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Abstract: Polymers are often added with water as a viscosifier to improve oil recovery from
hydrocarbon reservoirs. Polymer might be lost wholly or partially from the injected polymer
solution by adsorption on the grain surfaces, mechanical entrapment in pores, and hydrodynamic
retention in stagnant zones. Therefore, having a clear picture of polymer losses (and retention)
is very important for designing a technically and economically successful polymer flood project.
The polymer adsorption and mechanical entrapment are discussed more in depth in the literature,
though the effect of hydrodynamic retention can be just as significant. This research investigates
the effect of the hydrodynamic retention for low and high molecular weight (AN 113 VLM and
AN 113 VHM) sulfonated polyacrylamide polymer. Two high permeability Bentheimer core plugs
from outcrops were used to perform polymer corefloods. Polymer retention was first determined
by injecting 1 cm3/min, followed by polymer core floods at 3, 5, and 8 cm3/min to determine the
hydrodynamic retention (incremental retention). A higher molecular weight polymer (AN 113
VHM) showed higher polymer retention. In contrast, hydrodynamic retention for lower molecular
weight (AN 113 VLM) was significantly higher than that of the higher molecular weight polymer.
Other important observations were the reversibility of the hydrodynamic retention, no permanent
permeability reduction, the shear thinning behavior in a rheometer, and shear thickening behavior in
core floods.

Keywords: polymer flooding; polymer retention; hydrodynamic retention; sulfonated polyacrylamide

1. Introduction

Polymer flooding is an enhanced oil recovery process in which a specific polymer concentration
(usually 200–1500 ppm) is added to injected water. Polymers increase the viscosity of the injected
solution and therefore preferably decrease the water to oil mobility ratio [1], which results in improving
the displacement efficiency of the injected displacing solution [2–4]. However, significant interactions
between the polymer and the porous media, causing the polymer molecules to be lost or retained in
the porous media [5–9]. This results in the formation of a frontal bank denuded wholly or partially of
the polymer.

In previous research [2,7,10–16], polymer retention during polymer solution flow through porous
media was investigated. There are three polymer retention mechanisms: polymer adsorption,
mechanical entrapment, and hydrodynamic retention [17]. Adsorption results from the interactions
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between polymer molecules and the rock-solid surface [15]. This interaction causes the molecules to
bond to the surface of the solid mainly by physical adsorption, van der Waals forces, and hydrogen
bonding. Moreover, mechanical entrapment and hydrodynamic retention can significantly contribute
to polymer retention in low permeable and fluctuating flow rates in porous media [18,19].

Hydrodynamic retention is the least investigated and reported retention mechanism and is
neglected in most polymer flooding applications [18]. Chauveteau and Kohler noticed that Partially
Hydrolyzed Polyacrylamide (HPAM) polymer retention changed with the change in flow rates [20].
Their experiment demonstrated the effect of hydrodynamic retention by increasing the flow rate from
3 to 10.3 m3/days. This resulted in more losses of polymer in the porous media. As the flow rate was
lowered again to 3 m3/days, the effluent polymer concentration rose to the input concentration.

Scientists suggested two main mechanisms to describe the effect of flow rate on polymer
retention during polymer flooding. The first mechanism assumes that molecules of the polymer are
temporarily trapped in the porous media in stagnant zones because of applied hydrodynamic drag
force. The polymer molecules are expected to flow back in the mainstream if the flow is reduced or
stopped [18,20].

The second mechanism refers to the trapping of the polymer to the molecules shape. Polymer
molecule shape will change from coiled to elongated and stretched molecules at higher shear rates in
the restricted flow areas. The small size of the elongated molecules allows them to flow through pores
of smaller sizes. Thus, more molecules will be trapped. At the extremely high shear rate, polymer
retention increases because of the deformation of the elongated polymer molecules [21–23].

Polymer adsorption has been widely studied for Partially Hydrolyzed Polyacrylamide (HPAM)
and Polyacrylamide (PAMS) with a specific sulfonation degree. Some studies in the literature suggested
lower retention for sulfonated polyacrylamide polymers as compared to HPAM polymers [24–26], which
made some of the sulfonated polymers better candidate viscosifiers for polymer flooding applications.

The hydrodynamic retention for HPAM polymers was fairly reported in the literature [27,28].
So far, there is no study reported the hydrodynamic retention performance of the sulfonated polymers.
This study focuses on the interaction between the sulfonated polyacrylamide polymers and rock
surfaces of Bentheimer cores at various flow rates. The effect of molecular weight on polymer retention
and hydrodynamic retention, reversibility of the sulfonated polyacrylamide polymers, permeability
reduction, and rheological behavior of a higher molecular weight polymer (AN 113 VHM) and
hydrodynamic retention for lower molecular weight (AN 113 VLM) were investigated.

2. Materials and Methods

2.1. Polymer and Brine

Sulfonated polyacrylamide polymers (AN 113 VLM and AN 113 VHM) were used in this
study. Polymers were provided as white granular powders from SNF Floerger, Andrézieux, France.
The molecular weight of AN 113 VLM is estimated of approximately 0.5–1 million Daltons with
a sulfonation degree of 13% and AN 113 VHM of approximately 11–12 million Daltons with a
sulfonation degree of 13%. The polymer solution was prepared using the magnetic stirrer vortex
method. Ultra-pure water was used with 5000 ppm Sodium Chloride (NaCl) salinity. The rheology of
AN113 VLM and AN 113VHM polymers were determined using TA Rheometer (Thermal Analysis
and Rheology Instruments, TA Instruments, Inc., New Castle, DE, USA) at a shear rate ranges between
(0.1–500 S−1), the viscosity measurement was conducted at the room temperature (25 ◦C).

2.2. Dynamic Adsorption Measurement

Bentheimer sandstone core samples have proven to be ideal for laboratory studies because of
their block scale homogeneous nature and lateral continuity. They have been widely utilized to study
reservoir issues ranging from passive and active properties of oil, gas, water, and rock interactions and
processes to flow and transport. The physical properties of the two Bentheimer cores used for core
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flooding experiment are shown in Table 1. The porosity of the two cores was slightly similar to about
19.5%. In a similar fashion, B1 and B2 had a permeability of 1991 and 1932 mD respectively. The cores
were evenly cut to yield a similar length to some extent to be able to compare the retention results.

Table 1. Core Sample Properties.

Core ID Lithology Length
(cm)

Weight
(g)

Porosity
(%)

Permeability
(md)

Pore
Volume (cc)

B1 Sandstone 7.6 169 19.5 1991 17.2
B2 Sandstone 7.6 170 19.2 1932 17.1

Solutions of AN113 VLM and AN113 VHM powders are prepared by mixing and dissolution.
Ultra-pure water was stirred in a beaker by a magnetic stirrer at 720 rpm and 5000 ppm NaCl was added
to the ultra-pure water to make the base brine. Finally, dry polymer powder was slowly introduced
(to avoid the formation of fish-eyes) to the brine. To ensure complete dissolution, the solution was
stirred for 24 h. The compositions and concentrations of all samples prepared are shown in Table 2.

Table 2. Polymer solution composition.

Sample ID Polymer Type Concentration
(ppm)

Molecular
Weight (md)

Salinity
(ppm)

P1 AN113 VLM 1000 0.5–1 5000
P2 AN113 VHM 1000 11–12 5000

A similar base solution (having the same NaCl concentration) was prepared and vacuumed from
the air using a desiccator. After the core was weighted in its dry state, it was saturated with the
degassed base solution and vacuumed in the desiccator for 24 h to make sure almost all the pores in
the core was saturated with brine. The core was then weighed again to determine its porosity and pore
volume using the gravimetric analysis.

Benchtop Permeability System (BPS) manufactured by Coretest Systems Corporation, Reno, NV,
USA was used in performing the core flood for dynamic adsorption in the porous media. We used
the extended injectivity method used by Lotsch and Law for the dynamic adsorption test [29]. In this
method, two polymer solution slugs of the same composition are injected to the core and separated by
an extended brine injection. Polymer retention can be determined from the area under the two curves
of the polymer effluent normalized concentration plotted versus injected pore volume. A schematic of
the unit used in the dynamic adsorption test is shown in Figure 1.Polymers 2019, 11, x FOR PEER REVIEW 4 of 15 
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Polymer-enhanced waterflooding experiments were carried out on two Bentheimer sandstone
cores (permeabilities of 1991 and 1935 mD and porosity of 19.5%). AN 113 VLM and AN 113 VHM
polymers of 1000 ppm concentrations were used with 5000 ppm NaCl at a fixed flow rate of 1 cm3/min
(equivalent to the frontal velocity of 22 ft/day).

The clean dried cores were evacuated and pre-saturated with brine by placing them in a desiccator.
To assure that any residual gas was removed, brine was injected until reaching the steady-state
condition (required about 3 pore volume (PV) of brine injection).

The injection was switched from brine to polymer solution until about 2.5 PV of polymer slug
injection, during which 4 cm3 of effluent samples were collected every four minutes for concentration
analysis. The injection was switched back from polymer solution to brine injection in order to flush the
reversible polymer that was not adsorbed or trapped in the porous media. The post-polymer brine
injection continued till 80 PV of brine was injected.

Finally, the second slug (2.5 PV) injection of the same polymer solution was started during which
the effluent samples were also collected just like during the first slug injection. Table 3 summarizes the
steps followed during this coreflood test.

Table 3. Summary of a higher molecular weight polymer (AN 113 VHM) and hydrodynamic retention
for lower molecular weight (AN 113 VLM) polymer-enhanced water-floods.

Process Injected PV * Samples Collected

Pre-injection Brine 3 None
First Polymer slug 2.5 Every 4 cm3

Post-injection Brine 80 None
Second Polymer slug 2.5 Every 4 cm3

* All injection was carried out at a rate of 1 cm3/min which is equivalent to an interstitial velocity of 22 ft/day through
the core. PV: pore volume.

The first test was performed using AN 113 VLM polymer. The same procedure was also followed
for AN 113 VHM.

2.3. Hydrodynamic Retention Measurement

To investigate hydrodynamic retention, the cores were initially tested for polymer retention,
as explained in the previous section. Pore volume (PV) of a core plug is obtained by multiplying its
bulk volume with its porosity; it is often used as a measure of how much fluid has passed through
the core. Then, 2.6 pore volume of the polymer solution was injected at different flow rates (3, 5, and
8 cm3/min) with an 80 PV of post-polymer injection. Samples were collected every 4 cm3 for each
injected polymer slug. The polymer hydrodynamic retention was calculated from the area between the
second polymer slug at a low flow rate (1 cm3/min) and the first high flow rate polymer slug.

2.4. Polymer Concentration Measurement

The UV-Vis method has proven to be trusted and convenient for measuring the concentration
of polymers [30,31]. Agilent Cary 60 Spectrophotometer with a wavelength between 1100–190 nm
(Agilent Technologies, Santa Clara, CA, USA) was used to determine the polymer concentration in both
dynamic and static tests. Cary 60 (Agilent Technologies) was utilized to measure the absorbance of the
polymer as a function of the wavelength (peaking at 330–300 nm) of the electromagnetic spectrum.

3. Results and Discussion

The results of this laboratory study on the retention, hydrodynamic retention and rheology of AN
113 VLM and VHM polymers are presented in the following section with the objective to see the role of
molecular weight in polymer performance of polymer-enhanced waterflooding through porous media.
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3.1. Retention Measurement

Figure 2 shows the normalized concentration of the injected and effluent polymer solution plotted
versus the pore volume injected. These breakout curves are used to estimate polymer retention by
finding the area between the two polymer slug injection curves. OriginPro®software (by OriginLab,
Northampton, MA, USA) was used to estimate the area between the curves, which was then used to
calculate retention in microgram of polymer per gram of rock.
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Figure 2. Breakout curves for 1000 ppm polymer concentration and 5000 PPM NaCl salinity for:
(a) AN113 VLM (MW = 1 mD) and (b) AN113 VHM (12 mD).

Although the second polymer slug curves for both polymers are quite similar, the first slug curves
show a significant deviation, which points out that the molecular weight does play a significant role in
adsorption behavior.

Figure 3 shows the polymer retention for the two polymers as a bar chart. The retention was
significantly higher (55 µg/g) for the higher molecular weight polymer (AN113 VHM) as compared to
the lower molecular weight polymer (AN113 VLM).Polymers 2019, 11, x FOR PEER REVIEW 6 of 15 
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Figure 3. Retention behavior at 1000 ppm of polymer with 5000 ppm NaCl salinity.

The exact reason for the difference in retention capacity between the high and low molecular
weight polymers is unknown. It could be due to mechanical entrapment or because of the molecular
weight difference itself since the polymer retention is reported as the mass of the polymer.
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3.2. Effect of Rate on Polymer Retention

Polymer retention experiments were performed at four different flow rates using AN 113 VLM
(low MW) and AN 113 VHM (high MW) polymers. The effluent absorbance was detected at 300–320 nm
wavelength and converted to polymer concentration using the laboratory determined calibration
curves. Polymer retention was determined from the area between the breakout curves of first and
second polymer slugs.

Figure 4 shows the hydrodynamic retention of the two polymers at different flow rates (1, 3,
5, and 8 cm3/min) corresponding to frontal velocities of 22, 66, 110, and 176 ft/day. Table 4 lists the
hydrodynamic retention results of both polymers.
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Figure 4. Polymer breakout curves at various rates for (a) AN 113 VLM and (b) AN 113 VHM.
*The “Second 22 ft/day” breakout curve represents no adsorption case, hence is usable as the reference
slug to determine the area between the curves for all runs of different flow rates.

Table 4. Hydrodynamic Retention for AN 113 VLM and AN 113 VHM.

Polymer
Polymer

Injection Rate
(cm3/min)

Interstitial
Velocity
(ft/Day)

Retention at base
velocity of 22
ft/Day (µg/g)

Total
Retention

(µg/g)

Retention
Increase
Factor

AN113 VLM

1 22* 9 9 1.00
3 66 23 2.55
5 110 28 3.11
8 176 39 4.33

AN113 VHM

1 22 * 55 55 1.00
3 66 66 1.20
5 110 69 1.25
8 176 71 1.29

The interstitial velocity of 22 ft/day chosen from literature and used for normalization because it represents polymer
retention with negligible influence of hydrodynamic retention.

Polymer retention increased with growing interstitial velocity for both polymers due to
hydrodynamic retention (HDR), as expected. However, the HDR and its sensitivity to injection
rate were both significantly greater for lower MW polymer (AN 113 VLM) when compared to the
higher MW polymer (AN 113 VHM), as shown in the bar chart Figure 5. The adsorption is generally
considered to be the dominant retention mechanism [20,30] and the results of high MW polymer are
consistent with this consensus. In case of a low MW polymer, however, the HDR was much more
significant than the adsorption. This observation is important for selecting the MW of polymer in
reservoirs, where the velocity is the highest near the wellbore.
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Figure 5. Retention Increase Factor at various rates for AN 113 VLM and AN 113 VHM.

The exact reason for the significant increase in HDR of low MW as compared to the one with
high MW polymer is not known. However, this observation might be explained by the fact that the
physical volume of the solvated polymer molecule is higher for higher molecular weight polymers;
thus, the number of molecules retained in a given stagnant zone will be less for higher molecular
weight polymer. Another possible reason could be the osmotic pressure, which is the thermodynamic
driving force for mixing. For large molecules, this force is relatively small as compared to the viscous
forces which are proportional to the polymer injection rate.

The increase in hydrodynamic retention for lower MW polymer is suggesting that more polymer
molecules will reside in a stagnant zone if their size is small. However, the results are different than
the once which were observed by Chen et al. [27]. The difference can be explained on the basis of the
order of magnitude difference in permeability of the cores in the two studies. Chen’s study used a
low permeability core (167 mD), which encounters a greater retention contribution from mechanical
entrapment. This study, on the other hand, used a high permeability core (2000 mD) in which the
chances of mechanical entrapment are greatly reduced.

To see if there is a correlation between polymer retention and interstitial velocity, the data in
Table 4 was plotted in Figure 6. A good correlation between polymer retention increase factor (RIF)
and interstitial velocity was observed. For both low and high molecular weights, the hydrodynamic
retention increased almost linearly with increasing interstitial velocity within the range of velocities
tested and are likely to be encountered at field conditions. The velocity effect was more pronounced in
AN 113 VLM (low molecular weight) polymer than AN 113 VHM for the reasons discussed earlier.
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3.3. Reversibility of Hydrodynamic Retention

It is generally understood that HDR is a reversible phenomenon [28]. However, the role of MW
on the reversibility of HDR in sulfonated polyacrylamide polymers has not been previously published.
Two polymer core floods were performed using AN 113 VLM and AN 113 VHM to investigate this role.

Before the start of the HDR tests, it was presumed that the cores had already completed adsorption
as a result of previous tests. The cores were flushed out with 80 PV of brine injection. Then the
first polymer slug was injected at 176.44 ft/day; 4 cm3 of effluent samples were collected frequently.
The reversible polymers were flushed out with 80 PV of brine injection. The second polymer slug was
then injected at the same rate of 176.44 ft/day and effluent samples were collected.

The breakout curves are shown in Figure 7. In addition to the two 176.44 ft/day polymer injection
breakout curves, the “Second 22 ft/day” breakout curve is also included. This curve was determined in
an earlier experiment during the adsorption-free slug injection run; it is used in Figure 7 as the reference
slug for determining the adsorption during each of the two 176.44 ft/day polymer slug injection.Polymers 2019, 11, x FOR PEER REVIEW 9 of 15 
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* The “Second 22 ft/day” breakout curve was determined in earlier experiments. It represents no
adsorption case, hence is usable as the reference slug to determine the area between the curves for
all subsequent breakout curves including the first and second 176 ft/day breakout curves shown in
this figure.

Since neither of the breakout curves at a high interstitial velocity of 176.44 ft/day approached
(matched) the adsorption-free “Second 22 ft/day” reference breakout curve, it is evident that extra
HDR was encountered in both. Moreover, the close match between the first and the second 176 ft/day
breakout curve indicates that the HDR did not change during the subsequent identical polymer
injection. This is only possible if the HDR during the first 176 ft/day polymer injection was completely
reversed by the 80 PV of washout brine injection before the second 176 ft/day polymer injection.
Since the reversibility of HDR was observed in both low and high MW polymers, it could be surmised
that the MW did not have any effect on HDR.

3.4. Permeability Reduction

Differential pressures were noted during pre and post polymer brine injection at 22 ft/day and the
Residual Resistance Factor (RRF) was calculated as follows:

RRF = ∆Ppost/∆Ppre (1)
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where ∆Ppre is the differential pressure (0.018 psi for AN 113 VLM and 0.02 psi for AN 113 VHM)
during brine injection before polymer introduction and ∆Ppost is the differential pressure during brine
injection after the core had been flooded with polymer at various rates.

The RRF is an effective indicator of permeability reduction caused by the polymer retention and
also indicates its reversibility. Table 5 shows the values of RFF along with the differential pressures
during brine injection after each polymer slug injection.

Table 5. Residual Resistance Factor for AN 113 VLM and AN 113 VHM.

Parameter AN 113 VLM AN 113 VHM

Interstitial velocity during post-polymer brine injection for each test, ft/D 22 22
Initial ∆P during brine injection prior to any polymer injection, psi 0.018 0.020

∆P post-polymer injection, psi * 0.019 0.032
Calculated RRF (∆Ppost/∆Ppre) 1.05 1.80

* Whereas the polymer was injected at 22, 66, 110, 176 ft/D for various tests, the brine injection for post polymer
flood was always conducted at 22 ft/Day.

The data in Table 5 (also presented in Figure 8 as a bar graph) shows that the adsorption is not
completely reversible since even after injecting significantly large volumes (80 PV) of brine, the ∆P
during brine injection at the identical rate did not revert to the pre-polymer condition. This resulted
in an RRF higher than unity (1.05, 1.80) for polymers of both molecular weights. This shows that
adsorption causes irreversible permeability reduction.
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The fact that the pressure drop during brine injection, intended to flush out the polymer,
always reached the same level (0.019 or 0.032 psi) indicates that the brine was able to completely flush
out all hydrodynamically retained polymer even though the polymer slugs prior to the brine flush
were injected at variable rates (22, 66, 110, 176 ft/D) for various tests.

It is noteworthy to mention that the RRF value determined for AN 113 VLM (low MW) was lower
than RRF value for AN 113 VHM (high MW), indicating a higher permeability reduction for polymers
with higher molecular weights. However, the hydrodynamic retention in both polymers did not alter
permeability permanently and was completely reversible regardless of the MW.



Polymers 2019, 11, 1453 10 of 14

3.5. Rheological Behaviour of AN 113 VLM and AN 113 VHM

The rheological behavior of the polymers was investigated by bulk methods as well as in situ
behavior through coreflood experiments, in order to compare different methods and the effect of MW

as described in the following sections.

3.5.1. Bulk Rheology Using Rheometer

Figure 9 shows data from the rheological study of 1000 ppm concentration with 5000 ppm salinity
of the two polymers. The polymer solutions exhibited shear thinning behavior and a significant
decrease in polymer solution viscosity (40 and 400 times) in the range of shear rates tested (0.1–500 s−1).
The shear rate measured using the rheometer was then converted to velocity using Equation (2) [32]:

γ = 4αv

√
Φ
8k

(2)

where γ is the shear rate in s-1, α is a dimensionless tuning parameter associated with the rock particles
(2.5), v is the interstitial velocity in m/s, Φ and k are the porosity and permeability of the core.Polymers 2019, 11, x FOR PEER REVIEW 11 of 15 
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salinity of 5000 ppm.

This behavior was expected since most polymer solutions exhibit shear thinning because of the
decrease in the hydrodynamic size of the polymer [33,34]. Increasing shear rate causes greater breakage
and destruction of the entanglements between the polymer molecules, thereby reducing polymer
viscosity [35,36]. An increase in shear rate may also result in higher retention as more porous media
will be exposed to the polymer solution due to the reduced hydrodynamic size of the polymer.

3.5.2. In Situ Rheology Using Core Flood

To investigate the rheology of the polymer in porous media, Resistance Factors (RF) were determined
during the injection of each polymer slugs at various flow rates. Resistance factor is defined here
as the ratio pressure drop during polymer injection to the pressure drop during brine injection
(∆Ppolymer/∆Pbrine). Table 6 shows the pressure differential drops across the two cores at various flux
rates and corresponding RF’s.

As compared to AN 113 VHM, the lower molecular polymer (AN 113 VLM) had higher RF for
any given rate. A higher resistance indicates that more polymer molecules were retained in porous
media. This observation agrees with the results obtained in the previous section that the lower MW
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polymer encounters higher hydrodynamic retention. Figure 10 illustrates the type of flow behavior for
the two polymers in the same range of flux.

Table 6. Resistance Factor at Different Flux for AN 113 VLM and AN 113 VHM.

Polymer Flux
(ft/Day)

Shear Rate
(1/s)

∆Ppolymer
(psi)

Calc ∆P *
brine (psi)

Calc RF
(∆Ppolymer/∆Pbrine)

AN 113 VLM

22 87 0.062 0.019 3.26
66 262 0.260 0.057 4.56
110 436 0.510 0.095 5.37
176 698 0.930 0.152 6.12

AN 113 VHM

22 87 0.095 0.032 2.97
66 262 0.380 0.096 3.96
110 436 0.760 0.160 4.75
176 698 1.200 0.256 4.69
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AN 113 VLM showed a shear thickening behavior (slope = 3.2) with a high dependency of
resistance factor to flux rate. AN 113 VHM also showed a shear thickening behavior in the flux range of
22 to 110 ft/day (slope = 2.5); however, the resistance factor decreased at an increased rate of 176 ft/day,
showing shear thinning behavior. This decrease in RF possibly results from viscosity reduction caused
by mechanical degradation at higher velocities [37,38].

The shear thickening behavior of the two sulfonated polyacrylamide polymers in porous media is
due to the viscoelasticity of polymer molecules and elongational flow field [28,39]. At high velocities,
polymer molecules remain in a coiled state because time is not sufficient for the molecules to become
stretched before they flow through a pore constriction. The coiled polymer molecules show higher
resistance to flow than stretched ones. Therefore, greater force or pressure gradient is required to
force the coiled molecules through pore throats, resulting in higher resistance factor as the velocity
increases [28]. This shows that the shear thickening behavior of the sulfonated polyacrylamide polymer
was an intrinsic property resulting from the viscoelasticity of polymer molecules and elongational
flow field.

4. Conclusions

This study focused on the interaction between the sulfonated polyacrylamide polymers and
rock surfaces of Bentheimer cores at various flow rates. The effect of molecular weight on polymer
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retention and hydrodynamic retention was also investigated. The reversibility, permeability reduction,
and rheological behavior of AN 113 VLM and AN 113 VHM were also investigated in this study.
The following conclusions were made:

• Polymer retention increased when the molecular weight of the AN 113 sulfonated polyacrylamide
polymer also increased.

• The polymer retention (adsorption) of AN 113 VLM and AN 113 VHM caused irreversible
permeability reduction, which increased the residual resistance factor of both (1.05 and 1.80).

• For unclear reasons, hydrodynamic retention was noticeably higher for lower molecular
weight polymers.

• The polymer hydrodynamic retention was reversible and had no permanent effect on
permeability reduction.

• Both AN 113 VLM and AN 113 VHM sulfonated polyacrylamide polymers showed shear thinning
behavior in the bulk rheological study using Rheometer.

• The core flooding study showed that the resistance factor increased when the flow rate increased,
which resulted in a shear thickening behavior for AN 113 VLM and AN 113 VHM. However, at
very high flow rates, mechanical degradation may cause shear thinning behavior.

Since the flow from the injection towards the production well is radial, the flow rates are very
high near the wellbore and gradually reduce as the flow cross-sectional area increases away from the
wellbore. Therefore, in a polymer flooding enhanced oil recovery project, significant hydrodynamic
retention could be anticipated near the wellbore due to high flow rates, which could dilute the
polymer slug, rendering it ineffective. This study shows that the molecular weight should be taken
into consideration while designing an optimum polymer slug since the hydrodynamic retention for
lower molecular weight polymer was significantly higher than the retention for the higher molecular
weight polymer.

It is advisable to perform dynamic polymer studies under reservoir conditions to screen polymers
that are thermally and physically stable, in order to understand various mechanisms of polymer loss in
porous media before selecting a suitable polymer.
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