. On average, for the OH decay measurements, HO_2 started 4 times larger than OH, with a range of 2–10, and dropped on average 15% during the experiment, with a range of 0–30%. Furthermore, the HO_2 decrease between the first and final steps is within 15% of the OH decrease when it is corrected for wall/impurity loss. This similar decrease indicates that $k_{\mathrm{OH+HO}_2}$ is removing them both, as expected. Thus, although the initial loss of equal amounts of OH and HO_2 by R1 is quadratic, by the time OH and HO_2 are measured, HO_2 is in excess. We can assume that the OH decay is pseudo-first-order using the average HO_2 as the excess reactant for each experiment:

$$k_{\rm OH+HO2} = \frac{\rm dlog(OH)/dt - \textit{k}_{wall} - \textit{k}_{\rm OH+O3}[O_3]}{\rm [HO_2]_{average}} \tag{E1} \label{eq:energy}$$

The uncertainty in the derived rate coefficient for $k_{\rm OH+HO2}$ is dictated primarily by the uncertainties in the OH wall loss, the HO₂ measurement, and the uncertainty due to the precision of the measured OH decays. The precision uncertainty is taken as the standard deviation of the calculated $k_{\rm OH+HO2}$ and is due to variations in the calculated slopes, as discussed further in the results. Uncertainties in the reaction frequencies of OH + O₃ and OH +

OH are small enough to be neglected in this propagation-of-error analysis. Since the fractional uncertainty in $k_{\rm wall}$ is ± 0.25 , in $[{\rm HO}_2]_{\rm average}$ is ± 0.20 , and in the OH decay slope measurement is ± 0.20 , all at 68% confidence, the resulting uncertainty in $k_{\rm OH+HO2}$ is $\pm 34\%$, 68% confidence.

This study is the first time this laboratory flow system has been used to measure a reaction rate coefficient. Measuring reaction rate coefficients in a flow tube under these conditions (970 hPa; 86 cm s⁻¹; 4.6 cm diameter) is uncommon. However, the measured radial velocity profile and the centerline velocity are consistent with expectations for flow approaching but not yet at fully developed laminar flow. To test this system, we chose to find the rate coefficients for two reactions: OH with α -pinene and OH with perfluoropropylene (C_3F_6).

For the α -pinene reaction, known amounts of α -pinene (Aldrich, 98% pure) were added to the humidified air in the flow tube using a syringe pump (Chemyx Inc., Fusion 100) to inject α -pinene into a 1 LPM flow, which was added to the main 49 LPM flow in 1/2" Teflon tubing prior to the air entering the flow tube. The flow-tube pressure was 970 hPa and the temperature was 294 K. The α -pinene concentrations in nine experiments ranged from 6.7 × 10¹⁰ to 2.0 × 10¹¹ cm⁻³, resulting in the range of OH reactivity from this reaction from 3.6 to 10.8 s⁻¹. Other contributors to the OH decay were OH + HO₂ (0.8–2.9 s⁻¹) and OH wall/impurity loss (1.25 s⁻¹). Subtracting these additional contributors from the linear-least-squares slope to the OH decay resulted in $k_{\rm OH+AP} = (5.1 \pm 0.7) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, where the uncertainty is precision only. This result is consistent with the IUPAC rate coefficient of $k_{\rm OH+AP} = 5.4 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.

For the C_3F_6 experiments, a few hPa of C_3F_6 were drawn from the gas over liquid C₃F₆ (SynQuest Laboratories, 98.5% pure) into a stainless steel reservoir, to which ~2000 hPa of high-purity N2 (Linde, 99.999% pure) was added. This C₃F₆/N₂ mixture was flowed at rates between 0 and 5 standard cubic centimeters per minute (sccm) into total flow (50,000 sccm), resulting in five values of [C₃F₆] from 0 to 2.2×10^{12} cm⁻³. Although C_3F_6 can be photolyzed by the 185 nm radiation with an absorption cross-section of $\sim 10^{-17}$ cm², ¹⁸ photolysis with the UV flux given in Table 1 would produce a negligible amount (<2 pptv) of a fluorine radical. Three different combinations of water vapor and UV filters were used to make different amounts of OH and HO_2 . Initial OH was $(0.4-1) \times 10^{10}$ cm⁻³ and, for each of the combinations, HO₂ was independent of C_3F_6 and $(1-2) \times 10^{10}$ cm⁻³. The slope of the OH decay rate versus [C₃F₆] for all 16 experiments gave a reaction rate coefficient of (2.10 \pm 0.30) \times 10⁻¹² cm⁻³ molecule⁻¹ s⁻¹ and the mean of all values with $[C_3F_6] > 0$ is $(2.24 \pm 0.39) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹. This result is consistent with the IUPAC recommendation of $2.18 \times 10^{-12} \text{ cm}^{-3} \text{ molecule}^{-1} \text{ s}^{-1.3} \text{ Our}$ measured rate coefficients for OH with α -pinene and with perfluoropropylene demonstrate that this laboratory flow system is suitable for measuring OH reaction rate coefficients.

For OH + HO₂ \rightarrow H₂O + O₂, some OH decays were calculated with a photochemical box model to ensure that the approximations leading to E1 were valid. The MCMv3.3.1 mechanism¹⁹ was run using the F0AM photochemical box modeling framework.²⁰ The inputs to the model included the measured values for pressure, temperature, H₂O, O₃, CO, OH wall loss frequency, initial OH, initial HO₂, and calculated $k_{\rm OH+HO2}$. The model was run for 0.25 s and the intermediate steps were saved.

3. RESULTS

We calculated $k_{\rm OH+HO2}$ for each of the fifty-one OH decays. Four typical OH decays out of the fifty-one experiments are shown in Figure 1. The measurements are the markers, the linear least-squares fits are the colored lines, and the model-calculated OH decays are the gray dashed lines. For these four experiments, the initial OH ranged from 0.7×10^{10} to 1.3×10^{10} cm⁻³, but each one has been scaled to the mean value of the four initial points so that the decays from the different

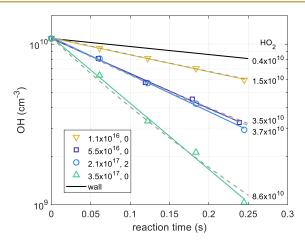
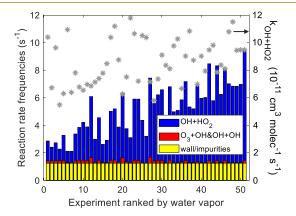



Figure 1. OH decays vs reaction time. Five OH typical decays, including wall loss, are shown along with their average HO_2 concentrations. Initial OH values have been scaled to the mean initial value for the plot. The legend shows the water vapor concentration and the number of UV filters used for each experiment. Gray dashed lines show the scaled OH decays as calculated with the MCMv3.3.1 model.

experiments can be more easily compared. To the right of the decays are the average HO_2 concentrations for each experiment. The OH decreases from less than a factor of 2 to a factor of 10. The legend gives the water vapor concentration and number of filters used for each experiment.

Note the middle two OH decays that are almost identical, as are their average HO_2 concentrations. For the OH decay with $HO_2 = 3.5 \times 10^{10}$ cm⁻³, this HO_2 was achieved using 5.5×10^{16} cm⁻³ of water vapor and no filters, while the OH decay with $HO_2 = 3.7 \times 10^{10}$ cm⁻³ was achieved with 2.1×10^{17} cm⁻³ of water vapor and 2 UV filters reducing the 185 nm radiation. The similarity in these two decays despite the factor-of-four difference in water vapor indicates that k_{OH+HO2} is independent of water vapor.

The reaction frequencies for OH + HO₂ \rightarrow H₂O + O₂, the combined reactions of OH with O₃ and OH, and the OH wall loss are shown for the 51 experiments in Figure 2. The experiments are arranged from the lowest water vapor to the highest. The scatter in $k_{\rm OH+HO2}$ appears to be independent of

Figure 2. Reaction rate frequencies for the 51 experiments ordered by water vapor. Left axis: reaction frequencies for OH + HO₂ (blue), O₃ + OH + OH (red), and wall and impurities (yellow) are shown as bars. Right axis: $k_{\rm OH+HO2}$ for the 51 experiments are given as gray stars.

water vapor, the reaction frequency of OH + HO₂ \rightarrow H₂O + O₂, and the difference between the reaction frequency of OH + HO₂ \rightarrow H₂O + O₂ and the OH wall loss frequency. Thus, the scatter in $k_{\rm OH+HO2}$ is due to other factors, especially statistical variation.

The reaction rate coefficient $k_{\rm OH+HO2}$ for the 51 experiments is shown in Figure 3. The 51 individual experiments (gray

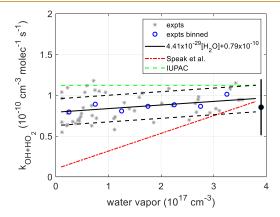


Figure 3. OH + HO₂ reaction rate coefficient as a function of water vapor. Shown are the $k_{\rm OH+HO2}$ of all 51 individual experiments (gray stars); the $k_{\rm OH+HO2}$ averaged into 0.5 × 10¹⁷ cm⁻³ bins (blue circles); the linear fit to experiments (black line); the standard deviation in $k_{\rm OH+HO2}$ at 68% confidence (dashed black lines); the IUPAC recommendation (green dashed line); and the Speak et al. ¹³ water-dependent $k_{\rm OH+HO2}$ (red dash-dot line). Average $k_{\rm OH+HO2}$ and its total error (68% confidence) are shown to the right (black dot and lines) and is $(8.54 \pm 2.90) \times 10^{-11}$ cm³ molecule ⁻¹ s⁻¹.

stars) are distributed over the water vapor range, but because the focus of this study was to test the Speak et al. ¹³ results, half the experiments were conducted at lower water vapor concentrations and thus they have smaller decay slopes and greater statistical variability. Also shown in the figure are $k_{\rm OH+HO2}$ averaged for water vapor bins of 5 \times 10 16 cm $^{-3}$, the linear least-squares fit to the 51 experimental results in the solid black line, along with its uncertainty at 68% confidence, and dashed lines for $k_{\rm OH+HO2}$ from IUPAC 3 and Speak et al. 13

4. DISCUSSION

This study has some differences from previous studies. First, in this study, all experiments were conducted in air at atmospheric pressure, while most other studies used N_2 , Ar, or He as the carrier gas, usually at a lower-than-atmospheric pressure. Second, the reaction frequency range used in this study was $\sim\!3\!-\!10~s^{-1}$, while all other studies had reaction frequency ranges $10\!-\!100$ times larger. Third, the chemistry in this study was designed to minimize all chemical reactions except the reaction of OH + HO2, with the OH wall loss/impurity as the only competition. Fourth, only Speak et al. 13 and this study examine the dependence of $k_{\rm OH+HO2}$ on water vapor over the atmospherically relevant range from $\sim\!10^{16}$ to $\sim\!3\times10^{17}~{\rm cm}^{-3}$.

As shown in Figure 3, the linear least-squares fit to our experiments has a water vapor dependence of 4.4×10^{-29} cm⁶ molecule⁻¹ s⁻¹, although the slope is not statistically significant. If we assume the slope is real and the water vapor dependence is due to the formation of the HO_2-H_2O complex using the equilibrium constant given in the study of Speak et al., ¹³ then the reaction of OH with the complex would

need a reaction rate coefficient of $\sim 8 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, nearly identical to the water independent intercept for $k_{\rm OH+HO2}$. Further, the close similarity of the two middle OH decays in Figure 1, despite the factor-of-four difference in water vapor, provides additional evidence that $k_{\rm OH+HO2}$ calculated from our 51 experiments is independent of water vapor. If Speak et al. were correct, the slopes of these two decays would be different by a factor of 2.5. Thus, our results support a water-independent $k_{\rm OH+HO2}$ at 68% confidence, of $(8.54 \pm 2.90) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.

As mentioned in the Experiment design and execution section, the values for OH wall loss are somewhat dependent on the $k_{\rm OH+HO2}$ used to correct the wall loss decays. If the Speak et al. value is used, then the calculated wall loss frequency becomes 1.5 s⁻¹. When this value is used to calculate $k_{\rm OH+HO2}$ from our data as a function of water vapor, $k_{\rm OH+HO2} = 7.4 \times 10^{-29} [\rm H_2O] + 0.67 \times 10^{-10} ~\rm cm^{-3}$ molecule some averaged $k_{\rm OH+HO2}$ is $(7.75 \pm 2.64) \times 10^{-11} ~\rm cm^{-3}$ molecule ship with the averaged $k_{\rm OH+HO2}$ is $(7.75 \pm 2.64) \times 10^{-11} ~\rm cm^{-3}$ molecule specificant and the averaged $k_{\rm OH+HO2}$ is $(7.75 \pm 2.64) \times 10^{-11} ~\rm cm^{-3}$ molecule specifically insignificant and the averaged $k_{\rm OH+HO2}$ is $(7.75 \pm 2.64) \times 10^{-11} ~\rm cm^{-3}$ molecule specifically insignificant and the averaged $k_{\rm OH+HO2}$ is $(7.75 \pm 2.64) \times 10^{-11} ~\rm cm^{-3}$ molecule specifically insignificant and the averaged $k_{\rm OH+HO2}$ is $(7.75 \pm 2.64) \times 10^{-11} ~\rm cm^{-3}$ molecule specifically insignificant and the averaged $k_{\rm OH+HO2}$ is $(7.75 \pm 2.64) \times 10^{-11} ~\rm cm^{-3}$ molecule specifically insignificant and the averaged $k_{\rm OH+HO2}$ is $(7.75 \pm 2.64) \times 10^{-11} ~\rm cm^{-3}$ molecule specifically insignificant and the averaged $k_{\rm OH+HO2}$ is $(7.75 \pm 2.64) \times 10^{-11} ~\rm cm^{-3}$ molecule specifically insignificant and the averaged $k_{\rm OH+HO2}$ to correct the wall loss and 10% lower than the $k_{\rm OH+HO2}$ to correct the wall loss.

The $k_{\rm OH+HO2}$ from our experiments is lower than but consistent with the IUPAC recommendation and the several studies that support that recommendation $^{3-9}$ as well as the more recent studies by Assaf and Fittschen 12 and Chen et al. 14 At water vapor concentrations less than $\sim 2 \times 10^{17}$ cm $^{-3}$, our result is inconsistent with the water-dependent result of Speak et al. 13 We have no definitive explanation for this substantial difference with Speak et al., 13 especially for their theoretical water-dependent result.

The 2016–2018 NASA Atmospheric Tomography (ATom) study was a series of aircraft flights south over the central Pacific Ocean, east over Antarctica, north over in Atlantic Ocean, and west over northern Canada, once in each Northern Hemisphere season. These flights consisted of almost constant ascents to 10-14 km followed by descents to ~0.2 km, thus scanning almost the entire troposphere. The airborne configuration of GTHOS, called ATHOS, was on these flights. At altitudes above 4 km, water vapor was less than 10^{17} cm⁻³, and according to Speak et al., 13 $k_{\rm OH+HO2}$ should be less than 3×10^{-11} cm³ molecule⁻¹ s⁻¹. On average for altitudes above 4 km and different latitude bands, the percent difference $(100 \times \frac{\text{observation} - \text{model}}{(\text{observation} + \text{model}) / 2)})$ for OH is less than 30% and for HO₂ is less than 20% for the model using the IUPAC³ recommendation for k_{OH+HO2} . If the Speak et al. ¹³ value is used instead, the percent difference is less than that using the IUPAC³ by as much as 10-15% at some altitudes and latitudes and a similar amount larger for other altitudes and latitudes. In all cases, the percent differences using either Speak et al. 3 or IUPAC are within the combined model and observation uncertainty of $\sim \pm 40\%$. Thus, the ATom results provide no evidence for or against the k_{OH+HO2} from Speak et al. 13

5. CONCLUSIONS

Speak et al.¹³ raised an interesting question about the water vapor dependence of the reaction between OH and HO₂. Using our laboratory system designed for electrical discharge studies, we devised flow-tube experiments that measure OH and HO₂ directly in the simplest chemistry we could conceive

at atmospherically relevant gas compositions and pressure. In the final analysis, these experiments provide substantial evidence that OH + HO₂ \rightarrow H₂O + O₂ is independent of water vapor and has a room temperature rate coefficient of $(8.54 \pm 2.90) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, 68% confidence, lower than but consistent with current IUPAC recommendations.³ While our result is consistent with the IUPAC recommendations, it is ~30% lower and would result in OH being ~5% greater in the upper troposphere and in thunderstorms. We recommend the use of a water-vapor-independent reaction rate coefficient and the re-evaluation of the IUPAC recommendation considering this new lower $k_{\rm OH+HO2}$.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacsau.4c00905.

Experimental data used to determine the OH + $\mathrm{HO_2} \rightarrow \mathrm{H_2O}$ + $\mathrm{O_2}$ reaction rate coefficient; variables are experiment number, and, for each experiment, pressure, temperature, number concentration, time step for the five OH measurements in each decay, $\mathrm{H_2O}$ concentration, number of UV filters, $\mathrm{O_3}$ concentration, $\mathrm{HO_2}$ concentration averaged over the OH decay for each experiment, and OH concentration for each of the five lamp positions in 5 cm increments (PDF)

AUTHOR INFORMATION

Corresponding Author

William H. Brune — Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0002-1609-4051; Email: whb2@psu.edu

Author

Jena M. Jenkins – Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, Pennsylvania 16802, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/jacsau.4c00905

Author Contributions

CRediT: William H. Brune conceptualization, formal analysis, investigation, visualization, writing - original draft, writing - review & editing; Jena M Jenkins investigation, writing - review & editing.

Funding

This study was supported by NSF grant AGS-2323203 and NASA grant 80NSSC19K1590.

Note:

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Y. Yung for calling our attention to Speak et al., ¹³ P. Stevens for lending us a microchannel plate detector after ours failed, and two anonymous reviewers for their comments.

REFERENCES

- (1) Brune, W. H.; Miller, D. O.; Thames, A. B.; Allen, H. M.; Apel, E. C.; Blake, D. R.; Bui; T, P.; Commane, R.; Crounse, J. D.; Daube, B. C.; et al. Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom). *J. Geophys. Res.: Atmos.* 2020, 125, No. e2019JD031685.
- (2) Brune, W. H.; McFarland, P. J.; Bruning, E.; Waugh, S.; MacGorman, D.; Miller, D. O.; Jenkins, J. M.; Ren, X.; Mao, J.; Peischl, J. Extreme oxidant amounts produced by lightning in storm clouds. *Science* **2021**, *372*, *711*–*715*.
- (3) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I gas phase reactions of O_x, HO_x, NO_x and SO_x species. *Atmos. Chem. Phys.* **2004**, *4*, 1461–1738.
- (4) Braun, M.; Hofzumahaus, A.; Stuhl, F. VUV Flash Photolysis Study of the Reaction of HO with HO₂ at 1 atm and 298 K. Berichte der Bunsengesellschaft für physikalische Chemie **1982**, 86, 597–602.
- (5) Dransfeld, P.; Wagner, H. G. Comparative Study of the Reactions of ¹⁶OH and ¹⁸OH with H¹⁶O₂. Z. Naturforsch., A: Phys. Sci. **1987**, 42 (5), 471–476.
- (6) Keyser, L. F. Kinetics of the reaction OH + $HO_2 \rightarrow H_2O + O_2$ from 254 to 382 K. J. Phys. Chem. 1988, 92, 1193–1200.
- (7) Schwab, J. J.; Brune, W. H.; Anderson, J. G. Kinetics and mechanism of the OH + HO₂ reaction. *J. Phys. Chem.* **1989**, 93, 1030–1035.
- (8) DeMore, W. B. Rate constant and possible pressure dependence of the reaction OH + HO₂. *J. Phys. Chem.* **1982**, *86*, 121–126.
- (9) Cox, R. A.; Burrows, J. P.; Wallington, T. J. Rate coefficient for the reaction $OH + HO_2 = H_2O + O_2$ at 1 atm pressure and 308 K. Chem. Phys. Lett. **1981**, 84, 217–221.
- (10) Wine, P. H.; Semmes, D. H.; Ravishankara, A. R. A laser flash photolysis kinetics study of the reaction $OH+H_2O_2\rightarrow HO_2+H_2O$. *J. Chem. Phys.* **1981**, 75, 4390–4395.
- (11) Chang, J. S.; Kaufman, F. Upper bound and probable value of the rate constant of the reaction OH + $HO_2 \rightarrow H_2O + O_2$. J. Phys. Chem. 1978, 82, 1683–1687.
- (12) Assaf, E.; Fittschen, C. Cross Section of OH Radical Overtone Transition near 7028 cm⁻¹ and Measurement of the Rate Constant of the Reaction of OH with HO₂ Radicals. *J. Phys. Chem. A* **2016**, *120*, 7051–7059.
- (13) Speak, T. H.; Blitz, M. A.; Medeiros, D. J.; Seakins, P. W. New Measurements and Calculations on the Kinetics of a Old Reaction: OH + HO₂ \rightarrow H₂O + O₂. *JACS Au* **2023**, *3*, 1684–1694.
- (14) Chen, I.-Y.; Chang, C.-W.; Fittschen, C.; Luo, P.-L. Accurate Kinetic Studies of OH + HO₂ Radical—Radical Reaction through Direct Measurement of Precursor and Radical Concentrations with High-Resolution Time-Resolved Dual-Comb Spectroscopy. *J. Phys. Chem. Lett.* **2024**, *15*, 3733–3739.
- (15) Jenkins, J. M.; Brune, W. H.; Miller, D. O. Electrical Discharges Produce Prodigious Amounts of Hydroxyl and Hydroperoxyl Radicals. *J. Geophys. Res.: Atmos.* **2021**, *126* (9), No. e2021JD034557.
- (16) Rowe, J. P.; Lambe, A. T.; Brune, W. H. Technical Note: Effect of varying the $\lambda = 185$ and 254 nm photon flux ratio on radical generation in oxidation flow reactors. *Atmos. Chem. Phys.* **2020**, 20 (21), 13417–13424.
- (17) Faloona, I. C.; Tan, D.; Lesher, R. L.; Hazen, N. L.; Frame, C. L.; Simpas, J. B.; Harder, H.; Martinez, M.; Di Carlo, P.; Ren, X. R.; Brune, W. H. A laser-induced fluorescence instrument for detecting tropospheric OH and HO: Characteristics and calibration. *J. Atmos. Chem.* **2004**, 47 (2), 139–167.
- (18) Zhang, Z.; Padmaja, S.; Saini, R. D.; Huie, R. E.; Kurylo, M. J. Reactions of Hydroxyl Radicals with Several Hydrofluorocarbons: The Temperature Dependencies of the Rate Constants for CHF₂CF₂CH₂F (HFC-245ca), CF₃CHFCHF₂ (HFC-236ea), CF₃CHFCF₃ (HFC-227ea), and CF₃CH₂CH₂CF₃ (HFC-356ffa). *J. Phys. Chem.* 1994, 98, 4312–4315.
- (19) Saunders, S. M.; Jenkin, M. E.; Derwent, R. G.; Pilling, M. J. Protocol for the development of the Master Chemical Mechanism,

MCM v3 (Part A): tropospheric degradation of nonaromatic volatile organic compounds. *Atmos. Chem. Phys.* **2003**, *3*, 161–180.

(20) (20.) Wolfe, G. M.; Marvin, M. R.; Roberts, S. J.; Travis, K. R.; Liao, J. The Framework for 0-D Atmospheric Modeling (F0AM) v3.1. *Geosci. Model Dev.* **2016**, *9*, 3309–3319.