
ORIGINAL RESEARCH
published: 15 December 2020

doi: 10.3389/fnana.2020.605029

Edited by:

Zoltan Molnar,
University of Oxford, United Kingdom

Reviewed by:
Gavin John Clowry,

Newcastle University,
United Kingdom

Kazunori Nakajima,
Keio University, Japan

Milos Judas,
University of Zagreb, Croatia

*Correspondence:
Li-Jen Lee

ljlee@ntu.edu.tw

Received: 11 September 2020
Accepted: 24 November 2020
Published: 15 December 2020

Citation:
Tsai S-H, Tsao C-Y and Lee L-J
(2020) Altered White Matter and

Layer VIb Neurons in Heterozygous
Disc1 Mutant, a Mouse Model of

Schizophrenia.
Front. Neuroanat. 14:605029.

doi: 10.3389/fnana.2020.605029

Altered White Matter and Layer VIb
Neurons in Heterozygous Disc1
Mutant, a Mouse Model of
Schizophrenia
Shin-Hwa Tsai1, Chih-Yu Tsao2 and Li-Jen Lee1,2,3,4*

1School of Medicine, National Taiwan University, Taipei, Taiwan, 2Graduate Institute of Anatomy and Cell Biology, National
Taiwan University, Taipei, Taiwan, 3Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan,
4Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan

Increased white matter neuron density has been associated with neuropsychiatric
disorders including schizophrenia. However, the pathogenic features of these neurons
are still largely unknown. Subplate neurons, the earliest generated neurons in the
developing cortex have also been associated with schizophrenia and autism. The link
between these neurons and mental disorders is also not well established. Since cortical
layer VIb neurons are believed to be the remnant of subplate neurons in the adult rodent
brain, in this study, we aimed to examine the cytoarchitecture of neurons in cortical
layer VIb and the underlying white matter in heterozygous Disc1 mutant (Het) mice, a
mouse model of schizophrenia. In the white matter, the number of NeuN-positive neurons
was quite low in the external capsule; however, the density of these cells was found
increased (54%) in Het mice compared with wildtype (WT) littermates. The density of
PV-positive neurons was unchanged in the mutants. In the cortical layer VIb, the density
of CTGF-positive neurons increased (21.5%) in Het mice, whereas the number of Cplx3-
positive cells reduced (16.1%) in these mutants, compared with WT mice. Layer VIb
neurons can be classified by their morphological characters. The morphology of Type I
pyramidal neurons was comparable between genotypes while the dendritic length and
complexity of Type II multipolar neurons were significantly reduced in Het mice. White
matter neurons and layer VIb neurons receive synaptic inputs and modulate the process
of sensory information and sleep/arousal pattern. Aberrances of these neurons in Disc1
mutants implies altered brain functions in these mice.

Keywords: animal model, layer VIb, CTGF, subplate neuron, white matter neuron, neuron morphology

INTRODUCTION

Schizophrenia is a major chronic mental disorder that occurs in about 1% of the general
population (McGrath et al., 2004). It is diagnosed by clinical signs and syndromes,
including hallucinations, delusions, disorganized thought and speech, flattening effect, social
withdrawal alogia, and deficits in cognitive functions. While the pathogenic mechanisms
of schizophrenia are still not fully understood, both genetic and environmental factors
are thought to play important roles in triggering the disease (van Os et al., 2010).
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Disrupted-In-Schizophrenia 1 (DISC1) is one of the
susceptible genes of schizophrenia. A defective variant of the
DISC1 gene first discovered from a Scottish pedigree, and carried
a balanced translocation (1;11; q42.1; q14.3) that was strongly
associated with major mental illness such as schizophrenia,
depression, and bipolar disorder (St Clair et al., 1990; Millar
et al., 2000). The linkage between DISC1 gene abnormalities and
schizophrenia has also been found in Taiwanese families (Hwu
et al., 2003; Liu et al., 2009). DISC1 proteins are expressed in the
cerebral cortex, hippocampus, hypothalamus, cerebellum, and
brainstem in humans (Kirkpatrick et al., 2006); while in rodents,
the expression of Disc1 has also been explored. Disc1 protein
is detected in the cerebrum, cerebellum, brainstem, and
various internal organs of mice as early as embryonic day 13.
In the cerebrum, the expression of Disc1 increases during
the perinatal period with a peak during the first postnatal
week and gradually declines thereafter (Kuroda et al., 2011).
The expression profile suggests a role of Disc1 in brain
development. In addition to neurons, DISC1 is also expressed
in astrocytes, oligodendrocytes, and microglia (Seshadri et al.,
2010). DISC1 protein contains the N-terminal globular head
domain and the coiled-helical coil-containing C-terminal
tail domain. It has been demonstrated to interact with a
great number of proteins; therefore, it is suggested to be a
hub for multiple signaling pathways (Brandon and Sawa,
2011). DISC1 and its binding partners have been shown to
regulate several cellular functions, such as neuronal migration,
axon extension, dendritic differentiation, mitochondria
motility, cargo transport, and synaptic plasticity. A variety
of psychiatric phenotypes may be derived if DISC1 protein
is disrupted (Brandon and Sawa, 2011; Bradshaw and
Porteous, 2012; Lipina and Roder, 2014; Shao et al., 2017;
Tropea et al., 2018).

Schizophrenia is a human-specific mental disorder; however,
animal models could be used to replicate some aspects of the
disease, especially the impact of certain susceptibility genes
(Dahoun et al., 2017). Several mouse models have been made
to mimic the disruption in the DISC1 gene (Jaaro-Peled, 2009;
Tomoda et al., 2016). We had established a Disc1 mutant mouse
model, in which a 25-bp deletion variant of 129S6/SvEv Disc1
gene was brought to the C57BL/6J background by generations
of backcrossing (Juan et al., 2014). Compared with other
Disc1 mutant mice, our model exhibits relatively moderate
abnormalities, suggesting that these mice are in a prodromal
status (Juan et al., 2014; Baskaran et al., 2020). This model
is therefore suitable for studies concerning the impact of
environmental risk factors. It has been suggested that structural
abnormalities in the brain during neurodevelopmental mainly
attributed to a gene mutation such as DISC1 deficiency may pave
a way for functional impairments elicited by later environmental
insults that promote the manifestation of psychotic symptoms
(Narayan et al., 2013).

The cortical subplate zone is located between the developing
cortical plate and the axons of afferent nerves (Allendoerfer
and Shatz, 1994) and contains cells that are among the earliest
generated neurons in the developing cortex and play important
roles in cortical development (Kostovic and Rakic, 1980; Chun

and Shatz, 1989; Bayer and Altman, 1990; McQuillen and
Ferriero, 2005; Bystron et al., 2008; Judaš et al., 2010; Kanold
and Luhmann, 2010; Hoerder-Suabedissen and Molnár, 2013;
Ohtaka-Maruyama et al., 2018; Ohtaka-Maruyama, 2020). For
example, these neurons set up the first connection between the
thalamus and cortex that play crucial roles in the maturation
of the inhibitory circuit and the organization of the neocortex
(Kanold and Shatz, 2006; Kanold and Luhmann, 2010; Hoerder-
Suabedissen and Molnár, 2015). Many subplate neurons go
through programmed cell death after birth. The number of
subplate neurons declines and remains as white matter and layer
VIb neurons (Chun and Shatz, 1989; García-Marín et al., 2010;
Judaš et al., 2010; Marx et al., 2017; Hoerder-Suabedissen et al.,
2018). A genetic study showed the expression profile of mouse
subplate neurons associated with autism and schizophrenia
(Hoerder-Suabedissen et al., 2013). Abnormalities in subplate or
white matter neurons have been linked to mental disorders such
as schizophrenia (Duchatel et al., 2016, 2019; Serati et al., 2019;
Kubo, 2020); however, the pathogenic role of remnant subplate
neurons is still largely unknown (Judaš et al., 2010).

In this study, we examined the cytoarchitecture of neurons
in cortical layer VIb and the underlying white matter in
heterozygous Disc1 mutant (Het) mice. If the abnormalities
of these neurons found in this genetic mouse model of
schizophrenia could replicate the findings in patients with
schizophrenia (Duchatel et al., 2019; Serati et al., 2019;
Kubo, 2020), then we may have a promising rodent model
for investigating molecular and cellular events which might
contribute to the pathogenesis of schizophrenia. Our results
showed alterations in the density of layer VIb and white matter
neurons as well as the morphology of layer VIb neurons
in Disc1 mutant mice and suggested a pathogenic feature of
neuropsychiatric disorders.

MATERIALS AND METHODS

Animals
Mice were housed in the Laboratory Animal Center of
the College of Medicine, National Taiwan University (NTU)
approved by AAALAC, under a 12:12 light-dark cycle with
free access to food and water. Young adult (10–12 weeks
old) male wild-type (WT) and heterozygous Disc1 (Het) mice
were used in this study. Mice were genotyped using genomic
DNA isolated from the toes and PCR-mediated methods as
previously described (Juan et al., 2014). Animal experiments were
performed following the guideline of the Institutional Animal
Care and Use Committee of the College of Medicine, NTU.
Efforts were constantly made to minimize animal discomfort and
the number of mice used.

Histological and Morphological
Examinations
WT and Het male mice were anesthetized and transcardially
perfused with 0.1 M phosphate-buffered saline (PBS; pH 7.4)
followed by 4% paraformaldehyde in 0.1 M PBS. Whole brains
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were removed and post-fixed in the same fixation overnight.
Then, the brains were stored in 0.1% NaN3 in 0.1 M PBS.

Immunohistochemistry
Brain samples were sectioned coronally at 30 µm with a
vibratome (VT1000S, Leica Biosystems, Wetzlar, Germany) and
one out of 12 sections which ranged from Bregma 1.00 mm to
0.00 mm was used for immunohistochemistry. The free-floating
sections were first bleached in 0.1% H2O2 in 0.1 M PBS
for 15 min to suppress endogenous peroxidase activity and
washed in 0.1 M PBS. Then, the sections were incubated in
the blocking solution containing 4% normal goat serum, 1%
bovine serum albumin, and 0.4% Triton X-100 in 0.1 M PBS
for 2 h to prevent non-specific binding. Afterward, the sections
were incubated overnight with primary antibodies in diluted
blocking solution on a shaker. The following primary antibodies
were used: mouse monoclonal anti-NeuN (1:1,000, RRID:
AB_177621; MAB377B; Millipore, Merck KGaA, Darmstadt,
Germany), mouse polyclonal anti-Parvalbumin (PV; 1:3,000,
RRID: AB_477329; P3088; Sigma–Aldrich, Merck KGaA),
goat polyclonal anti-CTGF (1:1,000; RRID: AB_638805; sc-
14939; Santa Cruz, CA, USA), mouse polyclonal anti-Nurr1
(1:250, RRID: AB_2153894; AF2156; R&D Systems, Minneapolis,
MN, USA) and rabbit polyclonal anti-Cplx3 (1:2,000, RRID:
AB_2281240, Cat# 122 302; Synaptic Systems, Göttingen,
Germany). After washed with 0.1 M PBS, the sections
were incubated in biotinylated secondary antibodies in 0.4%
Triton X-100 for 1 h. The following secondary antibodies
were used: biotinylated goat anti-mouse, biotinylated goat
anti-rabbit, and biotinylated rabbit anti-goat (1:500, Jackson
ImmunoResearch, West Grove, PA, USA). After washes, the
sections were incubated with the reagents of the Vectastin
(ABC kit, Vector Laboratories, Burlingame, CA, USA) for
1 h. Finally, sections were reacted with 2 mg/ml of 3′,3′-
diaminobenzidine with 0.01% H2O2 in PBS, washed in PBS,
and mounted.

Measurement of Neurons in the Gray and
White Matter
Images of immunostained coronal sections were taken from the
somatosensory cortex. Counting squares of 100 × 100 µm were
used to estimate the densities of NeuN- and PV-immunopositive
signals in the upper, middle, and lower regions of the cortex,
while a frame of 25× 100 µm was used to count CTGF-, Cplx3-,
and Nurr1-positive cells in the cortical layer VIb. To evaluate
the density of cells in the white matter, the areas of cingulum
(cg) and external capsule (ec) underneath the somatosensory
cortex were measured according to a mouse brain atlas (Paxinos
and Franklin, 2008). The junction between gray matter and
white matter was determined based on the immunostainings
of NeuN. The numbers of NeuN- and PV-positive neurons
in the cg and ec were counted. To measure the distribution
of cortical neurons, the thickness of the cortex was equally
subdivided into 20 counting bins, starting from the pia surface
to the border of white matter. Due to the different densities
of immunopositive signals, the width of the counting bin was
set 50 µm for NeuN-positive and 100 µm for PV-positive

cells, respectively. The numbers of cells were totaled and the
proportion of cells in each bin was calculated and represented
as a percentage across all 20 counting bins. In this counting
system, bins 1–2 roughly correspond to cortical layer I, bins
3–6 for layer II/III, bin 7–8 for layer IV, bins 9–14 for
layer V, bins 15–19 for layer VIa, and bin 20 for layer
VIb, respectively.

Golgi-Cox Staining
Brain samples were collected and bathed in an impregnation
solution (FD Rapid GolgiStain kit, NeuroTechnologies, Ellicott
City, MD, USA) at room temperature for 3 weeks. Impregnated
samples were transferred to ddH2O for at least 1 day and then
serially sectioned at 150 µm using a vibratome (Leica). The
sections were bathed in a mixture of developer and fixer solution
from the same kit, then washed, and mounted. The images
of subplate neurons in layer VIb of the somatosensory cortex
were collected under a light microscope (Olympus, Tokyo,
Japan) with a 20× objective lens for dendritic analysis. The
stacks of images were obtained using the StereoInvestigator
system (MicroBrightField Bioscience, Williston, VT, USA)
and the morphology of subplate neurons was reconstructed
with Neurolucida software (MicroBrightField). The Sholl
and branched structure analyses provided in Neurolucida
Explorer software were used to quantify the topological
parameters such as the number of primary dendrites and
branching nodes and size-related parameters, including
soma size, convex hull volume, dendritic length, as well
as intersections and nodes in relation to the distance from
the soma.

Data Analysis
Quantitative data of distribution, cell density, thickness, and
morphometric parameters were measured blindly to the
genotype of mice. The data were analyzed by two-tailed Student’s
t-test and were presented as mean ± SEM. p < 0.05 was
considered significance (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001).
Statistics of the dendritic polar plot were done using R
version 3.4.3 (RCoreTeam, 2017) and the ggplot2 (Wickham,
2016) package.

RESULTS

Patterns of Cortical Neurons
Disc1 has been suggested to play a role in cortical neuron
migration (Narayan et al., 2013; Muraki and Tanigaki, 2015).
We first examined the density and distribution of cortical
neurons in the somatosensory cortex (Figure 1A) of WT and
Disc1 Het mice. Neurons in the somatosensory cortex were
immunostained with a pan-neuronal marker, NeuN (Figure 1B),
and a marker for inhibitory interneurons, parvalbumin (PV,
Figure 1C), and then quantified by counting of immunolabeled
cells. The densities of NeuN-positive cells measured in upper,
middle, and lower cortical regions were comparable between WT
and Disc1 Het mice (Figure 1D). To measure the distribution
of cortical neurons, the thickness of the cortex was divided
into 20 counting bins and the counted neurons were totaled
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FIGURE 1 | Density and distribution of neurons in the somatosensory cortex. The region of interest was labeled by a red rectangle in the somatosensory cortex
(A). Cortical neurons were immunostained with NeuN (B), or Parvalbumin (PV, C). The densities of NeuN-positive cortical neurons in counting boxes (blue squares in
B) in the upper, middle, and lower regions were measured (D). The distribution of NeuN-positive cortical neurons was measured in 20 counting bins with the width of
50 µm (blue bins in B), the counted neurons in each bin were converted into the proportion of total cells (E). The densities of PV-positive cortical neurons in the
upper, middle, and lower regions were measured (F). The distribution of PV-positive cortical neurons was measured using 20 counting bins with a width of 100 µm
(blue bins in C) (G). Scale bar = 100 µm in panel (C). N = 8 wildtype (WT) and 7 Het mice. Results are means ± SEM. *p < 0.05.

and converted into the proportion of cells in each bin (Yu
et al., 2019). We regarded bins 1–2 as the layer I of the
cerebral cortex; bins 3–6 as layers II/III; bins 7–8 as layer
IV; bins 9–14 as layer V, bins 15–19 as layer VIa and bin
20 as layer VIb (Figure 1B). The distribution of NeuN-positive
neurons was similar between genotypes in most counting bins,
except for a difference in bin 8, the layer IV, between WT
and Het groups (Figure 1E). PV was used as a marker for
inhibitory neurons (Figure 1C), which make up about 40%

of the interneurons in the somatosensory cortex (Rudy et al.,
2011). The densities of PV-positive cortical neurons in the upper,
middle, and lower regions were comparable between WT and
Disc1 Het mice (Figure 1F). The distributions of PV-expressing
neurons were also similar between groups (Figure 1G). These
results indicated that the Disc1 haploinsufficiency does not
significantly affect the density of cortical neurons while only
a subtle difference in the distribution of layer IV neurons
was noted.
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The Density of White Matter Neurons
Defects of neuronal migration might be manifested as altered
white matter neuron density (Akbarian et al., 1996), we then
examined the neurons in the white matter of Het mice (Figure 2).
NeuN-positive neurons were evident in the cingulum and
external capsule (Figure 2A). The density of NeuN-positive
neurons was comparable between genotypes in the cingulum
(Figure 2B); whereas in the external capsule, the density of
NeuN-positive neurons was significantly greater in Het mice
(Figure 2C). PV-positive neurons were sparsely distributed in the
cingulum and external capsule (Figure 2D) and the densities of
PV-positive neurons in WT and Het mice were similar in both
areas (Figures 2E,F). Abnormalities in white matter neurons
have been linked to mental disorders such as schizophrenia
(Duchatel et al., 2016, 2019; Serati et al., 2019; Kubo, 2020), these
results demonstrated, for the first time, an increased density of
white matter neurons in a mouse model of schizophrenia.

Expression of Subplate-Specific Markers
in Cortical Layer VIb
During cortical development, most subplate neurons go through
programmed cell death, and only a few neurons are left in the
adult brain. Cortical layer VIb neurons are believed to be the
remnant of subplate neurons in the adult rodent brain. There
are several markers expressed in subplate neurons during the
embryonic stage, and also expressed in adult layer VIb, such as
connective tissue growth factor (CTGF), complexin-3 (Cplx3),
and nuclear receptor-related 1 protein (Nurr1). It has been
shown that these markers were not simultaneously expressed
in the same subplate neuron population yet some overlapping

still occurs (Mikhailova et al., 2017). In the present study, we
picked these three markers to label subplate neurons in the adult
brains (Figure 3), to examine if Disc1 mutation affects the fate
of subplate neurons. CTGF was expressed in cortical VIb of
both WT and Het mice (Figure 3A), roughly composed 4% of
the cortical thickness and this value was comparable between
genotypes (Figure 3B). Notably, the density of CTGF-positive
neurons in layer VIb was greater in the Het mice (Figure 3C).
Cplx3 was also expressed in layer VIb (Figure 3D). Cplx3-
positive zone composed about 4.2% of the cortical thickness
in both genotypes (Figure 3E). The density of Cplx3-positive
neurons in the layer VIb was lower in Het mice (Figure 3F).
Nurr1 was expressed in the nuclei of some layer VIb cells
(Figure 3G) and composed about 3.3% of the thickness of the
cortex (Figure 3H). The relative thickness and density of Nurr1-
positive neurons were similar between genotypes (Figures 3H,I).
Here we reported the relative thickness of layer VIb was
comparable between WT and Het mice; whereas the densities of
some layer VIb neuron subtypes were altered in Het mice.

Morphology of Layer VIb Neurons
Subplate neurons have a large variety in cell morphology and a
diversity in molecular marker expression (Kanold and Luhmann,
2010; Hoerder-Suabedissen and Molnár, 2013). In postnatal
rodents, pyramidal-like, multipolar, horizontal, tangentially,
and inverted subplate neurons have been discovered in the
somatosensory cortex (Marx et al., 2017). In this study, Golgi-
stained subplate neurons in layer VIb of the somatosensory
cortex were collected from WT and Het mice and 3D
reconstructed using Neurolucida software. The morphology of

FIGURE 2 | The density of white matter neurons in WT and Disc1 Het mice. NeuN-positive neurons in the white matter including the cingulum (cg) and external
capsule (ec) were identified (A) and measured (B,C). PV-positive white matter neurons (D) were also measured (E,F). Scale bar = 100 µm in (A,D). N = 8 WT and
7 Het mice. Results are means ± SEM. ***p < 0.001. cc, corpus callosum; LV, lateral ventricle; cg, cingulum; ec, external capsule.
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FIGURE 3 | Expression of subplate-specific markers in cortical layer VIb. CTGF is expressed by the subplate neurons in cortical layer VIb of both WT and Het mice
(A). The relative thickness and density of CTGF-positive cells were measured and compared between genotypes (B,C). Cplx3 is expressed by the subplate neurons
in layer VIb (D). The relative thickness of Cplx3-expressing cells was determined (E); the density of these cells was measured and compared (F). Nurr1 is evident in
the nuclei of subplate neurons in layer VIb (G). The relative thickness of Nurr1-positive signals was determined (H); the density of these cells was measured and
compared (I). Scale bar = 200 µm in panels (A,D,G) and 50 µm in the inserts. N = 8 WT and 7 Het mice. Results are means ± SEM. *p < 0.05, ***p < 0.001.

these neurons was classified based on quantitative analyses of
their dendritic morphology. According to previously published
reports (Marx and Feldmeyer, 2013; Marx et al., 2017), we
classified the layer VIb neurons into pyramidal (Type I),
multipolar (Type II), and horizontal (Type III) neurons. Few

inverted (Type IV) subplate neurons were also identified.
Different types of subplate neurons were demonstrated in
Figure 4. In total, 72 and 77 subplate neurons were collected from
WT and Disc1 Het mice, respectively. The proportions of cell
types were comparable between WT and Het groups (Table 1).
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FIGURE 4 | Classification of neurons in the layer VIb. Golgi-Cox
impregnated layer VIb neurons were collected from WT and Het mice and
reconstructed. Dendritic polar plots were also generated. Based on their
morphological features, cells were classified as Type I pyramidal neurons
(A), Type II multipolar neurons (B), Type III horizontal neurons (C), and Type IV
inverted neurons (D) of each type. Scale bar = 50 µm.

Parameters including soma size, primary dendrites, branch
nodes, highest order, segment length, total dendritic length, and
convex hull volume were measured, segment number and Sholl
analyses (the numbers of intersections and branching nodes
in relation to the distance from the soma) were conducted to
evaluate the complexity of the dendritic trees.

Type I Pyramidal Subplate Neurons
Pyramidal subplate neurons showed featured with the long
and thick apical dendrite which branches several times towards
the terminal and projects vertically to the cortical surface
(Figure 4A). However, the actual length of the apical dendrite
might be underestimated due to the limitation of the Golgi
stain. A few short and thin basal dendrites emerged from the
base of soma projected radially. The morphological features
of the pyramidal subplate neurons in WT and Het groups
were similar. No significant difference was noted between
groups (Figure 5).

Type II Multipolar Subplate Neurons
Multipolar subplate neurons had multiple dendrites with varied
orientations but no apical-like thick dendrite (Figure 4B).
The soma size, numbers of primary dendrites and branch
nodes as well as the highest order were not different between
genotypes (Figures 6A–D). The length of internodal segments
was significantly shorter in the Disc1 Het group than in the
WT group (Figure 6E), resulting in shorter total dendritic
length (Figure 6F) and smaller convex hull volume in neurons
collected from these mutant mice (Figure 6G). The numbers
of segments were not changed in Het mice (Figure 6H).
Sholl analysis showed reduced intersections and branch nodes
in neurons of the Disc1 Het group (Figures 6I,J), indicating
reduced dendritic complexity and branching deficiencies in type
II subplate neurons in Het mice.

Type III Horizontal Subplate Neurons
The neurons in this category had a thick apical-like main
dendrite extending. However, the directions of the main
dendrites were not towards the cortical surface but mainly
towards the horizontal orientation, which paralleled the white
matter beneath the cortex, and some oriented obliquely from
the soma. The other dendrites had no particular orientations
(Figure 4C). The number of primary orders was lower in the Het
group compared to the WT control (Figures 7B,H), however,
other morphological characteristics were comparable between
groups (Figure 7).

Type IV Inverted Subplate Neurons
Few neurons have an atypically oriented thick apical-like main
dendrite extended from the base of soma and projected vertically
towards the white matter (Figure 4D). Because of the rarity of
this type of subplate neurons, we did not measure and compare
these cells.

Together, our morphological study revealed a change in layer
VIb subplate neurons, particularly the type II and type III
subplate neurons, in Het mice.

DISCUSSION

Increased interstitial white matter neurons have been associated
with psychiatric disorders including schizophrenia and autism
(Duchatel et al., 2019; Serati et al., 2019; Kubo, 2020). The
pathogenic role of aberrant subplate neuron remnants had been
suggested (Judaš et al., 2010; Kostovi ć et al., 2011). In the present
study, we used a mouse model of schizophrenia, heterozygous
Disc1mutant mice, to test this hypothesis. We observed increased
white matter neurons, altered CTGF- and Cplx3-positive layer
VIb neuron densities as well as reduced dendritic complexity in
layer VIb neurons. Increased white matter neurons and aberrant

TABLE 1 | Number and proportion of each type of layer VIb neurons.

Type I pyramidal Type II multipolar Type III horizontal Type IV inverted

WT mice 27 (37.5%) 26 (36.1%) 15 (20.8%) 4 (5.6%)
Disc1 Het mice 29 (37.7%) 29 (37.7%) 17 (20.0%) 2 (2.6%)

Neurons were collected from 5 WT and 5 Het mice.
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FIGURE 5 | Morphometric analysis of Type I layer VIb neurons. Somatodendritic features of pyramidal layer VIb neurons including the soma size (A), number of
primary dendrites (B), number of branch nodes (C), highest order (D), length of dendritic segments (E), total dendritic length (F) and the convex hull volume (G) were
measured. The complexity of the dendritic arbor was estimated by plotting the number of segments against the dendritic order (H) and using the concentric method
of Sholl: the numbers of intersections (I) and nodes (J) were counted and plotted along the distance from the soma. Results are means ± SEM.

subplate neuron remnants in Disc1 mutants might contribute to
altered brain functions in these mice.

Schizophrenia has been long recognized as dysfunctions
in higher cognitive domains in humans. However, since
the core symptoms include hallucination, defects in the
sensory aspects might be relevant (Vukadinovic, 2012;
Weilnhammer et al., 2020). Deficits in primary visual, auditory,
and somatosensory cortices in schizophrenia patients have
been reported (Fletcher and Frith, 2009; Huang et al., 2010,
2019; Molnár et al., 2014; Bordier et al., 2018; Daskalakis
et al., 2020). We, therefore, in this study, decided to examine

the properties of subplate neurons in the somatosensory
cortex, which occupies a great cortical area with a substantial
white matter thickness, in the rodent brain, for a proof of
concept exploration.

Increased White Matter Neurons in Disc1
Het Mice
In the present study, we showed an increased density of
NeuN-positive neurons in the white matter of Disc1 Het
mice, a haploinsufficiency model of schizophrenia (Juan
et al., 2014; Baskaran et al., 2020). This finding was in line
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FIGURE 6 | Morphometric analysis of Type II layer VIb neurons. Somatodendritic characteristics of multipolar layer VIb neurons including the soma size (A), number
of primary dendrites (B), number of branch nodes (C), highest order (D), length of dendritic segments (E), total dendritic length (F) and the convex hull volume
(G) were measured. The number of segments was plotted against the dendritic order (H). The numbers of intersections (I) and nodes (J) were counted and plotted
along the distance from the soma. Results are means ± SEM. *p < 0.05, **p < 0.01.

with previous reports of human studies: increased densities
of white matter neurons in the postmortem brain tissues
from patients with schizophrenia (Anderson et al., 1996;
Kirkpatrick et al., 1999, 2003, 2006; Yang et al., 2011; Joshi
et al., 2012; for review, see Duchatel et al., 2019; Serati
et al., 2019; Kubo, 2020). We acknowledged that in these
studies, the increased densities of white matter neurons were
found in the dorsolateral prefrontal, orbitofrontal, parietal,
anterior cingulate, and superior temporal regions. However,
less attention had been paid to the primary sensory regions.

Sensory processing defects were prominent in patients with
schizophrenia (Javitt, 2009), cytoarchitectural elevations of
the white matter in the sensory areas are encouraged.
The density of white matter PV-positive neurons was very
low and not changed in our model. However, in a rat
model of schizophrenia, maternal immune activation paradigm,
increased white matter somatostatin-positive inhibitory neurons
have been noticed (Duchatel et al., 2016). Therefore, the
role of inhibitory neurons in white matter is unneglectable
(Joshi et al., 2012).
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FIGURE 7 | Morphometric analysis of Type III layer VIb neurons. Morphological features of horizontal layer VIb neurons including the soma size (A), number of
primary dendrites (B), number of branch nodes (C), highest order (D), length of dendritic segments (E), total dendritic length (F) and the convex hull volume (G) were
measured. The numbers of segments (H), intersections (I), and nodes (J) were counted and plotted. Results are means ± SEM. *p < 0.05, **p < 0.01.

Altered white matter neurons might be resulted from
impaired neuronal migration or programmed cell death during
brain development (Akbarian et al., 1996; Kubo, 2020). Defects of
neuronal migration are linked with brain disorders and Disc1 has
been suggested to play a role in this process (Tomita et al.,
2011; Narayan et al., 2013; Muraki and Tanigaki, 2015). In the
present study, the increased NeuN-positive white matter neurons
in adult Disc1 mutant mice might reflect a Disc1-mediated defect

in cortical neuron migration. In our model, there is a 25-bp
deletion in exon 6 of the Disc1 gene (Juan et al., 2014) which
leads to a frameshift in the rest sequences including a great
portion of the tail domain. LIS1 and NDEL1, components of
the dynein complex that are associated with the DISC1 tail
domain, are involved in the dynamics of the cytoskeleton and
neuronal migration (Kamiya et al., 2005). However, in our Disc1
Het mice, the impact size was minimal, not as significant as
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other Disc1 knockdown models (Kamiya et al., 2005; Kubo et al.,
2010; Steinecke et al., 2014). Compensatory responses might be
activated to ensure proper cortical development in our and other
Disc1 mutant mice (Koike et al., 2006; Kuroda et al., 2011).
Nevertheless, the defects may still occur in the white matter,
during an earlier period.

White matter neurons receive glutamatergic thalamic
inputs and could be modulated by orexin, neurotensin,
and dopamine, suggesting a role of white matter neurons
in sleep/arousal state control (Case et al., 2017). Increased
density of white matter neurons might thus be relevant to
dysregulation of sleep. Sleep/circadian rhythm disturbances
have been considered as environmental risk factors related to
various psychiatric disorders (Wulff et al., 2010; Jagannath
et al., 2013). Such disturbances might interact with
genetic risk factors and contribute to the manifestation of
psychiatric disorders.

Changes in Different Subsets of Layer VIb
Subplate Neurons in Disc1 Het Mice
Most subplate neurons go through programmed cell death
with only 10–20% of neurons remaining in adulthood (Torres-
Reveron and Friedlander, 2007; Luhmann et al., 2018). In
rodents, most remaining subplate cells compose cortical layer
VIb (Marx et al., 2017) and still receive both excitatory and
inhibitory inputs and project to different cortex layers and
thalamus (Torres-Reveron and Friedlander, 2007; Liao and Lee,
2012; Marx and Feldmeyer, 2013; Viswanathan et al., 2017;
Hoerder-Suabedissen et al., 2018; Zolnik et al., 2020). The relative
thickness of layer VIb in the cerebral cortex was comparable
between genotypes; however, the densities of some subset
subplate neurons were differentially altered in Disc1 Het mice.

Subplate neurons that express CTGF are non-pyramidal
layer VIb neurons (Zolnik et al., 2020) and the density of this
subset was found to increase in Het mice. CTGF is a secreted
extracellular matrix-associated protein that plays various roles in
regulating cellular functions (Malik et al., 2015; Ramazani et al.,
2018). Previous studies indicate an inhibitory role of CTGF in
regulating the differentiation of oligodendrocytes (Stritt et al.,
2009; Ercan et al., 2017). We showed an increased density of
oligodendrocytes in the external capsule of forebrain-specific
CTGF knockout mice (Yu et al., 2019), demonstrating a paracrine
function of subplate neuron-derived CTGF. In this regard,
increased CTGF-positive neurons in layer VIb might influence
the maturation and function of oligodendrocytes in adjacent
white matter. Pathological features in the white matter have
been noticed in patients with schizophrenia (Chen et al., 2018;
Raabe et al., 2019), and the role of DISC1 has been addressed
(Miyata et al., 2015; Vasistha et al., 2019). Here, we provided
evidence that supernumerary CTGF-positive subplate neurons in
Disc1 mutant mice might be a pathogenic sign leading to white
matter dysfunction. However, the causal relationship between
Disc1 haploinsufficiency and CTGF expression in the layer VIb
is still unknown.

Another subset of subplate neurons express Cplx3 (Hoerder-
Suabedissen et al., 2013) that project to the septal region of
layer IV and medial posterior thalamic nucleus. These Cplx3-

expressing subplate neurons are thus positioned to integrate
thalamocortical and corticothalamic circuits (Viswanathan et al.,
2017). In this point of view, the reduction of Cplx3-positive
layer VIb neurons might affect the processing of sensory
information in Disc1 Het mice which might model the
sensory processing deficiency in patients with schizophrenia
(Javitt, 2009).

The mechanisms underlying the differential changes among
the subsets of layer VIb neurons in Het mice are not known.
Since we only quantified the densities of layer VIb neurons at
a single time point, the developmental trajectories of different
subset neurons are not clear. Since most subplate neurons are
removed during cortical development, the differential changes
among CTGF-, Cplx3- and Nurr1-positive cells might be
attributed to cell-type-specific survival mechanisms (Pfisterer
and Khodosevich, 2017). We should examine the early signs of
programmed cell death (Yamaguchi and Miura, 2015) at different
time points in a subset-specific manner. The role of Disc1 in these
processes still awaits to be explored.

Morphological Changes in Subplate
Neurons of Disc1 Het Mice
Type I pyramidal subplate neurons, like the pyramidal neurons
in layer VIa in morphology and function, have corticothalamic
and corticocortical projections (Thomson, 2010; Marx and
Feldmeyer, 2013). A recent study revealed that pyramidal layer
VIb subplate neurons are Drd1a-positive and project to layers
I and V and high order thalamus (Zolnik et al., 2020). The
dendritic morphology of Type I subplate neurons was similar
between WT and Het mice, implying that the function of
these neurons might be spared in the mutants. However,
due to the limitation of Gogi-stain and sample collection,
the morphometric features of the apical dendrites might be
underestimated. Besides, the detailed dendritic features such as
dendritic diameter, density, and shape of dendritic spines, and
ultrastructural characters have not been tested. We are not able
to conclude this notion.

The multipolar and horizontal (Types II and III) subplate
neurons are non-pyramidal layer VIb neurons that receive
inputs from various cortical and subcortical sources (Zolnik
et al., 2020). Some of these cells, especially the Type II
cells, might be CTGF-positive layer VIb neurons. The reduced
dendritic field in these cells explained the increased density
of CTGF-positive neurons in mutant mice while the thickness
of the CTGF-positive layer was comparable to that in WT
mice. The dendritic length, complexity, and volume of the
convex hull in Type II multipolar subplate neurons and the
number of primary dendrites in Type III horizontal neurons
were reduced in Het mice, indicating a reduced receptive
field of synaptic transmission between layer VIb neurons and
other cortical/subcortical neurons in Disc1 mutants. Future
studies involving the projections of neurons and synaptic
connectivity are required to clarify the functional roles of
subplate neurons in different subpopulations. Subplate neurons
in younger mice should be identified to advance our knowledge
of Disc1-mediated dendritic growth or pruning. Further, white
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matter neurons can be classified and compared with layer
VIb neurons.

Patterns of Cortical Neurons
In the somatosensory cortex, the densities and distributions of
NeuN- and PV-positive neurons were similar between WT and
Het mice, except for a subtle increase in the proportion of
NeuN-positive neurons in bin 8, the cortical layer IV, of Disc1
Het mice. Layer IV neurons are the major recipients of thalamic
and cortical inputs and play a critical role in sensory processing.
Altered neuronal distribution in layer IV together with the
changes of layer VIb subplate neurons might suggest a defect in
sensory function. We should elaborate on this possibility using
tactile-related behavioral tests (Lee, 2009; Arakawa et al., 2014)
in Disc1 Het mice.

CONCLUSION

Subplate neurons regulate the radial migration of excitatory
neurons in the cerebral cortex (Ohtaka-Maruyama et al.,
2018) and modulate the thalamocortical and corticothalamic
circuits that have been associated with cognitive functions.
The subplate-specific gene expression profile is related
to mental disorders including autism and schizophrenia
(Hoerder-Suabedissen et al., 2013). Our results showed
Disc1 haploinsufficiency-mediated pathogenic features in
the white matter and layer VIb that can be associated with
schizophrenia. This mouse model should be used to explore
the developmental trajectory to replicate the at-risk subjects

of developmental neuropsychiatric disorders and develop a
preventive strategy. Our pilot study should also encourage the
exploration of subplate-specific gene and network study during
cortical development.
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