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Colorectal cancer (CRC) is the second leading cause of cancer death in the world.
Immunotherapy using monoclonal antibodies, immune-checkpoint inhibitors, adoptive
cell therapy, and cancer vaccines has raised great hopes for treating poor prognosis
metastatic CRCs that are resistant to the conventional therapies. However, high inter-
tumor and intra-tumor heterogeneity hinder the success of immunotherapy in CRC.
Patients with a similar tumor phenotype respond differently to the same immunotherapy
regimen. Mutation-based classification, molecular subtyping, and immunoscoring of
CRCs facilitated the multi-aspect grouping of CRC patients and improved
immunotherapy. Personalized immunotherapy using tumor-specific neoantigens
provides the opportunity to consider each patient as an independent group deserving
of individualized immunotherapy. In the recent decade, the development of sequencing
and multi-omics techniques has helped us classify patients more precisely. The expansion
of such advanced techniques along with the neoantigen-based immunotherapy could
herald a new era in treating heterogeneous tumors such as CRC. In this review article, we
provided the latest findings in immunotherapy of CRC. We elaborated on the
heterogeneity of CRC patients as a bottleneck of CRC immunotherapy and reviewed
the latest advances in personalized immunotherapy to overcome CRC heterogeneity.

Keywords: colorectal cancer, immunotherapy, personalized medicine, neoantigen, heterogeneity
1 INTRODUCTION

Colorectal cancer (CRC) had 1.93 million new patients and caused 935,000 deaths worldwide in 2020,
making it the third most common cancer and the second leading cause of cancer death in the world (1).
The 5-year survival of non-metastatic CRCs is between 70-90%, which is reduced to 12-14% for patients
with metastatic CRC (mCRC) (2, 3). In developed countries, CRC accounts for more than 65% of
cancers. Although early diagnosis in these countries has improved patient survival, a quarter of patients
are still in the metastatic stage at the time of referral, and about half of low-stages patients progress to
mCRC (2, 3). Familial adenomatous polyposis (FAP) and hereditary non-polyposis colon cancer
(HNPCC) are among the predisposing factors for CRC, accounting for about 5% of CRC cases (4). The
primary treatment for those CRCs that are limited to the colon wall is a combination of surgery,
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radiotherapy, and chemotherapy based on fluoropyrimidine,
irinotecan, and oxaliplatin such as FOLFOX and FOLFIRI (5).
The metastatic cases are usually not resectable. The combination of
radio/chemotherapy and new targeted therapies against epidermal
growth factor receptor (EGFR) and vascular endothelial growth
factor (VEGF) are the main treatments in this group (5–7).

CRC is among the cancers with tremendous somatic mutations
causing high heterogeneity (8, 9). In 15% of CRCs, the high
mutational burden (>12 mutations per megabase) is due to a
defect in the genes of mismatch repair (MMR) systems such as
MLH1, MSH2, MSH6, and PMS2, which causes transcriptional
problems, especially in regions with repetitive nucleotides such as
microsatellites. This group has microsatellite instability and is called
deficient MMR/microsatellite instability-high (dMMR/MSI-H)
CRCs. The second category, which comprises 85% of CRCs, has
a much lower mutational burden (<8.24 mutations per megabase)
and is known as proficient (p)MMR/MSI-low(L) (10, 11). dMMR/
MSI-H CRCs have a better prognosis and survival (15% higher
survival rate) than the pMMR/MSI-L group (12). Another cause
of highmutational load in CRC is mutations in the catalytic subunit
of DNA polymerase epsilon (POLE), which is observed in 3% of
CRC patients and causes an ultramutated subtype with more than
100 mutations per megabase (10, 13–15). Approximately 40% of
CRC cases have been reported to have mutations in KRAS, which
induces cell proliferation and angiogenesis and inhibits apoptosis
(5). Over 5,000 different KRAS mutations have been identified
in CRC (5). Mutations in MMR, POLE, and KRAS, along with
mutations in BRAF, NRAS, and other genes, cause high
heterogeneity in the treatment response hindering CRC
treatment (16, 17). Therefore, the development of new effective
treatment strategies for CRC seems necessary (18).

In recent decades, the remarkable success of immunotherapy in
achieving long-lasting responses in solid tumors such as melanoma
and lung cancer has led to a strong tendency towards the
immunotherapy of other tumors (2, 19). Despite the relative
responses of CRC patients to immunotherapy, clinical trials have
shown that patients do not respond equally to these treatments, and
special attention should be paid to the tumor microenvironment
(TME) and patient-related factors in each individual (5). The
advances in CRC classification based on the mutational signatures
have facilitated thedecision-making forappropriate immunotherapy.
However, thepoorprognosis ofmCRCpatients indicates theneed for
more personalization of immunotherapy in CRC patients.

In this article, we provided the latest findings in immunotherapy
of CRC. We elaborated on the heterogeneity of CRC patients as a
bottleneck of CRC immunotherapy and reviewed the latest advances
in personalized immunotherapy to overcome CRC heterogeneity.
2 CRC IMMUNOTHERAPY:
COMMON APPROACHES

2.1 CRC Microenvironment
CRC microenvironment (CRCME) is a heterogeneous
microenvironment containing a variety of immune cells.
Numerous studies have linked high infiltration of CD8+ T
cells, CD4+ type-1 helper T cells (Th1), follicular helper T cells
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(Tfh), M1 macrophages, natural killer (NK) cells, and dendritic
cells (DCs) with good prognosis in CRC. Contrarily, high
infiltration of myeloid-derived suppressor cells (MDSCs), B
cells, M2 macrophages, and Th17 cells are associated with poor
prognosis (20–23). MDSCs induce pre-metastatic niches,
increase angiogenesis, migration, and invasion of tumor cells,
and make tumor chemoresistant (24–26). MDSCs also suppress
the antitumor activity of NK and T cells and recruit other
immunosuppressive cells such as regulatory T (Treg) cells into
the tumor site (27, 28). The frequency of MDSCs and Treg cells
in the blood and tumor of CRC patients is higher than healthy
individuals and healthy tissues around the tumor, respectively
(21, 22, 29, 30). However, the relationship between the amount of
Treg cells and disease prognosis is still controversial, with some
studies associating it with a bad prognosis and some with a good
prognosis (31–34).

CRCME is immunologically active in which a variety of
immune cells are infiltrated, and different tumor-associated
antigens (TAA) and tumor-specific antigens (TSA) are
expressed. Besides, numerous molecular markers and receptors
such as VEGF, EGFR, insulin-like growth factor-1 receptor (IGF-
1R), human epidermal growth factor receptor-2 (HER2),
integrins, mucin 5AC (MUC5AC), death receptor-5 (DR5),
cytotoxic T-lymphocyte-associated protein-4 (CTLA-4),
programmed cell death protein-1 (PD1) are overexpressed in
the CRCME (35–43). Hence, immunotherapy targeting these
molecules could be a promising therapeutic candidate for CRC
treatment (18). Various immunotherapy methods, including
monoclonal antibodies (mAbs), immune-checkpoint inhibitors
(ICIs), adoptive T cell therapy (ACT), and cancer vaccines, are
currently used in CRC (44).

2.2 Antibodies and Derivatives
Approval of mAbs such as Bevacizumab, Cetuximab,
Panitumumab, and Ramucirumab as the first and second line
of treatment with chemotherapy in mCRC led to greater interest
in CRC immunotherapy (5, 45). In 2004, two mAbs,
Bevacizumab and Cetuximab, were approved for the treatment
of mCRC (5, 18). Bevacizumab is a humanized antibody against
VEGF that inhibits angiogenesis, and combined with
chemotherapy, increases overall survival (OS) and progression-
free survival (PFS) in mCRC patients (46). Other anti-angiogenic
mAbs include Ramucirumab and Tanibirumab, which are anti-
VEGF receptors (VEGFR). The former has been approved as the
second line of mCRC therapy combined with chemotherapy, and
the latter has not been approved thus far but has shown positive
results in reducing tumor growth (47, 48). Vanucizumab is a
bispecific antibody against VEGF and angiopoietin-2 that
suppresses angiogenesis and metastasis (49). Aflibercept is a
fusion protein containing the extracellular domains of
VEGFR1,2 fused to Fc of human IgG, which inhibits VEGF
and, in combination with chemotherapy, improves the OS of
mCRC patients (50).

Another group of mAbs approved for mCRC is anti-EGFR
mAbs, including Cetuximab, Panitumumab, and Necitumumab
(18). The first two mAbs are confirmed as the first and second
line of treatment in mCRC patients with wild-type Ras,
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respectively (51, 52). Necitumumab has a higher affinity for
EGFR than the other two mAbs. It has shown positive results in
reducing tumor growth in mCRC patients, which should be
approved in further trials (53). Various studies have reported
that patients with mutations in KRAS and other RAS genes are
resistant to anti-EGFR mAbs, suggesting the need to evaluate
RAS mutations before selecting appropriate treatment (5, 54–
56). Other mAbs used in mCRC, including anti-DR5 and anti-
IGF-1R mAbs, showed transient effects as monotherapy or in
combination with chemotherapy (57).

2.3 Immune-Checkpoint Inhibitors
In recent decades, ICIs have achieved astonishing success in
treating solid tumors that had not previously responded well to
treatment (2). ICs physiologically suppress the overreaction of
immune cells to prevent autoimmunity. By increasing the
expression of ICs, tumor cells misuse their inhibitory signals to
escape the antitumor immune responses (58, 59). ICIs block ICs
or their ligands on the surface of immune cells or tumor cells to
restore the antitumor immune responses (2).

The use of ICIs in unclassified CRC patients did not provide
an acceptable overall response. It was observed that some
patients responded appropriately to the ICIs while the others
were ICI-resistant (60, 61). Further studies revealed that
hypermutant tumors express a high level of ICs, leading to
appropriate responses to ICIs (62). In fact, in tumors with a
high mutational burden, neoantigens are more likely to be
produced and presented, and immune cells are more likely to
infiltrate hypermutant tumors. That is probably why such
tumors have a good prognosis and responses to various
immunotherapies (63). CRCME in dMMR/MSI-H tumors is
highly infiltrated with CD8+ T cells, Th1 cells, macrophages,
and enriched with IFN-I (63, 64). Interestingly, the amount of
somatic mutations in CRC is associated with treatment response
(65). Given the promising results of ICIs in increasing OS and
PFS of dMMR/MSI-H patients, the Chinese Society of Clinical
Oncology (CSCO) guideline recommends anti-PD1 (Nivolumab
and Pembrolizumab) as the first line of treatment for dMMR/
MSI-H mCRC patients (66). Besides dMMR/MSI-H patients,
POLE-mutated patients also have a high immune cell infiltration
and IC expression, resulting in a favorable prognosis and
response to ICIs (67).

Unlike hypermutant patients, ICI in pMMR-MSI-L patients did
not show promising results, possibly due to the lack of tumor
infiltration with immune cells (2, 68). The combination of ICI with
radio/chemotherapy and anti-angiogenic agents is currently being
investigated in these patients (NCT02563002, NCT03122509).
Radio/chemotherapy causes the release of neoantigens through
direct damages to the tumor cells (69, 70). The released neoantigens
and damage-associated molecular patterns (DAMPs) recruit
immune cells into the tumor site, leading to patients’ better
response to immunotherapy (69–72). Inhibition of the RAS-AMP
activated protein kinase (RAS-AMPK) pathway also increases the
tumor infiltration of immune cells and improves the response of
pMMR/MSI-L patients to ICI (73–75). Though, it did not show
significant changes in the OS of pMMR/MSI-L patients compared
to other treatments (73–75).
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Bispecific antibodies against TAA and CD3 are another way
of increasing the infiltration of immune cells into the CRCME to
increase the responses to ICI. Since carcinoembryonic antigen
(CEA) is a highly expressed TAA in CRC, CEA-TCB (RG7802)
binds to the CEA on the surface of tumor cells and CD3 on the
surface of T cells, recruiting more T cells into the tumor site. The
combination of CEA-TCB with Atezolizumab (anti-PDL1) was
encouraging in pMMR/MSI-L patients, and further
investigations are ongoing (NCT02324257, NCT02650713)
(76). Targeting other ICs such as T-cell immunoglobulin and
mucin domain-containing protein-3 (TIM3), Lymphocyte
activation gene-3 protein (LAG3), T cell immunoreceptor with
immunoglobulin and ITIM domains (TIGIT), and V-domain
immunoglobulin suppressor of T-cell activation (VISTA), as well
as the use of agonist for costimulatory molecules such as CD27,
OX40, 4-1BB, glucocorticoid-induced tumor necrosis factor
receptor (GITR), and CD40 are under investigation in both
pMMR and dMMR patients with positive results (2, 64, 77–84).

Besides pMMR/MSI-L patients, the use of ICIs in a large
proportion of dMMR/MSI-H patients was not clinically
significant (85, 86). For example, tumors with mutations in
b2M have defects in the expression of b2-microglobulin with
major histocompatibility complex (MHC)-I, leading to antigen
presentation deficiency and immune escape of tumors (87). b2M
mutation causes resistance to ICI even in dMMR tumors (65, 87).
Mutations in genes involved in the antigen processing and
presentation pathways as well as in IFN-g signaling pathways
also cause resistance to ICI (64, 88, 89). To sum up, the above
cases show that the use of immunotherapy regardless of the
tumor and patient conditions leads to treatment inefficiency,
which indicates the need to examine each individual’s tumor to
select the appropriate treatment option.
3 CRC HETEROGENEITY: A CHALLENGE
OF IMMUNOTHERAPY

CRC is one of the cancers with high heterogeneity among
patients and even within a tumor, which has challenged the
treatment of this disease (6). Genetic and environmental
differences, diverse mutations, differences in the infiltration of
immune cells into the CRCME, and even differences in the
nutrition and microbiome of patients cause extensive
heterogeneity in CRC (16, 17, 90–92).

Hypermutation is a hallmark of CRC, although 20% of these
mutations cause cancer and far fewer mutations are common in
two or more tumors (6). Patients within a mutational group are
even heterogeneous (93). For example, in patients with the KRAS
mutation, those with the mutation in codon 13 (G13D) respond
to the combination of chemotherapy and targeted therapy, while
patients with the mutation in codon 12 (G12R) do not respond
well (94). Heterogeneity is even associated with the location of
the tumor. It has been observed that BRAF mutations are more
common in tumors originating from the right side of the body,
and these tumors are hypermutant/MSI-H (6, 95). On the other
hand, left tumors usually show chromosomal instability and gene
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expression profiles associated with EGFR pathway activation (13,
96, 97). These differences also influence the choice of treatment
options. Generally, anti-EGFR and chemotherapy are prescribed
for left-sided tumors, while a combination of Bevacizumab and
chemotherapy is recommended for right-sided tumors (5).

In addition to interpersonal heterogeneity, a tumor has
heterogeneity within it (98). This heterogeneity can be
manifested between cells in a tumor, between metastatic
lesions from a tumor, and even between cells in a metastatic
lesion (16). Surprisingly, tumors with the same genetic lineage
can exhibit different behaviors, growth rates, and treatment
responses (99). It has been revealed that increased intra-tumor
heterogeneity is directly associated with poor prognosis and
decreased OS/PFS in patients (100). Studies of multiple
biopsies from various CRC sites have shown that over 65% of
tumors have intra-tumor heterogeneity, and there was 10-30%
heterogeneity in KRAS and BRAF mutations within tumors
(101–104). Heterogeneity of tumors also changes during cancer
progression. In the early stages of CRC, intra-tumor
heterogeneity is high and decreases during the disease
progression (105). Such vast heterogeneity undermines the
value of single-biopsy in determining the phenotype and
mutational profile of the tumor to select the appropriate
treatment. It accentuates the need for further examination of
the tumor with biopsy from different areas and the use of
advanced instruments to evaluate CRC heterogeneity (101, 106).
3.1 Efforts to Overcome
CRC Heterogeneity
3.1.1 CRC Classification
One way to overcome CRC heterogeneity, especially in choosing
the appropriate treatment strategy, is to classify CRC patients
from different molecular and immunological aspects. A
successful step in this field was the Consensus Molecular
Subgroups (CMS) presented by CRC Subtyping Consortium
(13, 107). CMS1 subtype includes MSI tumors with high
mutational burden and active anti-tumor responses thanks to
high infiltration of anti-tumor cells such as CD8+ T cells, Th1
cells, DCs, NK cells, and M1 macrophages as well as a minimum
amount of Treg cells (13, 64, 108). CMS1 is known as the MSI-
immune subtype and has the best prognosis and well response to
immunotherapy (109). The CMS2 subtype is called “canonical”,
highlighting its epithelial features and activation of theWNT and
MYC pathways. Tumors with the lowest MSI (less than 2%) are
in this group (64). Due to the low mutation of these tumors, the
infiltration of immune cells is very low, making them known as
the immune-desert subtype (6, 13, 108). Given the dysregulated
metabolic pathways, CMS3 tumors are called metabolic types.
These tumors have mutations in KRAS, and some of them are
MSI (13, 107). Immune cell infiltration in CMS3 is slightly higher
than CMS2 but still low and has an immunologically-inactive
CRCME, referred to as immune-excluded subtype (13, 64, 107).
Eventually, CMS4 tumors are called mesenchymal type because
they have mesenchymal properties such as strong endothelial-
mesenchymal transition activity and high stromal content (13,
107). They are highly infiltrated with immunosuppressive cells
Frontiers in Oncology | www.frontiersin.org 4
such as Treg cells, M2 macrophages, and myeloid cells, and the
presence of anti-tumor immune cells such as DCs, activated NK
cells, Th1, and CD8+ T cells in their CRCME is very low. Besides,
CMS4 tumors have activated VEGF, TGF-b, and CXCL12
signaling pathways, all of which cause the worst prognosis of
CMS4 among the four categories (64, 108).
3.1.2 Immunoscore
Besides molecular classification, CRCs can also be classified based
on immunological properties. As mentioned, the mutational
burden is a hallmark for the response to immunotherapy.
However, the resistance of some dMMR tumors and the
appropriate response of some pMMR tumors suggest that a high
mutational burden alone is not responsible for the response to
immunotherapy (2). It seems that the mutations indirectly
increase the response to immunotherapy by increasing the
probability of immune cell infiltration into the CRCME (2). The
amount of mutations in dMMR tumors is roughly 20 times more
than that of pMMR tumors, which produce more (20-fold)
neoantigens, increase immune cell infiltration, and induce
antitumor responses (110). As a result, it makes more sense to
evaluate the immune status of CRCME to predict the response to
immunotherapy. Accordingly, recent studies suggest using
immunoscore in predicting the response to immunotherapy (2,
64, 111). Immunoscore is evaluated based on the rate of T cells,
especially CD8+ T cells in the tumor center and invasive margins
of the tumor. Therefore, the high amount of CD3+ cells and CD8+

cells in both center andmargin of the tumor are determined with a
score of 4, and the low number of these cells in both areas is
determined with a score of zero (111–113). CD45RO has also been
used as a marker in some immunoscore assessments (112, 114).

Interestingly enough, stage I patients with low immunoscore
have been shown to have a poor prognosis and low rate of disease-
free survival (DFS) similar to those in stage IV (114). On the other
hand, high immunoscore was observed in some pMMR-MSI-L
patients, and the rate of DFS, OS, and recurrence was similar in
MSI-H and MSI-L patients with high immunoscore (115). Also, in
patients with low immunoscore, microsatellite status had no
beneficial effect on survival (115). These observations indicate
that the prognostic value of immunoscore in clinical outcome
and response to immunotherapy is higher than the conventional
classification system (UICC-TNM) and even classification based
on MMR and MSI (64, 115). Noteworthy, classifying patients into
only four groups based on the presence or absence of a few
subtypes of immune cells does not seem sufficient. More
advanced immunophenotyping methods are needed by
considering other immune cells, the infiltration site of each
immune cell subset, immune activation/exhaustion markers, and
other immunological parameters.
3.1.3 Heterogeneity Assessment Methods
Despite the efforts to study CRC heterogeneity, our current
knowledge in this field is just the tip of the iceberg. Expanding
next-generation sequencing (NGS), single-cell sequencing, and
whole-exome sequencing techniques along with the application
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of omics data at various levels, including genomics, epigenomics,
transcriptomics, peptidomics, proteinomics, and metabolomics,
could give us valuable information on the heterogeneity of CRCs
(116–123).

Advances in computational biology tools and integrating
information obtained from different omics methods could
develop accurate and rapid models to predict tumor behavior
and response to treatment (124–126). Examples of attempts to
create virtual tumor models include virtual patient-ModCell and
genome-scale metabolic models used in various cancers,
including CRC (127–129). The purpose of these models is to
use literature to obtain predictive and prognostic biomarkers,
including molecular, metabolic, and immunological signatures,
to predict disease progression and treatment response (124, 130,
131). Therefore, identifying reliable biomarkers is an urgent need
to increase the accuracy of these models. This modeling is in its
infancy and requires to address challenges such as a large amount
of information obtained from different omics for each individual,
the precise classification of each patient uniquely into a category,
the inclusion of immunological variables in models, and
prediction of tumor response to treatment (124).

Due to the tumor’s dynamic behavior, the study of tumor
behavior requires the evaluation of accessible biomarkers that
can reflect tumor changes during treatment without the need for
biopsy. Therefore, identifying biomarkers in body fluids that can
accurately, quickly, and cost-effectively reflect the stage and
characteristics of the tumor is desired. Circulating exosomes,
microRNAs, tumor cells (CTC), tumor DNA (ctDNA) can be
ideal indicators for tumor heterogeneity changes in the course of
treatment (6). The similarity of the genetic profile of CTCs with
tumors has been reported 50-77% (132, 133). Interestingly, the
genetic profile similarity between cell-free DNAs (cfDNA) or
ctDNAs and tumors has been reported to be more than 90%
(134–136). Examination of the genetic contents of exosomes is
an available method to study tumor mutations with acceptable
accuracy. Surprisingly, KRAS mutant genes are more likely to be
loaded in exosomes than normal KRAS genes (137, 138).

An emerging method for modeling patient tumors to evaluate
the treatment response is establishing patient-derived organoids
(PDOs) (139). PDOs are three-dimensional structures of the
extracellular matrix containing patient-derived tumor cells fed
with culture medium and growth factors. The close similarity
(70-90%) of PDOs with the primary tumor in terms of structure,
function, and even heterogeneity has made PDOs more reliable
models than cell lines that have only 10% of the characteristics of
primary tumors (139–144). PDOs have been shown to predict
treatment responses with an accuracy of 88-100% (139–144).
However, the absence of immune cells in PDOs limits this model
in predicting the response to immunotherapy (64). Recently, air-
liquid interface culture systems enable PDOs to infiltrate with
different immune cells and fibroblasts, making PDOs very
similar to the tumor microenvironment (TME). These models
are reliable tools for assessing the response of patients to
immunotherapies (145). Further studies are required to
develop these models and confirm their ability to predict the
response to various immunotherapies in CRC.
Frontiers in Oncology | www.frontiersin.org 5
4 PERSONALIZED IMMUNOTHERAPY
IN CRC

4.1 Cancer Vaccines
Cancer vaccines are immune system boosters that invigorate
patients’ immune responses against cancer by exposing tumor
antigens to immune cells (44, 146). The immunotherapies
discussed so far is targeting TAAs that are overexpressed in
the CRCME. Most TAAs targeted in CRC include CEA, EGFR,
VEGFR1/2, survivin, mucin-1 (MUC-1), melanoma antigen gene
(MAGE), Wilms tumor antigen-1 (WT1), transmembrane-4
superfamily member-5 protein (TM4SF5), mitotic centromere-
associated kinesin (MCAK), ring-finger protein-43 (RNF43),
translocase of the outer mitochondrial membrane-34
(TOMM34), squamous cell carcinoma antigen recognized by T
cells-3 (SART3), insulin-like growth factor II m-RNA-binding
protein-3 (IMP3), kinase of the outer chloroplast membrane-1
(KOC1), 5T4, guanylyl cyclase C (GUCY2C), and human
telomerase reverse transcriptase (hTERT) (44, 147–160).

Another type of cancer antigen is TSAs or neoantigens, which
are nucleotide or polypeptide sequences that are mutated and
might be identified as non-self antigens (44). Neoantigens are
expressed only on the surface of tumor cells and significantly
reduce the risk of adverse effects of vaccination (15, 161).
Hypermutant tumors have a higher chance of producing
neoantigens, which is one reason for the increase in immune
cell infiltration and good prognosis of these tumors (110, 162).
The specificity of neoantigens and their association with the
prognosis have made neoantigens ideal targets for cancer
immunotherapy, especially for personalized cancer vaccines
(64). Neoantigens are generated from frameshift and
framework mutations, single nucleotide or structural
variations, insertions or deletion, and alternative splicing (146).
Most of the neoantigens produced in CRC are derived from TTN
gene mutations. Mutations in other genes such as TGFBR2,
TAF1B, HT001, MARCKS1/2, CDX2, AIM2, TCF7L2, KRAS,
PCNXL2, BAX-1, MUC16, SOX9, RNF43, KMT2D, ARID1A,
APC, ZFP5N2 could also produce neoantigens (146). Mutations
that occur in tumors are divided into driver and passenger types.
The products of driver mutations are critical for the survival of
tumor cells, and therefore targeting these mutations reduces the
likelihood of immune escape by the tumor (15).

Vaccination with short peptides induces a limited immune
response. Therefore, the cocktail of several long peptides is
usually used in vaccines to induce both class-I and class-II
MHC-mediated responses (150, 163, 164). Frameshift
mutations generate long neoantigenic peptides with predictable
sequences that can be used in vaccines. Interestingly, the number
of vaccine peptides that induce the CD8+ T cell responses is
directly related to patient survival (151). It has been
demonstrated that vaccines with more than two neoantigens
were able to control the tumor for a long time in preclinical and
clinical models (165). In a trial, vaccination with three
frameshift-derived neoantigens was performed on advanced-
stage CRC patients, which induced a response in all patients
and stopped the disease in one patient (166). Due to the high
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heterogeneity of CRC patients, some studies are attempting to
use cocktail neoantigens or establish a library of DNA, RNA, and
peptide vaccines as off-the-shelf vaccines (150, 151, 167–169).
The list of clinical trials in neoantigen-based off-the-shelf
vaccines and ACT is provided in Table 1.

Neoantigen vaccines are extensively investigated in melanoma
and glioblastoma with promising results in increasing patients’
survival (173–175). Given that glioblastoma has a low mutational
and neoantigenic burden (8, 176, 177), these results suggest that
neoantigen-based vaccines are effective even in tumors with low
mutation rates such as pMMR/MSI-L (64, 175). Neoantigen
vaccines may improve the infiltration of immune cells into
CRCME and increase the immunoscore of tumors, leading to
increased tumor responses to ICIs and other immunotherapies
(64). The combination of neoantigen vaccines with ICI is currently
being investigated in clinical trials (NCT02600949, NCT03289962).

In neoantigen vaccines, prioritizing the selection of neoantigens
is a critical step influencing the effectiveness of vaccination. Some
studies prioritize selecting those with a high prevalence in CRC
patients (146, 167, 168). However, in personalized immunotherapy,
the goal is to identify the neoantigens expressed in the patient’s
tumor and select the most immunogenic and appropriate ones for
vaccination. The application of the NGS technique to perform
whole-exome sequencing, whole-genome sequencing, and RNA
sequencing, together with the use of omics data, helps us identify
mutated regions and neoantigens created in the patient tumor to be
used in the personalized vaccine (146).

Due to the presentation of all antigens in the body by MHCs,
determining patient MHC profile and selecting appropriate
peptides with high binding affinity to the patient MHCs should
also be considered to select immunogenic neoantigens (146).
Frontiers in Oncology | www.frontiersin.org 6
Many personalized vaccine studies consider the presence of
targeted neoantigens in the patient’s tumor as a criterion for
vaccine design. The next step in achieving an effective vaccine is
to assess the patient’s immune status in terms of the presence or
absence of previous immune response to the selected neoantigen
(178, 179). Tumor-derived neoantigens that have not been able
to stimulate the immune responses cannot induce strong
immune responses in the vaccine formulation (180, 181).
Therefore, after selecting the ideal neoantigens and matching
them with the patient MHC, it is necessary to evaluate the pre-
existing immune responses against those neoantigens by
determining the frequency of antigen-specific cytotoxic T cells
(CTLs) as well as the antigen-specific IgG titer in the serum (15,
182). Considering the pre-existing immunity in neoantigens
selection could enhance the vaccination efficacy and reduce the
adverse events (15). Clinical trials using this type of personalized
vaccination have shown encouraging results in inducing an
antitumor immune response and increasing OS even in
chemoresistant CRC patients (178, 179, 182). The process of
personalized immunotherapy in CRC is illustrated in Figure 1.

Neoantigen vaccines can be designed and produced in various
forms. Peptide/protein vaccines are safe and have a convenient and
cost-effective production process but usually do not have sufficient
immunogenicity and require adjuvant (178, 183, 184). In addition,
the antigenic escape necessitates the need to use antigen cocktails
(151, 178, 184). The AutoSynVax vaccine is a personalized vaccine
using neoantigens and QS-21 adjuvant that is undergoing a phase 1
clinical trial in advanced cancers (NCT02992977).

DNA and mRNA vaccines are highly immunogenic due to the
presentation of produced antigens by both MHC-I and -II
pathways. They also stimulate the innate immune sensors in
TABLE 1 | Clinical trials on CRC immunotherapy targeting shared neoantigens.

Type of
immunotherapy

Title Phase No.
patients

Combination Status/outcome Ref./CT code

Neoantigen
Vaccine

Mutant KRAS-targeted long
peptide vaccine

I 30 Nivolumab and ipilimumap Active NCT04117087

13mer Mutant KRAS neoantigens II 38 IL-2 and GM-CSF - 4 patients had stable disease (170)
(Class I and II peptides) - 34 patients had progressive disease NCT00019331

- Peptide-specific T cell response:
54.1%
- MST: 16.9m
- PFS: 3.6 m

13mer Mutant KRAS neoantigens
(Class I peptides)

II 7 Detox (adjuvant) - 4 patients remained with no
evidence of disease

(171)

- More than two times increase in
IFN-g
- DFS:27.2m
- OS: 41.5m

Frameshift peptides Neoantigens: AIM2
(-1), HT001(-1), TAF1B(-1)

I/II 22 Montanide ISA-51 VG - 16 patients showed immune
response (CTL/IgG induction)

(172)
NCT01461148

Frameshift-derived neoantigen-loaded I/II 25 – Active NCT01885702
DC vaccine

Adoptive cell
therapy

Anti-KRAS G12V Engineered T cells I/II 110 Cyclophosphamide,
Fludarabine, Aldesleukin

Active NCT03190941

TCR-engineered T cells against I/II 1 – Terminated NCT03431311
TGFbRII frameshift peptide
November 2021 | Volume 11 |
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the cytosol (185–187). The mRNA vaccines are safer than DNA
vaccines due to the lack of concerns about unwilling integration
to the host genome (44, 188). Also, the convenience, speed, and
inexpensiveness of mRNA manipulation have led to the
widespread acceptance of mRNA vaccines in personalized
immunotherapies, which has yielded promising results in CRC
(188–190). DCs are ideal candidates to carry the neoantigens into
the tumor because they can present neoantigens via both MHC-
I/-II pathways and provide costimulatory molecules required for
optimum immune responses. They can be pulsed ex vivo with
neoantigens or mRNA, matured with cytokines, and then
Frontiers in Oncology | www.frontiersin.org 7
returned to the patient as autologous DC vaccines (191). These
vaccines are being tested in clinical trials (Table 2).

Viral, bacterial, and yeast vectors can also be loaded with genes
encoding neoantigens and induce robust immune responses against
the tumor (44). These vectors release pathogen-associatedmolecular
patterns (PAMPs) that stimulate the innate and adaptive immune
response and increase the infiltration of immune cells into the
tumor site (206–210). Adenoviruses, lentiviruses, retroviruses, and
Poxviruses are important viral vectors in vaccine design (211).
Clinical trials with viral vectors loaded with neoantigens and
TAAs have been performed on mCRC patients with promising
results in inducing the immune responses and improving OS (212,
213). However, viral vector safety concerns such as the possibility of
mutation and becoming a pathogen still remain and need further
studies (214, 215). The use of engineered bacteria as vectors of
neoantigens in clinical trials has also yielded positive results. ADXS-
NEO is a personalized neoantigen vaccine with Listeria
monocytogenes vector that increased CD8+ T cell infiltration in
CRCME in 40% of patients and induced specific responses against
90% of neoantigens (NCT03265080). Yeast vectors are a promising
future option for cancer vaccines due to their high safety, ease of
large-scale production, no need for adjuvants, and induction of
effective responses against neoantigens (207, 216). Several clinical
trials are investigating the effectiveness of yeast vectors in mCRC
vaccines (44).

Another strategy for personalized vaccination is the use of
autologous tumor cells or tumor lysates. Vaccination with whole
tumor lysate reduces the possibility of immune escape due to the
presence of all tumor antigens (44). However, many of these
antigens are normal self-antigens that do not stimulate the
immune response and reduce the effectiveness of whole lysate
vaccines. Strategies such as using oncolytic viruses in vivo and
in vitro or tumor cells infected with oncolytic viruses release
PAMPs, which increases immune responses (217, 218). The
results of phase I and II trials showed that the use of
Newcastle virus-infected tumor cells reduced recurrence and
increased OS in CRC patients (44, 219). However, the high
levels of self-antigens present in tumor lysates cause the lack of
specificity of immune responses and increase the possibility of
promoting autoimmune responses, limiting the use of this
method in susceptible individuals (220, 221).

4.2 Adoptive T Cell Therapy
ACT is a cancer immunotherapy method in which T cells are
collected from the tumor, lymph nodes, or peripheral blood of a
patient and returned to the patient’s body after proliferation and
selection of tumor-specific T cells. ACT can be performed with
unmanipulated cells or engineered cells that express chimeric
antigen receptors (CAR-T cells). CAR-T cells are independent of
MHCs, and due to carrying costimulatory domains, they could
induce strong antitumor responses (2). CAR-T cells are mainly
against TAAs that overexpress in CRC, including CEA, EGFR,
mesothelin, MUC-1, NKG2D ligand, HER2, c-met, CD133,
GUCY2C, epithelial cell adhesion molecule (EpCAM), and
Tumor-associated glycoprotein (TAG)-72 (18, 157). These
CAR-T cells contain immune activating domains of CD28 and
CD137. In the context of mCRC, CAR-T cells as monotherapy or
FIGURE 1 | The Process of personalized immunotherapy in CRC. Off-the-
shelf immunotherapy such as ICIs, mAbs (anti-EGFR, -VEGF(R)), TAA-specific
CAR-T cells, and TAA-base cancer vaccines resulted in tumor regression and
stable disease in some patients. However, such immunotherapy did not achieve
significant overall clinical responses when used in unclassified CRC patients.
The mutation-based classifications according to MMR, POLE, and RAS genes
showed that the mutant subtypes are more responsive to immunotherapy.
CMS typing more clarified the CRC classification using molecular differences.
Regarding the fact that immunotherapy is the method of choice for those
tumors with high infiltration of immune cells, the immune-based classification
such as immunoscore (Ranged between 0-4) grouped the patients based on
the tumor infiltration of immune cells. Ultimately, Personalized immunotherapy
tried to classify each patient as an independent group in which the individualized
neoantigens is determined through the hi-tech NGS and multi-omics to
optimize and personalize the cancer vaccines. Besides, autologous ACT and
PDO-based prediction of the immunotherapy responses are the other
approaches towards personalized immunotherapy. ICI, Immune-checkpoint
inhibitor; PD1, Programmed cell death protein 1; PDL1, PD ligand 1; CTLA4,
cytotoxic T-lymphocyte-associated protein 4; TAA, Tumor-associated
antigen; EGFR, Epidermal growth factor receptor; VEGFR, Vascular-
endothelial growth factor receptor; CAR-T cell, Chimeric antigen receptor T
cell; d/pMMR, Deficient/proficient miss match repair; MSI-H/L, Microsatellite
instability high/low; POLE, DNA polymerase epsilon; CMS, Consensus
molecular subgroup; NGS, Next-generation sequencing; WES, Whole-exome
sequencing; RNA-Seq, RNA sequencing; TIL, Tumor-infiltrating lymphocyte;
PDO, Patient-derived organoid.
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TABLE 2 | Clinical trials on personalized immunotherapy of CRC.

Type of
immunotherapy

Title Phase No.
patients

Combination Status/outcome Ref./CT code

Peptide-based
neoantigen
vaccines

Personalized neoantigen-based
peptide vaccine

I 10 TS-1 - Partial response: 10% (192)
- Peptide-specific immune response:
50%

Personalized neoantigen-based
peptide vaccine

I/II 11 UFT, UZEL -Stable disease: 36% (193)
-Peptide-specific cellular and humoral
response: 64 and 82%, respectively

Personalized neoantigen-based
peptide vaccine

I 13 – -Stable disease: 43% (194)
- Peptide-specific cellular and humoral
response: 90 and 80%, respectively
-MST: 19.6 months

Personalized neoantigen-based
peptide vaccine

II 60 Chemotherapy - Peptide-specific cellular and humoral
response: 63 and 49%, respectively

(195)

-MST: 16.6 m
-1-year survival rate: 53%
2-year survival rate: 22%

Personalized RAS Mutant neoantigens I 10 Detox (adjuant) -Stable disease: 10% (196)
-Neoantigen-specific CD4+/CD8+ T cell
responses: 30%

Personalized Synthetic peptide Vaccine 1 60 Imiquimod,
Pembrolizumab

Active NCT02600949

Personalized neoantigen peptide vaccine I 12 Poly-ICLC adjuvant Active NCT04799431
Retifanlimab
(anti-PD1)

Personalized neoantigen cancer vaccine I/II 214 Nivolumab and
Ipilimumab

Active NCT03639714
(GRT-C901 and GRT-R902)
Patient-specific neoantigen cancer
vaccine using NGS and HLA typing

Observational 93 – Completed-Results pending NCT03794128

Individualized peptide-based
immunization

Observational 100 – Active NCT03871790

Personalized neoantigen cancer vaccine
(GRT-C903 and GRT-R904)

I/II 144 Nivolumab and
Ipilimumab

Active NCT03953235

mRNA-based
neoantigen
vaccines

RO7198457 (mRNA-based I 567 Atezolizumab Active NCT03289962
Individualized neoantigen vaccine)
mRNA-based personalized vaccine
targeting neoantigens

I/II 5 – -The vaccine was safe and induced the
neoepitope-specific T cell responses

(197)

-No objective clinical response was
observed

NCT03480152

Vector-based
neoantigen
vaccines

(ADXS-NEO) Listeria monocytogenes-
based personalized tumor neoantigens
vaccine

I 5 With or without
Pembrolizumab

Active NCT03265080

Personalized neoantigen yeast-based
vaccine, YE-NEO-001

I 16 – Active NCT03552718

Personalized live, attenuated, double-
deleted Listeria monocytogenes
(pLADD)-based vaccination with TSA

I 28 – Terminated NCT03189030

Autologous
tumor cells/
lysate

OncoVax (autologous tumor cell) III 550 Surgery Active NCT02448173
Autologous tumor lysate I/II 27 CIK -Serum level of IFN-g and IL- (198)

12 raised
-Five-year DFS rate: 66%

Autologous or allogeneic whole
tumor cell

I/II 50 – Active NCT00722228

Autologous or allogeneic tumor
cell vaccine

II 40 IFN-a Completed- Results pending NCT00002475
IFN-g
Sargramostim
Cyclophosphamide

Autologous tumor cell vaccine plus
BCG vaccine

I/II 30 BCG vaccine Completed-results pending NCT00016133
Fluorouracil
Leucovorin
Calcium
Adjuvant therapy

Autologous tumor cell vaccine plus
BCG vaccine

III 412 BCG vaccine (199)

(Continued)
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in combination with cytokines such as IL-12 had encouraging
effects such as tumor reduction and long-term disease stability in
some patients (222–225). However, challenges such as on-target/
off-tumor toxicity and damage to other organs due to the lack of
specificity of target antigens are seen. Identification of TSAs is
one of the current challenges in CAR-T cell therapy (18). A
second concern is cytokine release syndrome due to the CAR-T
cells activation following binding to antigens in both tumor cells
and normal cells (226).

The use of tumor-specific unmanipulated cells has also
yielded positive results in CRC. In one study, tumor-
Frontiers in Oncology | www.frontiersin.org 9
infiltrating lymphocytes (TILs) were collected from metastatic
lesions of a patient carrying KRAS-G12D mutation. The
mutation-specific CD8+ T cells were selected and returned to
the patient, resulting in the elimination of 85% of metastatic
lesions (227). In another study, sentinel lymph node T was used
instead of TILs, which resulted in complete response and disease
stability in some patients and partial response in others (228,
229). The combination of ACT with chemotherapy and
bevacizumab caused 80% overall response, 26.7% complete
response, and stopped tumor progression in stage IV CRC
patients (230). Various trials are investigating the effects of
TABLE 2 | Continued

Type of
immunotherapy

Title Phase No.
patients

Combination Status/outcome Ref./CT code

-Development of immune response in
vaccinated patients results in
insignificantly improved DFS and OS

Autologous tumor cell vaccine plus
BCG vaccine

III 254 BCG vaccine -44% decrease in recurrence (200)
-Improved relapse-free survival

Autologous tumor cells infected with
Newcastle disease virus

III 50 – -Insignificantly beneficial in increasing
overall and metastasis-free survival

(201)

-could not prevent from recurrent
metastases

DC-based
autologous
vaccines

Autologous tumor-loaded DCs I 6 – -Induction of T cell responses against
tumor

(202)

Autologous tumor lysate-loaded DCs I/II 17 Capecitabine -Induction of specific anti-tumor
responses

(203)

-Clinical responses: 88%
-six months survival: 82%

DC pulsed with Autologous tumor lysate I/II 26 CD40L -Tumor-specific T cell response: 63% (204)
-Improved relapse-free survival
-No further responses following CD40L-
based activation

DC pulsed with autologous tumor RNA I 1 – -Induction of tumor-specific CTLs
capable of recognizing and lysing
autologous, primary tumor cells ex vivo

(205)

Autologous tumor lysates pulsed human
dendritic cells vaccine

III 480 Chemotherapy Active NCT02503150

Personalized autologous TSA-DC
vaccine

N/A 20 Cyclophosphamide Active NCT03185429

DC vaccine pulsed with autologous
tumor proteins plus autologous tumor
infiltrating lymphocyte

II 70 Aldesleukin Completed-results pending NCT00019084
Sargramostim

Autologous DC vaccine with autologous
tumor antigens

II 52 – Completed-results pending NCT01413295

Autologous Dendritic Cell Vaccine I/II 28 Avelumab Completed-results pending NCT03152565
Personalized neoantigen-primed DC
vaccine

I 80 – Active NCT04147078

Autologous DC pulsed with tumor lysate II 19 IL-2 Active NCT02919644
Autologous DC pulsed with tumor
antigens

II 58 – Active NCT01348256

Autologous DC pulsed with tumor lysate
antigens

I 30 – Active NCT03214939

Adoptive Cell
therapy

Personalized neoantigen-targeting
CD8+T cells

I 1 Pembrolizumab Terminated NCT02757391

Gene-edited autologous neoantigen-
targeting T cells

I 148 With or without
Nivolumab

Active NCT03970382

+ IL-2
Autologus activated T and NK cells I/II 86 – Active NCT00854971
November 2021 | Volume 11 |
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ACT alone or combined with other immunotherapies such as ICI
in CRC patients (NCT03935893, NCT02757391, NCT01174121,
NCT03904537). In these trials, various omics data are used to
identify personalized antigens (146). These primary successes
suggest that ACT, along with neoantigen vaccines, could be
promising candidates for personalized immunotherapy in CRC.

4.3 Role of the Microbiome in
Personalized Immunotherapy
Human microbiome is defined as all the microbiota in and on the
human body plus their genomes, structural elements, and
productions (231). The microbiota composition depends on
genetic and environmental factors such as diet, exposure to
chemicals, drugs, especially antibiotics, and is unique to each
individual (232). Gut microbiota plays an essential role in the
formation and regulation of gastrointestinal immune responses
by producing various metabolites (233). Thus, dysbiosis in gut
microbiota composition alters their metabolites such as short-
chain fatty acids SCFAs, polyphenols, tryptophan catabolites,
and some vitamins, and is associated with the pathogenesis of
many diseases, including CRC (234). The researchers found
several pathogen-derived proteins in the gastrointestinal tract
of CRC patients (234, 235). They also showed that the high levels
of antibodies against these proteins might have a diagnostic value
for CRC patients (235, 236).

Besides, microbiota composition plays a critical role in
patients’ treatment responses (237, 238). Presumably, the
microbiota diversity among patients is one of the reasons for
interpatient variety in response to cancer treatment (238).
Microbiota can affect the response to chemotherapy. It has
been observed that some bacteria metabolize and reduce the
effects of chemotherapy at the tumor site (239). Besides,
microbiota are chief players in regulating inflammatory
responses in GI, through which they can influence the
response of CRC patients to immunotherapy (240–242).
Evidence suggests that exposure to antibiotics during anti-PD1
treatment alters the patients’ responses to anti-PD1 (241).
Comparing the microbiota of patients who were well-
responsive to anti-PD1 with those of patients who were poor-
responsive to anti-PD1 showed that the presence of some
bacteria (such as Akkermansia, Faecalibacterium, and
Bifidobacterium) was associated with a better response to
immunotherapy (238, 241). Contrarily, high levels of bacteria
such as Bacteroidale are associated with a low response to anti-
PD1 therapy (238, 241). This finding indicates that disruption of
the microbiota network and reduction of beneficial bacteria
reduce the patients’ responses to immunotherapy.

Interestingly, by manipulating the microbiota composition,
responses to immunotherapy can be improved. Fecal microbiota
transplant (FMT) is a well-known way to manipulate the
network of GI microbiota. In FMT, the stool of patients who
have responded well to treatment is transferred to the GI tract of
non-responsive patients. Chen 2019 Matson 2021 Zhou 2021. It
was observed that FMT of mice from anti-PD1-sensitive patients
induced a favorable response to anti-PD1 in transplanted mice
(241, 243). On the other hand, mice that received FMT from
Frontiers in Oncology | www.frontiersin.org 10
anti-PD1-resistant patients were still resistant to anti-PD1 after
transplantation (241, 243). The use of microbiota in improving
treatment response has entered clinical studies, and several
clinical trials are investigating the combination of FMT with
chemotherapy and immunotherapy (NCT04130763,
NCT03782428). These studies, which are still in early phases,
are investigating the role of FMT or probiotic supplements along
with ICIs in CRC patients who have not previously responded
well to immunotherapy.

In a nutshell, the evidence suggests that the microbiome is a
determinant variable in immunotherapy and is involved in all
aspects of CRC, including the diagnosis, prognosis, monitoring,
and response to immunotherapy. Therefore, microbiomics
should be used along with other omics data in optimizing
personalized immunotherapy (238). In this era, molecular
pathological epidemiology (MPE) has been recently developed
to investigate the relationship between gut microbiota, host,
environmental factors, diet, disease etiology and pathogenesis
to investigate the role of microbiota and its factors in disease
development and treatment response (244–246).
4.4 Combination Therapy
Although personalized immunotherapy approaches promise a
new horizon in the treatment of CRC, longtime challenges of
researchers with cancer treatment show that cancer is the most
complex disease that is not supposed to cure with monotherapy
(247). Regarding the high heterogeneity of CRC, it seems that it
could escape even from personalized immunotherapy (44).
Therefore, multi-aspect combinations of immunotherapy,
chemotherapy, radiotherapy and other targeted therapies are
required to fight cancers. It has been revealed that the
combination of immunotherapies such as ICIs and mAbs with
chemotherapy and radiotherapy could reinvigorate the
antitumor responses and increase the patients’ survival (247).
Personalized immunotherapy could also be combined with other
therapeutic approaches to maximize the antitumor effects. In this
regard, combination therapy using cancer vaccines (peptide,
DNA, RNA, DC, and viral vector vaccines), adoptive cell
therapy, ICIs, cytokines, chemotherapy, and radiotherapy
increased antitumor effects leading to improved overall survival
(151, 213, 227, 247–255). A phase I clinical trial of a neoantigen-
encoding mRNA cancer vaccine combined with PD-1 blocking
showed acceptable safety and well induction of neoantigen-
specific immunity leading to partial and complete response in
MSI-H CRC patients (189).

Interestingly, combination therapy is also better to be
personalized to achieve the optimum response. The systems
biology and simulation models can help find the best
combination therapy in each patient. More recently, a
quantitative systems pharmacology model predicted the
efficacy of monotherapy with a bispecific T cell engager, a PD-
L1 blocker, and combination therapy in CRC patients based on
their individual characteristics (256). The development of these
models could offer the best combination therapy for each patient
to improve clinical efficacy.
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5 CONCLUSION

The high heterogeneity in cancer patients has led to a paradigm shift
that considers cancer as an individual rather than a general disease.
Significant advances in immunotherapy have raised great hopes for
the treatment of poor prognosis cancers. However, different
responses of patients to immunotherapy necessitate the
classification of patients into smaller groups so that eventually, each
patient is in a separate classification and deserving personalized
treatment. Personalized immunotherapy has various aspects
generally based on specific neoantigens created in each individual’s
tumor. Neoantigen-based personalized immunotherapy is now a
time-consuming and costly method due to the need for up-to-date
tools to identify and prioritize neoantigens.With the advancement of
technologies such as sequencing and multi-omics, this type of
treatment will be available quickly and affordably soon and will
replace the current treatments.
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