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Precision psychiatry
At its core precision medicine is about tailoring diagnosis 
and treatment to the particular genetic, environmental, 
and lifestyle factors that influence the pathophysiology of 
disease in individual patients.1 The approach is already 
having clinical impact in oncology where the specific 
molecular signature of a patient’s tumour is being used 
to predict treatment response for certain cancers such as 
melanoma.2,3 It may soon become common in other fields 
of medicine such as cardiology through the incorporation 
of an individual patient’s genetic risk into treatment and 
prevention decisions.4 In psychiatry, meanwhile, the appli-
cation of precision medicine is in its infancy, but its goal 
is ambitious: To replace the old symptom-based system of 
diagnosis detailed in the Diagnostic and Statistical Manual 
for Mental Disorders (DSM)5 with one that uses empirical 
methods – including genetics, imaging, biosamples, and 
behavioural measures – to stratify patients with psychiatric 
disease into subgroups with greater biological validity and 
meaning6 (Figure 1).

Developing a pathophysiologically based classification 
system to facilitate this transition is a central goal of 
the NIMH Research Domain Criteria Initiative7 which 
reimagines mental disorders as brain-circuit disorders, 
or ‘circuitopathies’, and emphasises the development of 
new diagnostic categories and therapeutic approaches to 
modulate these circuits. At the genomic level initiatives 
such as the NIMH funded PsychENCODE Consortium 
are mapping the regional expression of genes and genomic 
elements (those that function to control the expression of 
protein coding genes) across the brain at different times 
during brain development.8,9 Investigators are already 
using the PsychENCODE transcriptome atlas to explore the 
molecular architecture of psychiatric disease, discovering 
networks or ‘modules’ of functionally related regulatory 
genes that tend to be expressed together, and examining 
how such co-expression modules differ in brains from 
individuals with psychiatric disease.10 At the systems level, 
meanwhile, a central goal of the NIH BRAIN Initiative11,12 
is to develop new tools and brain-machine-interface 
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Abstract

What is the future of neuroradiology in the era of precision medicine? As with any big change, this transformation in 
medicine presents both challenges and opportunities, and to flourish in this new environment we will have to adapt. It 
is difficult to predict exactly how neuroradiology will evolve in this shifting landscape, but there will be changes in both 
what we image and what we do. In terms of imaging, we will need to move beyond simply imaging brain anatomy and 
toward imaging function, both at the molecular and circuit level. In terms of what we do, we will need to move from 
the periphery of the clinical enterprise toward its center, with a new emphasis on integrating imaging with genetic and 
clinical data to form a comprehensive picture of the patient that can be used to direct further testing and care.
The payoff is that these changes will align neuroradiology with the emerging field of precision psychiatry, which prom-
ises to replace symptom-based diagnosis and trial-and-error treatment of psychiatric disorders with diagnoses based 
on quantifiable genetic, imaging, physiologic, and behavioural criteria and therapies targeted to the particular patho-
physiology of individual patients. Here we review some of the recent developments in behavioural genetics and neuro-
science that are laying the foundation for precision psychiatry. By no means comprehensive, our goal is to introduce 
some of the perspectives and techniques that are likely to be relevant to the precision neuroradiologist of the future.
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technologies to study brain function at the level of networks of 
neurons and brain areas, and new treatment approaches capable 
of ‘re-tuning’ activity across disordered brain circuits. Below we 
expand on some of the developments in genetics and neurosci-
ence that are making precision psychiatry a reality and explore 
how they might be incorporated into precision neuroradiology.

Precision psychiatry and genetics
Studies of twins and families provided the first evidence that 
psychiatric disorders were highly heritable, and that relatives 
of an affected individual were at increased risk not only for the 
same disorder but for psychiatric disorders more generally.13,14 
In recent years, large genome-wide association studies (GWAS) 
have shown that common genetic variation at the popula-
tion level also accounts for substantial psychiatric disease risk 
and that psychiatric disorders are both highly polygenic (with 
hundreds to thousands of variations contributing to genetic risk 
for a given disorder) and highly pleiotropic (with many genetic 
variants contributing risk to more than one disorder). For many 
psychiatric conditions estimates of heritability based on this 
common variation are in the range of 10–20%.14,15

The biggest challenge in the genetics of psychiatric disease is 
translating genetic findings into mechanistic understanding 
about underlying disease biology.13 For example, GWAS can link 
specific regions of the genome to disease risk, but identifying the 
particular causal variant or gene responsible for that risk signal 
and discerning its biological significance remains an enormous 
challenge. Here we review three different ways in which knowl-
edge about the genetics of psychiatric disease can be linked to 
the underlying molecular, cellular, and circuit-level processes 
that ultimately drive pathophysiology.

Single gene disorders – a window into brain wiring 
and development
Common psychiatric disorders are highly polygenic, however, 
some rare developmental disorders with characteristic neuro-
psychiatric symptoms result from mutations in a single gene. 
The relatively simple genetics of these disorders presents an 
opportunity to explore how patterns of regional gene expression 
guide brain development15 and to study broader gene-behaviour 
relationships in a simplified context that may have relevance to 
the pathobiology of conditions with more complex genetic asso-
ciations. Among such single gene disorders are the neurocuta-
neous syndromes – including Neurofibromatosis 1 (NF1) and 
Tuberous Sclerosis Complex (TSC) – conditions familiar to most 
radiologists because of their association with tissue overgrowth 
in multiple organ systems. The protein products of the genes 
mutated in both NF1 and TSC normally function as inhibitors of 
the AKT/PI3K/mTOR signaling pathway, a critical determinant 
of cellular growth and differentiation, whose dysregulation has 
been implicated in autism as well as several neurodegenerative 
diseases.16

Approximately 50% of individuals with TSC fulfill criteria for 
autism spectrum disorder (ASD), making TSC one of the most 
common monogenic causes of ASD.17 However, the pathogen-
esis of ASD in the TSC population is not well understood. Using 
human expression data from the Allen Brain Sciences Insti-
tute18,19 and Human Brain Transcriptome databases,20,21 our 
group has investigated regional gene expression of TSC1 and 
TSC2 (the genes responsible for TSC22 with the goal of lever-
aging patterns of gene expression to better understand the TSC 
phenotype.23 During mid-fetal development, we find that TSC1 

Figure 1. Precision Medicine in Psychiatry. The goal is to use empirical methods, including genetics and imaging, to stratify patients 
with psychiatric disease into subgroups that have greater biological validity than those derived from traditional, purely symptom 
based, diagnostic criteria.
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and TSC2 expression is elevated in the cortical plate, a develop-
mental zone that shows enriched expression of gene networks 
implicated in ASD.24 Meanwhile, during childhood and adult 
life, expression of TSC1/2 (and other mTOR pathway genes) 
is markedly elevated in the neo-cerebellum. Interestingly, in 
parallel morphometric analysis of structural brain MRIs we 
find that children with TSC have increased cerebellar volumes 
compared to controls, providing an imaging correlate for this 
regional pattern of TSC gene expression.

These findings add to growing evidence that the cerebellum does 
much more than coordinate motor function. The cerebellum 
projects extensively to association cortex including prefrontal 
regions implicated in cognitive control and is hypothesized to 
play an important role in both normal cognitive function25–27 
and the development of neuropsychiatric conditions such as 
ASD.17,27 In the case of ASD and TSC, cerebellar Purkinje cells, 
the output cells of the cerebellar cortex, appear to be particularly 
important: Neuropathological studies show loss of Purkinje cells 
in individuals with ASD,28,29 and mice with selective deletion of 
TSC1 or TSC2 from Purkinje cells develop an autistic phenotype 
that can be prevented through treatment with the mTOR inhib-
itor Rapamycin.30,31 Together these results suggest that TSC1/2 
and the AKT/PI3K/mTOR signaling pathway may play a role 
in the development of the cortico-cerebellar networks that link 
association cortex to the neo-cerebellum and whose disruption 
may contribute to the cognitive impairment, including the high 
incidence of ASD, observed in TSC. Molecular imaging agents 
that target abnormal mTOR pathway activity may soon allow us 
to test these hypotheses.32

Schizophrenia - from GWAS to underlying biology
In the case of highly polygenic disorders such as schizophrenia, 
recent breakthrough work by Sekar and colleagues has forged the 
first direct link between genetic risk for the disease, identified 
through large GWAS, and its underlying biology. To do this these 
investigators showed that a known association between schizo-
phrenia and a large stretch of DNA on Chromosome six called 
the major histocompatibility complex (MHC) was driven by 
variation in number and isotype of the immune system comple-
ment genes C4A and C4B.33 They found that schizophrenia risk 
increased linearly with increased relative expression of C4A, that 
C4A expression is elevated in post mortem brain samples from 
patients with schizophrenia, and that C4 expression in the human 
brain localizes to neuronal synapses and dendrites. Finally, 
in a mouse model, they showed that C4 expression is upregu-
lated during a period of post-natal development important for 
synaptic pruning in the maturing visual system and this pruning 
is disrupted in C4 deficient mice.

In humans synaptic pruning continues well into young adulthood 
in late maturing regions of the brain such as prefrontal cortex. 
While much work still needs to be done, these findings provide 
a plausible biological mechanism linking genetics to neural 
circuitry in Schizophrenia whereby increased C4A expression 
may lead to inappropriate pruning of cortical synapses during 
late adolescence and young adulthood, the time when symptoms 
of schizophrenia first become manifest.

Polygenic scores – empowering imaging through 
patient stratification
Directly linking GWAS findings to causal biological mechanisms 
as Sekar and colleagues have done is a challenging task. Less 
direct, data driven approaches, are also showing promise as tools 
for exploring the underlying biology of psychiatric disorders. For 
example, a novel type of genetic measure known as a ‘polygenic 
risk score’ (PRS), is being used to classify psychiatric disorders 
based on shared genetic architecture and to stratify patients 
according to disease risk.

Developed using data from large GWAS, polygenic scores reflect 
the cumulative risk derived from aggregating the many DNA 
variants associated with a particular trait or disease. In practice, 
each variant is assigned a weight based on its magnitude of effect 
and the weighted variants are combined in a statistical model to 
derive a polygenic score for a single person34,35 that distills their 
individual disease risk into a single number. Accurate, general-
izable, polygenic risk scores have the potential to broadly impact 
medical practice.35 Their incorporation into clinical decision 
making is already being advocated in many fields, from assessing 
cardiovascular disease risk,4 to developing intelligent screening 
strategies that stratify patients according to their individual 
cancer risk.36,37

In psychiatry, polygenic scores may provide a basis for more 
biologically valid diagnosis and prognosis. For example, 
Allardyce and colleagues recently showed that a PRS derived 
from a large schizophrenia GWAS38 could distinguish between 
patients with subtypes of bipolar disorder with and without 
psychotic features,39 conditions with very different prognosis 
and treatment. Their results suggest that certain patients with 
bipolar disorder may share not only symptoms but also under-
lying genetics with patients with schizophrenia, and highlight 
how polygenic hazard scores might be used as a tool to dissect 
clinical and biological heterogeneity within and across disorders.

Polygenic scores may also replace or supplement existing disease 
biomarkers. For example, in our own work we have shown 
that an Alzheimer's polygenic score that quantifies individual 
age-specific risk for Alzheimer’s disease (AD) dementia40,41 
(Figure 2) can predict existing disease markers including imag-
ing-based assessments of brain atrophy, PET imaging of amyloid 
burden, and CSF markers of amyloid and tau pathology.42,43 The 
score also adds additional predictive power when included with 
these other markers in models that predict cognitive decline in 
older adults or the burden of amyloid or neurofibrillary tangles 
(the pathological hallmarks of AD) in post-mortem brains. This 
suggests that polygenic scores may be useful in identifying high 
risk individuals for trials of early therapeutic interventions and 
in increasing the positive and negative predictive value of other 
tests and markers. In neuroradiology an early application of 
polygenic scores would be to identify patients who might benefit 
most from a particular type of advanced imaging.

Precision psychiatry and neuroscience
Localizing function in the brain has a rich history in neuro-
science stretching back to Broca’s first descriptions of aphasia 
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following injury to the inferior frontal gyrus,44 and Penfield’s 
later delineation of topographic motor and sensory representa-
tions along the pre- and post-central gyrus.45 The development 
of functional MRI in the 1990s46–48 launched a golden age of 
neural cartography, as researchers used the tiny magnetic fluctu-
ations caused by changes in hemoglobin oxygenation – the blood 
oxygen level-dependent (BOLD) signal – to infer where in the 
brain neurons were active in response to particular task events 
or conditions. The approach even translated from the lab to the 
clinic in the form of fMRI for presurgical mapping of language 
function.49,50 However, in the past decade modern neurosci-
ence has recognized the limitations of this approach and that 
most complex cognitive and behavioural functions result from 
the coordinated activity of spatially distributed brain networks, 
a shift that inspired the ‘circuit-based’ perspective of precision 
psychiatry.

As with the shift in genetics from single genes to gene networks 
and polygenic/pleiotropic inheritance, the shift in neuroscience 
from individual neurons and brain areas to neural circuits and 
brain networks requires new tools and approaches. As previously 
mentioned, developing these tools is a central goal of the NIH 
BRAIN Initiative11,12 which seeks to develop new techniques for 
studying how complex neural circuits interact in time and space 
and new technologies for ‘re-tuning’ these circuits when they 
malfunction. Below we discuss some of the major challenges 
and opportunities posed by this goal, including the develop-
ment of noninvasive imaging techniques capable of measuring 
the activity and connectivity of brain networks with the neces-
sary spatial and temporal sensitivity to target and monitor such 
interventions.

Modulating brain networks - Lessons from DBS
Arguably the best understood brain circuit or network is the set 
of parallel pathways between the basal ganglia and cortex that 
function to facilitate normal movement51 and are disrupted in 
Parkinson’s disease (PD) due to loss of midbrain dopaminergic 
input,.52,53 We owe our understanding of this network to the 
work of DeLong and colleagues in the early 90’s who used the 
selective dopamine neurotoxin MPTP to develop a nonhu-
man-primate model of PD, and leveraged this model to study 
the nodes and connections that comprise this circuit.54–56 This 
basic knowledge, in turn, made it possible to rationally translate 
deep brain stimulation (DBS) to the clinic to recalibrate activity 
across this network and restore motor function in PD patients 
(reviewed in).52,53

The success of DBS in treating PD and other movement disor-
ders prompted excitement that that the technique might be 
similarly effective in recalibrating brain networks thought to be 
disrupted in psychiatric disease. However, in contrast to move-
ment disorders, in the case of psychiatric disorders such as major 
depression, at present we have neither good animal models nor 
the most rudimentary wiring diagram of the underlying circuits. 
We do know from electrophysiological studies in non-human 
primates that dopamine neurons in the Ventral Tegmental Area 
(VTA) which project to the ventral striatum and prefrontal 
cortex appear to shape representations of value in the brain.57–60 
We also know that these representations appear to contribute to 
healthy decison-making through the activity of neurons within a 
group of frontal cortical regions that includes orbitofrontal61–63 
and anterior cingulate cortex64–66 (OFC/ACC) and that damage 
to these areas results in disruptions in emotional and cognitive 
function.67–71 Various researchers have proposed models of deci-
sion making and behavioural control based on these findings,72,73 
however, currently there is little direct evidence to support any 
specific proposal.

Attempts to treat treatment-resistant depression (TRD) with 
DBS directed towards parts of this frontal network provide a 
cautionary tale. While small open-label trials showed initial 
promise,74,75 two multicenter randomized controlled trials failed 
to show an effect.76,77 Reasons for this failure, and attempts to 
reconcile it with the technique’s early successes, have been exten-
sively discussed in both the scientific and popular press.77,78 
Aside from methodological problems with the trials themselves, 
at least two factors are likely to be important. The first is related 
to the technology itself. Current DBS systems operate ‘open-loop’ 
with no ability to monitor or respond to activity in the circuit 
that they are attempting to modulate.79 Developing ‘closed-
loop’ systems that can both stimulate and record, and thereby 
tailor their stimulation to achieve a desired electrophysiolog-
ical effect, is clearly an important next step.80,81 The second is 
related to target selection in individual patients. Implicit in the 
network perspective of brain function is the idea that similar 
cognitive, emotional, or behavioural problems can result from 
dysfunction at different points or nodes across the responsible 
network. This means that patients with the same set of symptoms 
may have dysfunction at very different locations in the brain. To 
date most DBS approaches have targeted the same anatomically 

Figure 2. Alzheimer disease (AD) Polygenic hazard score 
(PHS) quantifies an individual’s relative age-specific risk for 
developing AD. Survival analysis using both Kaplan–Meier 
estimates (dashed lines) and Cox proportional hazard model 
fits (solid lines) from the ADGC (Alzheimer’s Disease Genet-
ics Consortium) Phase one case–control dataset shows how 
PHS quartiles capture differences in age-specific genetic risk 
for AD. Figure reproduced from Reference 41 under creative 
commons license.
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defined location in all patients; without a means of identifying 
subject-specific targets it is perhaps not surprising that outcomes 
have been so wildly variable.

Targeting neuromodulation - current imaging 
approaches
In the past several years, new techniques have been developed 
to noninvasively image physical and functional connections in 
the living brain, the so-called neural ‘connectome’.82 When the 
goal of neuromodulation is to stimulate a specific white matter 
tract, structural imaging methods such as diffusion tensor 
imaging (DTI) –which measures the diffusion of water mole-
cules to infer the course and caliber of large axonal connections 
between brain areas– have the potential to localize the target 
tract(s) in individual patients. For example, the ventral aspect of 
the anterior limb of the internal capsule has become a common 
target for DBS to treat multiple psychiatric disorders, including 
treatment resistant depression (TRD) and obsessive-compulsive 
disorder.83,84 However, the ventral capsule is a crossroads for 
numerous white matter pathways connecting diverse cortical 
and thalamic regions as well as more remote structures such as 
the ventral tegmental area,85 moreover, there is extensive indi-
vidual variability in the exact location of these pathways within 
the ventral capsule. One of the pathways that traverses the 
ventral capsule is the medial forebrain bundle (MFB), a white 
matter tract that connects midbrain dopamine neurons to the 
ventral striatum and prefrontal cortex. This pathway is thought 
to be critical to motivated behaviour and has been proposed as a 
logical DBS target for TRD. In a recent preliminary study Fenoy 
and colleagues used DTI to map the MFB in individual patients 
prior to DBS implantation for TRD, and to assess electrode 
placement with respect to the tract’s location after implantation. 
In this small sample, the approach showed encouraging results 
with rapid sustained antidepressant effects in 5 of 6 patients; 
moreover, in the patient who experienced poor clinical response, 
DTI showed suboptimal electrode placement.86 Other recent 
studies have used DTI to explore the relationship between indi-
vidual white matter tract trajectories within the ventral capsule 
and DBS response in OCD.87,88

When the goal of neuromodulation is to change activity across 
a distributed brain network by modulating one or more of its 
constituent nodes, the task of targeting becomes even more chal-
lenging. An ideal method would permit non-invasive imaging 
of neural activity across distributed brain networks with high 
spatial and temporal resolution,89 allowing us to precisely localize 
participating nodes and decide which to target in an individual 
patient. That technology does not currently exist. However, an 
fMRI technique called resting-state functional-connectivity MRI 
(rs-fcMRI) shows promise in meeting these goals even though it 
relies on the BOLD signal with its limited spatial and temporal 
resolution. First, whole-brain maps of functional connec-
tivity have been proposed as imaging markers, or ‘endopheno-
types’,90 that can be used to reliably identify biologically relevant 
subgroups of patients. Analogous to polygenic scores, such 
imaging endophenotypes have the potential to function as surro-
gates for the as-yet-unknown genetic or molecular biology of a 
disease. Second, measuring the functional connectivity between 

the nodes of specific networks has been proposed as a means of 
identifying the site of network dysfunction for targeting neuro-
modulatory therapies in individual patients.

In 1995 Biswal and colleagues first described how spontaneous 
low frequency (<0.1 Hz) temporal fluctuations in the BOLD 
signal measured while subjects simply rested with their eyes 
closed were highly correlated between homologous regions of 
somatomotor cortex on opposite sides of the brain, correlations 
they interpreted as reflecting underlying ‘functional connectivity’ 
between these areas.91 This idea was elaborated in 2003 when 
Greicius and colleagues92demonstrated similar spontaneous 
temporal correlations in low-freq BOLD among a network of 
midline brain regions previously hypothesized to form a ‘default 
mode network’ (DMN) because it showed greater metabolic 
activity (measured through FDG-PET) during rest than during 
task performance.93 In the intervening years, researchers have 
used resting-state BOLD correlations to uncover a family of such 
networks thought to reflect the brain’s underlying functional 
architecture (reviewed in94–96) and have begun to explore how 
this functional architecture changes in the context of neuropsy-
chiatric disease. In the case of major depressive disorder (MDD) 
early work emphasized the importance of the DMN, showing 
hyperactivity/failed suppression of the DMN during task perfor-
mance in patients with MDD (reviewed in97) and prompting 
investigators to propose disruption in the normal anticorrelation 
between the DMN and ‘task positive’ networks as a signature of 
mood disorders.97,98

More recently, it has been shown that the pattern of functional 
connectivity across an individual’s brain represents a unique 
neuronal ‘fingerprint’ that can be used to identify that individual 
from within a large group and remains stable across time and 
testing conditions.99,100 Functional connectivity fingerprints 
appear to stabilize during adolescent development,101 and there 
is evidence that both delayed stabilization and particular patterns 
of whole-brain connectivity are associated with certain cogni-
tive-affective traits102 and psychiatric disorders.103 For example, 
in a large sample of over 1,100 patients with depression, Drysdale 
and colleagues recently showed that distinct patterns of functional 
connectivity across limbic and frontostriatal networks could be 
used to group patients with depression into four subtypes with 
different clinical-symptom profiles104 – putative endopheno-
types. One of the most studied non-invasive methods for modu-
lating neural circuits is transcranial magnetic stimulation (TMS) 
(reviewed in105) which applies a rapidly changing magnetic field 
to the scalp to induce currents that can either excite or inhibit 
the underlying cortex depending on the frequency of stimula-
tion.106 High-frequency (‘excitatory’) TMS of the left dorsolat-
eral prefrontal cortex (DLPFC) has been approved by the FDA 
for treatment of major depression.107 Adding support to the 
endophenotype status of these functional-connectivity subtypes, 
Drysdale and colleagues found that a patient’s subtype predicted 
their clinical response to left DLPFC TMS.104

Finally, in elegant work relating resting-state functional-con-
nectivity maps to the efficacy of brain stimulation, Fox and 
colleagues108 examined results from studies across a wide range 

http://birpublications.org/bjr


6 of 12 birpublications.org/bjr Br J Radiol;92:20190093

BJR  Sugrue and  Desikan

of disorders (from PD, to pain, to MDD) in which treatment 
with invasive (DBS) or non-invasive (e.g. TMS) stimulation has 
been attempted. Using resting-state functional-connectivity 
data from a large sample of 1,000 normal subjects these authors 
showed that when multiple sites have been proposed as effective 
stimulation targets for a given disorder these sites correspond to 
nodes in a common functional connectivity network that can be 
defined by rs-fcMRI. Moreover, the sign of a particular node’s 
correlation with other nodes in the network predicted whether 
excitatory or inhibitory stimulation was clinically effective at 
that site. Together these results point to the potential utility of 
rs-fcMRI, both in defining functional connectivity fingerprints 
as possible ‘endophenotypes’ for particular patient subgroups, 
and in mapping functional networks for targeting neuromodu-
latory treatments.

Targeting neuromodulation - New approaches for 
mapping brain circuits
Fox and colleagues work supports the idea that brain stimula-
tion is a network phenomenon and that we can begin to char-
acterize the relevant networks in a clinically relevant way, even 
with imperfect techniques such as rs-fcMRI. Two very recent 
studies suggest that our repertoire of techniques for studying 
brain function at the circuit level, developing imaging-based 
biomarkers, and targeting neuromodulatory treatments may be 
about to expand considerably, and offer a glimpse into the future 
of precision psychiatry.

In the first, Rao and colleagues directly explore the mechanism 
by which brain stimulation alters underlying neural activity to 
influence cognitive and emotional states through simultaneous 
electrophysiological recording and stimulation in the brains of 
epilepsy patients implanted with intracranial electrodes for the 
purpose of seizure localization.109 Epilepsy has extremely high 
comorbidity with psychiatric disorders in general, and depres-
sion/anxiety in particular.110,111 This was true of the 25 patients 
in this study, about half of whom had moderate-to-severe 
baseline scores on the Beck Depression Inventory. By serially 
assessing mood in these patients while recording intracranial 
encephalography (iEEG) over a period of days from electrodes 
that covered a broad set of limbic and paralimbic structures –
including OFC, ACC, insula, amygdala, and hippocampus– the 
authors were able to study how neural activity in these regions 
correlated with variability in mood and how electrical stimula-
tion of OFC (a prefrontal region although to be central to reward 
and affective processing) influenced both mood assessments and 
neural activity.

In patients with moderate-severe baseline assessments of depres-
sion the authors found that low-frequency (4–12 Hz) iEEG power 
recorded from lateral OFC negatively correlated with natural 
fluctuations in mood (i.e. lower power = more positive mood 
assessments). Intriguingly, stimulation of lateral OFC produced 
suppression in low-frequency power in OFC during stimulation 
and potentiation of microstimulation evoked responses after 
stimulation. Moreover, in patients with moderate-severe baseline 
depression scores, stimulation of lateral OFC produced acute 
dose-dependent improvement in mood. Finally, the suppression 

in low-frequency iEEG power seen during lateral OFC stimula-
tion extended to other non-stimulated areas – including ante-
rior cingulate and insular cortex – that are known to be highly 
connected to OFC. This study provides some of the first direct 
evidence that OFC stimulation may function to normalize 
pathologic activity within circuits that are thought to mediate 
natural mood variation and shows the power of combined 
recording-stimulation techniques. These results are the product 
of a relatively rare opportunity to study patients implanted with 
electrodes for seizure localization. However, in the future, as 
more patients are implanted with chronic closed-loop stimu-
lation devices capable of both recording and stimulating brain 
activity our access to such data will increase dramatically. This 
will mean increasing opportunities to study the relationship 
between stimulation and underlying neural activity and to 
correlate real-time high-spatiotemporal electrophysiological 
recordings of neural activity with rs-fcMRI and other noninva-
sive imaging measures, vastly increasing our ability to map the 
brain’s functional architecture.

The second recent study also involves neuromodulation, not 
by electrical stimulation, but by the application of focused 
ultrasound, a new technique that has the potential to impact a 
diverse range of basic and clinical neuroscience research.112,113 
In contrast to the high intensity focused ultrasound used for 
thermal ablation, applications of focused ultrasound for neuro-
modulation employ lower intensity sonication, often in conjunc-
tion with injected pharmacologic or nanoparticle constructs, to 
achieve a variety of spatially localized effects within the brain. 
Focused ultrasound is being explored as a method of modulating 
neural activity at high temporal and spatial resolution either 
directly,114–116 by opening the blood brain barrier to mediate 
drug delivery,117 or through the local uncaging of psychoactive 
drugs.118,119

In a groundbreaking work, Wang and colleagues have now 
shown that focused ultrasound can be used to non-invasively 
modulate brain activity by uncaging neuromodulatory drugs 
in a spatially and temporally specific manner within the living 
brain.120 These investigators loaded ultrasound-sensitive 
nanoparticles with the GABA-agonist anesthetic Propofol and 
administered them intravenously into the systemic circulation 
of rats. They show that the Propofol is only released within 
the brain at sites of sonication, from where the drug exerts 
an exquisitely local effect, silencing neural activity in a dose 
dependent manner with a temporal resolution of 10 sec (deter-
mined by the half life of the drug) and a spatial resolution of a 
few millimeters (determined by the sonication field) (Figure 3). 
Furthermore, using FDG-PET they show that higher ultra-
sound intensities produce secondary changes in brain activity 
at distant brain areas that are functionally connected to the 
sonication target, producing a map of the ‘network-effect’ that 
results from the local action of Propofol at the target site.

Importantly, the same nanoparticles that these investigators 
used to encapsulate Propofol can be used to encapsulate and 
release a wide variety of lipophilic drugs – a class that includes 
most currently used psychoactive medications, the particles 
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themselves are made up of components already approved for 
human administration in other contexts, and the sonication 
parameters are similar to commercial ultrasound systems 
currently in clinical use. This means that the translation of 
this powerful technology to human clinical application may 

be closer than we might think. Guided by real-time MRI or 
by neuronavigation systems, focused-ultrasound uncaging of 
neuromodulatory drugs has the potential to play a crucial role 
in circuit-based treatments – as a means of validating targets in 
individual patients prior to implantation of neuromodulatory 

Figure 3. Neuromodulation via in-vivo ultrasonic drug uncaging in a rodent model. A. Schematic shows recording electrode in 
primary visual cortex (V1) and LED light stimulus for visual evoked potential (VEP) experiments. B. Running average of the VEP 
following sonication (‘FUS’, horizontal black line) applied to V1, normalized by the response 60 s prior to FUS administration shows 
transient inhibition of VEP when sonication is applied in conjunction with administration of propofol-loaded nanoparticles. C. Left: 
Cortical sonication target (red) for PET experiments. Right: axial and coronal PET images acquired following sonication in con-
junction with administration of blank or propofol-loaded nanoparticles (black dashed ellipse = expected sonication target; Color 
bar = normalized FDG uptake). D. Average normalized spatial effect on FDG uptake at the sonication site for 1.2 MPa sonication 
with propofol-loaded nanoparticles. E. Group level averages of FDG uptake across a sagittal slice centered at the sonication site 
for each condition. Figure courtesy of Dr. Raag Airan, Stanford University.
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devices, or of testing the action of a particular psychoactive 
drug on a specific brain area or network prior to the initiation 
of systemic therapy.

Conclusions
We have sought to explore the future of neuroradiology from 
the perspective of the emerging field of precision psychiatry. 
In the past decade, genetics and neuroscience have undergone 
parallel transformations, shifting emphasis from single genes 
and specific brain locations to a polygenic/pleiotropic model 
of inheritance and a circuit/network model of brain func-
tion. These new perspectives are changing our understanding 
of psychiatric disease, reimagining psychiatric disorders as 
‘circuitopathies’ caused by interactions between complex poly-
genic and environmental factors. Uncovering the underlying 
molecular and circuit level mechanisms of psychiatric disease 
will require new tools to explore the brain’s genetic, molecular, 
and functional architecture.

In the meantime, genetic tools such as polygenic scores may 
soon allow us to better stratify patients into subgroups that 
share common biology or have greater or lesser genetic risk 
for a given disorder. Similarly, tools based on existing and 
emerging neurotechnologies may allow us to image and 

modulate brain function at the network level, providing 
imaging endophenotypes for diagnosis, and new methods 
for targeting circuit level therapies in individual patients. 
Together these developments promise a new convergence of 
neuroradiology and psychiatry, two disciplines that previ-
ously had little in common.

To be an effective partner in this new landscape of precision 
psychiatry neuroradiology must adapt and begin to focus on 
integrating imaging with genetic and clinical data to form a 
comprehensive picture of the patient with which to direct further 
testing and care.121 Our job description and training will need 
to change accordingly. We will need to become proficient in 
methods for studying the genetic and molecular architecture of 
disease, including polygenic hazard scores, transcriptome atlases, 
and molecular signaling pathways. We will need to develop new 
techniques to map the molecular pathways and brain networks 
that link genes to behaviour and leverage artificial intelligence 
and other data science tools to harness the power of these multi-
variate methods. These changes will be disruptive to our current 
model of neuroradiology, as similar changes have been to the 
traditional model of psychiatry, but if we navigate them success-
fully they have the potential to launch a new and vital era of 
precision neuroradiology.
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