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Aims The sinus venous myocardium, comprising the sinoatrial node (SAN) and sinus horns (SH), is a region subject to
congenital malformations and cardiac arrhythmias. It differentiates from symmetric bilateral mesenchymal precursors,
but morphological, molecular, and functional left/right differences are progressively established through development.
The role of the laterality gene Pitx2 in this process is unknown. We aimed to elucidate the molecular events driving
left/right patterning in the sinus venosus (SV) myocardium by using a myocardial Pitx2 knockout mouse.

Methods
and results

We generated a myocardial specific Pitx2 knockout model (cTP mice). cTP embryos present several features of Pitx2
null, including right atrial isomerism with bilateral SANs and symmetric atrial entrance of the systemic veins. By in situ
hybridization and optical mapping analysis, we compared throughout development the molecular and functional
properties of the SV myocardium in wt and mutant embryos. We observed that Pitx2 prevents the expansion of
the left-SAN primordium at the onset of its differentiation into myocardium; Pitx2 promotes expansion of the left
SH through development; Pitx2 dose-dependently represses the autorhythmic properties of the left SV myocardium
at mid-gestation (E14.5); Pitx2 modulates late foetal gene expression at the left SH-derived superior caval vein.

Conclusion Pitx2 drives left/right patterning of the SV myocardium through multiple developmental steps. Overall, Pitx2 plays a
crucial functional role by negatively modulating a nodal-type programme in the left SV myocardium.
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1. Introduction
In human and mouse embryos, the sinus venosus (SV) myocardium
includes the sinoatrial node (SAN) and the sinus horns (SH), from
which the myocardial walls of the left superior caval vein (LSCV)
and right superior caval vein (RSCV) will differentiate.1,2 SV-derived
structures generate great medical interest, since various congenital
malformations3 and arrhythmias4,5 have their origin in this region.
The molecular mechanisms underlying SV genetic origin and the
molecular pathways driving its cellular differentiation have been
extensively investigated.6

The SV myocardium is originated by a single genetic cell lineage,
derived from Tbx18-positive/Nkx2.5-negative mesenchymal precur-
sors, originally (E8.25 in mouse) located at the lateral rims of the
splanchnic mesoderm.7 The molecular mechanisms driving progres-
sive reorganization from bilateral SV mesenchymal precursors into a
lateralized SAN and an asymmetrically structured SH myocardium
have not yet been clarified.

At early developmental stages, the entire SV region presents pace-
maker properties.8 –11 Starting at mid-foetal stages, the SH myocar-
dium, but not the SAN, progressively matures to obtain a molecular
phenotype comparable to the atrial working myocardium.7 Eventually,
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in the adult heart, pacemaker activity is confined to the SAN. Mistakes
in developmental modulation of this functional maturation
programme may be the leading cause for adult SV-originated arrhyth-
mias; however, the genetic mechanisms regulating this process are still
not understood.

The homeobox transcription factor Pitx2 has been indicated as a
susceptibility gene for atrial arrhythmias in humans12 and in
mice.13– 15 Pitx2 mediates early signalling events into left cardiac
morphogenesis,16 as Pitx2-null embryos present severe cardiac
defects including right atrial isomerism (RAI).17– 20 This phenotype
was recapitulated by conditional deletion of the gene in second
heart field (SHF) progenitors,21 but not in the developing myocar-
dium;22 therefore, left cardiac identity is due to Pitx2 action in cardio-
genic precursors or at early cardiogenesis. To address this question,
we have conditionally inactivated Pitx2 from the onset of cardiomyo-
genesis. We show here that Pitx2 is required from early cardiomyo-
genesis to confer left identity to the entire sinoatrial region,
including the SV myocardium. Within the SV, left morphological,
molecular, and functional identity is achieved through multiple devel-
opmental steps, corresponding to distinct actions of Pitx2 on SV car-
diomyocytes. Our results highlight the myocardial role of Pitx2 in
preventing the onset and maintenance of a nodal-type programme
in left SV cardiomyocytes.

2. Methods

2.1 Mouse lines
Pitx2 floxed, Pitx2 constitutive mutant, cTnT Cre, and R26R transgenic
mouse lines have previously been described;17,22– 24 mice were kept on
a C57Bl6/J background. DNA for PCR screening was extracted with
DNeasy Blood and Tissue Kit (Qiagen) from tails of anaesthetized mice
(Zoletil, 30 mg/kg, ip) and from amniotic sac of embryos isolated after
sacrifice of the anaesthetized mother by cervical dislocation. A PCR ampli-
fication protocol for Pitx2 and Cre has been described.22

This study was performed conforming to Guide for the Care and Use
of Laboratory Animals described by Directive 2010/63/EU of the Euro-
pean Parliament. Animal work was approved by the Ethics Committee
for Animal Experiments of the University of Padua, in compliance with
NIH, and carried out in compliance with Italian government guidelines.

2.2 Histology
Stage E8.5, E10.5, and E14.5 embryos were fixed overnight with 4% par-
aformaldehyde, dehydrated through graded ethanol series, and embedded
in paraffin. Sections were cut at 12 mm and processed for haematoxylin
and eosin staining.

2.3 In situ hybridization
Non-radioactive in situ hybridization (ISH) on sections was performed as
described previously.22 RNA probes complementary to mouse Pitx2,
Tbx3, Shox2, Hcn4, Tbx18, NKX2.5, Cx40, and the ATP-binding site of
myosin heavy chain (MHC) were generated using standard protocols.
Images were taken using a Leica DC300 digital camera.

2.4 Real-time PCR
E14.5 hearts were dissected from freshly isolated embryos and stored in
liquid nitrogen. Total RNA was extracted using Trizolw (Invitrogen); then
cDNA was synthesized using SuperScript III Reverse Transcriptase and
random primers (Invitrogen). Amplifications were performed on three
samples for each genotype using an iQ5 Real-time machine (Bio-Rad);
Pitx2 expression values were normalized with the housekeeping genes

GAPDH and b-actin. Primer sequences are reported in the Supplemen-
tary material online.

2.5 Magnetic resonance imaging analysis
Magnetic resonance imaging was performed on a horizontal 9.4 T/21 cm
VNMRS Direct Drive MR system (Varian Inc., Palo Alto, CA, USA) on
E14.5 embryos, as described previously.25

2.6 Optical mapping
E14.5 embryos were dissected on ice, their heart removed and stained for
10 min with di-4-ANEPPS (Invitrogen) at 48C. Then, they were pinned,
their dorsal part up, on the bottom of a silicone-lined copper dish filled
with oxygenated Tyrode-HEPES solution (pH 7.4), with Blebbistatin
added, positioned on a temperature-controlled stage (TH 60, 378C) of
an upright epifluorescence microscope (Leica DML-FS). To accommodate
the entire heart, 4× and 10× water-dipping objectives and 0.63 photo
tubes were used. Recordings were performed in the dorsal view, with
the posterior atrial wall facing the optical apparatus. See also the Supple-
mentary material online.

2.7 Statistical analysis
Atrial activation and propagation patterns could be grouped into three
categories, each having a minimum of 10 hearts; differences between
groups were analysed using Pearson’s x2-test. Atrial activation times
were calculated as an average between 4× and 10× recordings of each
sample when these numbers did not differ more than 2 ms. Data are pre-
sented as mean+ standard deviations; comparisons between wt, cTP het,
and cTP ko values were performed using a two-tailed Student’s t-test;
P-values ,0.05 were considered significant.

3. Results

3.1 Characterization of the cTnT Cre-Pitx2
mouse line
We investigated the myocardial role of Pitx2 with a conditional ko
approach by crossing Pitx2 floxed mice (Pitx2loxP/loxP)14 with Tropo-
nin T (TnT) Cre deletor mice, which are active from early cardiomyo-
genesis23 (Figure 1A).

Myocardial deletion of one loxP allele (TnT Cre; Pitx2loxP/wt ¼

Pitx2 hetmyo, from here onwards referred as cTP het) resulted in
viable and fertile offspring. We then crossed cTP hets with
Pitx2loxP/loxP mice to generate cTP ko mice. No cTP ko pups were
identified at post-natal day (P)3; however, their embryonic distribu-
tion at E17.5 was according to the Mendelian ratio (data not
shown); we concluded that the cTP ko phenotype is not viable.

Quantification of Pitx2 mRNA in E14.5 wt and mutant hearts indi-
cated a dose-dependent reduction in Pitx2 transcript levels (see
Supplementary material online, Figure S1). Histological and MRI
analysis of E14.5 cTP embryos did not reveal obvious morphological
defects in cTP hets (see Supplementary material online, Figure S2A;
Table 1), whereas the ko hearts presented a complex phenotype
(Figure 1B and C, and Table 1): the left auricle was identical in shape
and orientation to the right one (Figure 1B, d–f) and the atrial
septum was reduced or totally absent (ASD) (Figure 1B, e); addition-
ally, we detected bilateral SAN and venous valves, bilateral caval vein
(CV) entrance into the atria, and drainage of the inferior caval vein
(ICV) and pulmonary vein (PV) into the medial part of the common
atrium (Figure 1B, d–f). Overall, these are typical features of RAI;
therefore, we concluded that early myocardial Pitx2 action is required
to confer left atrial (LA) identity.
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Figure 1 cTP mouse line characterization. (A) TnT Cre line characterization. Onset of Cre mRNA expression visualized by whole-mount ISH (Cre)
(a) and onset of Cre activity (b), assessed by crossing TnT Cre with R26R mice (LacZ); (c) by E8.5 Cre activity is visible in the entire heart; (d) Pitx2
PCR on genomic DNA from trunk (t) and isolated heart (h) of a E8.5 cTP ko embryo to assess cardiac-specific recombination at the Pitx2 locus. M1:
Lambda phage DNA, BstEII digested; M2: 100 bp ladder. From the embryonic trunk only the floxed allele is amplified (1232 bp band). In the corre-
sponding heart only the 500 bp band is visible, indicating complete Cre-driven recombination.22 (B and C) H/E staining and MRI analysis of E14.5 wt
and cTP ko hearts. Note that the sinoatrial region of the ko hearts presents the morphological features of RAI. Red stars in (f) show symmetrical
pectinate muscles arrangement in atria. (e) Arrow indicates ASD, dotted circle indicates abnormal shape of the left atrioventricular valve; (f) arrow-
head indicates VSD. (C) (h and i) Ventriculo-arterial alignment defects in cTP ko and (h′ and i′) their corresponding 3D MRI reconstructions. Cc,
cardiac crescent; hf, headfolds; ias, interatrial septum; la, ra, left and right atrium; ivs, interventricular septum; san, sinoatrial node; lscv, rscv, left
and right superior caval veins; vv, venous valves; icv, inferior caval vein; pv, pulmonary veins; lv, rv, left and right ventricle; ao, aorta; pa, pulmonary
artery; tr, trachea. Scale bar: 0.5 mm.
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Additionally, in the cTP ko embryos, we detected abnormal atrioven-
tricular junction with malformed left atrioventricular valves (Figure 1B, e),
ventricular septal defects (VSD), and abnormal ventriculoarterial align-
ment, resulting in transposition of the great arteries (TGA) and double
outlet right ventricle (DORV) (Figure 1C and Table 1).

To get insights into the myocardial role of the gene, we histologi-
cally compared Pitx2 constitutive mutants (Pitx2wt/2 and Pitx22/2).
E14.5 Pitx2wt/2 embryos were normal, except one sample that pre-
sented mild VSD (see Supplementary material online, Figure S2B and
Table S1). This indicates a differential sensitivity to Pitx2 gene
dosage within the developing heart, the ventricles being more sensi-
tive than the atria. In line with previous data,18 E14.5 Pitx22/2 dis-
played RAI (see Supplementary material online, Figure S2D) and
strong impairment in atrioventricular canal (AVC) and ventricular
remodelling, resulting in common AVC (see Supplementary material
online, Figure S2E), atrioventricular valve defects, severe VSD, and
ventriculoarterial alignment defects (see Supplementary material
online, Figure S2F ). Additionally, the ventricular compact wall was
thinner (see Supplementary material online, Figure S2F ). Altogether,
cTP and Pitx2 mutant hearts present some morphological differences
outside the sinoatrial region (see Supplementary material online, Table
S1); therefore, myocardial Pitx2 action is sufficient to confer the LA
identity but not to drive complete cardiac morphogenesis.

3.2 Pitx2 prevents the expansion of
left-SAN precursors cells as they
differentiate in myocardium
ISH analysis (Figure 2) showed that in cTP ko embryos, both SANs
were myocardialized and correctly expressed the nodal differentiation
and functional markers Tbx18, Tbx3, Shox2, and Hcn4, but not the
chamber myocardium markers Nkx2.5 and CX40.7,26 Thus, we
decided to investigate the role of Pitx2 in the earliest events of asym-
metric right-SAN (R-SAN) formation.

SAN cardiomyocytes constitute a subpopulation of the SV myocar-
dium derived from Tbx18 mesenchymal precursors, which at E8.5 are
symmetrically located at the lateral rims of the splanchnic meso-
derm,26 flanking the proepicardial organ (Figure 3A, arrows). At the
most lateral borders, SAN precursors can be identified by the
co-expression of the SHF marker Isl1;27 the left portion of the SV
mesenchyme, including left-SAN (L-SAN) precursors, additionally
co-expresses Pitx2 (Figure 3A). In E10.5 wt embryos, the embryonic
SAN structure is right-sided and can be identified as a thickening of
Isl1- and Tbx18-positive myocardial cells at the border between the
RSCV and the RA7 (Figure 3B), while the corresponding region on
the left side is not myocardialized (Figure 3B). On the contrary, in
E10.5 cTP ko embryos, the borders between the CVs and atria
were both myocardialized and co-expressing Isl1 and Tbx18, thus
indicating the presence of a second L-SAN, which presented a
correct molecular pattern (data not shown).

The presence of an ectopic myocardial structure in the cTP ko
embryos indicates that early left Isl1/Tbx18-positive SAN cardiomyo-
cytes have expanded bilaterally. We conclude that Pitx2 prevents the
expansion of the left Isl1/Tbx18-positive SAN precursors as they
differentiate in cardiomyocytes.

3.3 Pitx2 modulates the developmental
programme of the LSCV
We then investigated the role of Pitx2 in the left SH-derived CV
myocardium. In E14.5 wt embryos, ICV entrance is positioned on
the right (Figure 1B, a, and dotted circles in Figure 4A, b), at the
site of RSCV confluence with the coronary sinus. Conversely, in
the cTP ko, ICV enters medially into the common atrium
(Figure 1B, d), the coronary sinus is absent, and CVs run symmetric-
ally (Figure 4A, b and c); this has been highlighted by ISH with the
hyperpolarization-activated channel Hcn4, which at this stage pre-
sents SV-wide expression. We conclude that symmetric organization
of the CVs is due to the lack of Pitx2-dependent early left cardio-
myocyte expansion into the coronary sinus,2,28 which is missing in
the cTP ko.

The SH myocardium will progressively expand and form the prox-
imal myocardial cuff of CVs by E12.5;1 we wondered if Pitx2 could
affect LSCV cardiomyocyte expansion at later stages. In E14.5 wt
embryos, LSCV myocardium is restricted to its most proximal
portion; these SV cardiomyocytes are Pitx2-positive (Figure 4B,
a–d), and at E17.5, they extend more distally (Figure 4B, e and f).
This was not observed in the cTP ko (Figure 4B, g); therefore, we con-
cluded that Pitx2 promotes LSCV cardiomyocyte expansion both at
early and late developmental stages.

We then tested whether Pitx2 could modulate LSCV transcription-
al properties. A progressive shift towards an atrial-type gene expres-
sion programme is started in the CV myocardium at E14.5 and is
clearly visible by E17.5:7 Nkx2.5 is up-regulated in the SAN and

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Characterization of cardiac defects in wt and cTP
mutants by MRI analysis

wt (n 5 7) het (n 5 5) ko (n 5 5)

Heart position

Left-sided 6 5 0

Right-sided 0 0 5

Midline 1 0 0

Apex direction

Left 6 0 0

Right 0 5 4

Down 1 0 1

Atrial shape

No ASD, no RAI 7 5 0

ASD plus RAI 0 0 5

ICV drainage

Into RA 7 5 0

Into common atrium 0 0 5

PV drainage

Into LA 7 5 0

Into common atrium 0 0 5

AV junction

Normal 7 5 0

Abnormal 0 0 5

Ao exit

From LV 7 5 0

From RV 0 0 5

PA exit

From RV 7 5 1

From LV 0 0 4

TGA 0 0 4

DORV 0 0 1
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Figure 2 The L-SAN of the cTP ko presents correct molecular pattern. ISH analysis of E14.5 wt and cTP ko embryos to assess L-SAN molecular
signature. Note SAN expression of MHC, Hcn4, Tbx3, Shox2, Tbx18, and the negative staining with Nkx2.5 and CX40 antisense probes. Scale bar:
0.2 mm.
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CVs, whereas Cx40 is up-regulated exclusively in CVs, without
obvious left–right differences (Figure 4C, a and c); concomitantly,
Hcn4 expression is down-regulated exclusively in the LSCV (red
arrows in Figure 4C, e). Since Hcn4 is responsible for the generation
of pacemaker potentials,29 this indicates that the late foetal RSCV
myocardium retains a more nodal-type phenotype than the LSCV.
In the cTP ko, the LSCV atrial gene programme was restricted to
the most proximal, myocardialized region (red bars in Figure 4C, b,
d, and f); moreover, it was incomplete since Nkx2.5 and Cx40 expres-
sion was unaffected, while Hcn4 expression was not down-regulated
(Figure 4C, f). As a result, in the cTP ko, the nodal-type molecular
profile was retained bilaterally.

3.4 Pitx2 represses left pacemaker activity
in the SV-derived myocardium of E14.5
embryos
The functional properties of mid-foetal mouse hearts are as yet quite
elusive. We approached this problem and investigated the atrial elec-
trophysiology of E14.5 wt and cTP mutant hearts by optical mapping.

In wt hearts (n ¼ 36), the site of first activated region was predomin-
antly detected in the RA (n ¼ 29; 80%) mainly around the R-SAN
region; in a smaller group (n ¼ 6; 17%), it mapped medially, in corres-
pondence to the CVs, while in a single sample, impulse origin was left-
sided (n ¼ 1; 3%) (Figure 5A). The direction of action potential (AP)

Figure 3 L-SAN mesenchymal precursors differentiate and expand into the left ectopic SAN of the cTP ko. (A) ISH of E8.5 wt embryos shows
Tbx18 expression in SV mesenchymal precursors (arrows) and proepicardial organ (pe); Isl1 is bilaterally expressed in the second heart field (shf)
overlapping Tbx18 at the SAN progenitors (dotted squares: green, right; red, left). Pitx2 expression delineates the left SV domain (arrows), including
L-SAN progenitors (green dotted square). (B) At E10.5, cTP ko embryos present bilateral MHC, Isl1- and Tbx18-positive regions at the borders
between left and right cardinal veins (lcv, rcv) and atria, identifying the early differentiated bilateral SAN. Scale bar: 0.1 mm.
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propagation was mostly sequential from RA to LA (n ¼ 28; 78%), but
synchronous bilateral propagation (≈ 1–2 ms difference between LA
and RA activation times) was also recorded (n ¼ 8; 22%) (Figure 5B).
Therefore, in wt embryos, both the site of first atrial breakthrough
and the AP direction of propagation presented a variable distribution
within the SV region with a pronounced right-sided dominance.

In the cTP ko hearts (n ¼ 10), we found a reduced percentage of
samples presenting right-sided (n ¼ 6; 60%) or mid-dorsal (n ¼ 1;
10%) impulse initiation, and higher incidence of left-originating

breakthroughs (n ¼ 3; 30%). Bilateral AP propagation was not
detected, whereas a new left-to-right direction of impulse spread
was present (n ¼ 4; 40%). In a single ko sample, a double concomitant
impulse firing was observed, with the two earliest activated sites
located in the R- and L-SAN regions (Figure 5C), thus indicating that
the L-SAN is functional. The cTP het samples (n ¼ 17), although
morphologically normal, presented an intermediate behaviour both
in pacemaker location distribution and in the impulse propagation
profile (Figure 5A and B). Heart rate did not significantly differ

Figure 4 Pitx2 modulates the LSCV developmental programme. (A) Whole-mount ISH of E14.5 wt hearts (dorsal view) showing expression of Pitx2
in LA and LSCV (a) and of Hcn4 in the entire SV myocardium, including the SAN (b). Red dotted circles (b and c) indicate ICV entrance. Note the
absence of coronary sinus (cs) and symmetric CVs arrangement in the cTP ko (c). (B) Correlation between Pitx2 expression and MHC extension in
the LSCV. In E14.5 wt hearts, note Pitx2 and MHC co-expression in the LSCV in four-chamber view sections (a and b) but not more distally (c and d);
red bar indicates the border of probe detection. In E17.5 wt, MHC and Pitx2 expression is visible more distally (e and f), but in the cTP ko distal MHC
extension is impaired (red bar in g). (C) The atrialization programme is partially impaired in the cTP ko. E17.5 wt embryos bilaterally express Cx40 (a)
and Nkx2.5 (c) in the CVs, while Hcn4 expression is strongly down-regulated only in the LSCV (red arrows, e). In the cTP ko, Cx40 and Nkx2.5 signals
are still present (b and d) in the reduced LSCV myocardial domain. Note the absence of Hcn4 down-regulation in the LSCV (black arrows in f). Scale
bar: 0.5 mm.
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Figure 5 Pitx2 represses left pacemaker activity within the SV myocardium of E14.5 embryos. (A) Site of first breakthrough. Top: prototypical maps
(dorsal view) showing the three main atrial activation patterns recorded in isolated E14.5 hearts by optical mapping. The earliest activated region is
indicated with an asterisk. Isochronal lines, delimiting regions activated within the same time frame, are spaced at 1 ms intervals; colour progression
visualizes the advancing activation wavefront. Below: diagram showing the distribution of the activation patterns in the three genotypes. n ¼ classified
samples. (B) Direction of impulse propagation. Top: three representative examples of observed impulse propagation patterns; arrows depict the dir-
ection of electrical activation spread. Below: diagram illustrating pattern distribution within the genotypes. P-values ,0.05 are indicated. (C) The
L-SAN is functional. Activation map of a cTP ko heart showing the almost synchronous activation of the two SANs. (D and E) Atrial conduction
properties in E14.5 wt and cTP mutants. (D) Correlation between the site of first atrial breakthrough and direction of impulse propagation.
Columns indicate the combined distribution of atrial activation and propagation patterns within genotypes. Data are expressed as percentages;
NO, never observed. (E) Atrial activation times. Data are presented as averages+ standard deviations; *P , 0.05.
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among genotypes (wt: 102+ 24, het: 91+ 36, ko: 104+ 42; P .

0.05). Movies of representative activation and propagation patterns
are presented as Supplementary material online.

In conclusion, our optical mapping analyses have revealed some
functional plasticity in E14.5 hearts, which display pacemaker activity
at both the R-SAN and CVs. In wt hearts, SV-wide capacity to
generate the first electrical activity is mainly restricted to the right
side where the SAN is located; when Pitx2 gene dosage is
reduced (cTP het) or its action is lacking (cTP ko), a left pacemaker
potential is progressively uncovered. Therefore, Pitx2 prevents the
occurrence of left pacemaker activity in the SV myocardium in a
dose-dependent way, thus restricting impulse generation to its
right side.

Moreover, correlation between pacemaker location and AP spread
direction (Figure 5D) demonstrated that given a site of impulse initi-
ation, atrial propagation patterns are different in the three genotypes,
indicating differences in their conduction properties. In line with this
observation, we found that time of atrial impulse propagation
(Figure 5E) is significantly higher in cTP ko hearts compared with wt
and het (wt: 7.3 ms; het: 7.3 ms; ko: 9.0 ms).

4. Discussion

4.1 The myocardial role of Pitx2
Here, we have presented the outcome of Pitx2 deletion from the
onset of cardiomyogenesis. At the morphological level, we found
that the cTP ko partially recapitulates the cardiac phenotype of
Pitx2 constitutive nulls. In particular, RAI was detected in both
models, thus indicating that Pitx2 action within the myocardium is
sufficient to confer LA identity.

Additionally, the comparative analysis of cTP and constitutive
mutant embryos has shown that unlike the sinoatrial region, the
AVC and ventricles are more severely affected in Pitx2 constitutive
mutants, indicating that morphogenesis of these regions is extremely
sensitive to Pitx2 dosage. Moreover, it has uncovered that Pitx2 func-
tion is additionally required in precardiac cells of the venous and
arterial poles contributing to those regions and/or in early cardiomyo-
cytes before E8.5, when cTnT Cre-driven recombination is complete
(Figure 1A).

We have also shown that the SV myocardium is molecularly left/
right patterned through multiple developmental steps. A later
myocardial deletion of Pitx2 with a-MHC Cre driver mice had
resulted in molecular atrial isomerism in the absence of any morpho-
logical alterations;22 at the light of this previous result, we propose
that the molecular features of the cTP hearts are not the indirect
consequence of the earlier Pitx2 deletion, but correspond to a
specific and distinct action of Pitx2 on SV cardiomyocytes.

4.2 Opposite effects of Pitx2 within the left
SV myocardium: a regional-specific
differential transcriptional modulation?
We have shown here that myocardial loss of Pitx2 leads to symmet-
rical morphological organization of the CVs, absence of the coronary
sinus, and reduced expansion of LSCV myocardium. These results
suggest that Pitx2 promotes the higher proliferation and/or migration
rate in Tbx18-derived cardiomyocytes of the left SH from early to late
foetal stages (Figure 6). On the other hand, myocardial loss of Pitx2

leads to the presence of a novel L-SAN, visible from its onset; there-
fore, we conclude that Pitx2 prevents the expansion of the left Isl1/
Tbx18 + SAN precursors at the onset of their differentiation into
nodal cells. Thus, Pitx2 seems to exert an opposite role on SH and
SAN cardiomyocytes (Figure 6).

SH differentiate through progressive recruitment of Tbx18-positive
mesenchymal precursors, their myocardial differentiation, and subse-
quent proliferation.1 SAN mesenchymal precursors additionally
co-express Isl1,27 thus having features of both SHF (Isl1+) and SV
(Tbx18+) progenitors. Isl1 promotes the proliferation of cardiogenic
precursors;30 since its expression is selectively retained in the SAN7,31

through early development, it might exert a similar function also in
nodal cardiomyocytes. It is possible that Pitx2 could differentially
modulate Tbx18 and Isl1 transcriptional action in the left SV-derived
cardiomyocytes; however, the characterization of its molecular
mechanisms of action still requires additional analysis.

4.3 Pitx2 restricts nodal conductive
properties to the right SV region:
implications for adult heart disease
In the adult heart, pacemaker activity is restricted to the SAN as
shown by Hcn4 expression,32 crucial for this function.29 Conversely,
broader Hcn4 expression in the embryo7 suggests the existence of
wider areas with pacemaker potential, in line with several functional
studies performed in chick8,10,11 and in mouse pre-early somite
embryos.9 Functional characterization of mid-foetal mouse hearts
has so far been elusive.

Our optical mapping analyses have shown that mid-foetal hearts
present a heterogeneous profile of pacemaker activity originating
within the SV, thereby revealing some functional plasticity, which
can be modulated by Pitx2. In this respect, the intermediate functional
properties of the cTP hets, morphologically normal, must be solely
due to a Pitx2 dose-dependent modulation of SV molecular proper-
ties (Figure 6). The capacity of Pitx2 to inhibit the expression of tran-
scripts crucial for the SAN programme in developing and adult atria
has been shown previously.13 Our results additionally highlight the
importance of a correct Pitx2 gene dosage for repressing the LSCV
autorhythmic potential, in order to restrict pacemaker activity to
the SAN.

Critical for confinement of pacemaker activity to the adult SAN is
the onset, at mid-foetal stages, of a novel genetic programme in CV
myocardium, which progressively acquires a molecular phenotype
comparable to the atrial working myocardium.7 Crucial for this
developmental programme is the transcriptional left down-regulation
of pacemaker channel Hcn4 which, as we have shown here, is
Pitx2-dependent.

Atrial arrhythmias are devastating diseases of the adult heart caused
by ageing, acquired diseases, or genetic defects. Arrhythmogenic foci
are mostly located at the PVs33 or in left SV-derived structures, such
as the coronary sinus or LSCV.4,5 Ectopic pacemaker foci in the left SV
myocardium might occur if the developmental programme repressing
nodal properties of the left SV structures does not occur completely,
or alternatively, if an embryonic ‘left’ programme is reinitiated there.
Our results suggest that proper regulation of Pitx2 dosage in the
left SV is crucial to prevent this process. An additional role of Pitx2
in other left arrhythmogenic areas, such as the PV, cannot be ruled
out and is currently being explored.

Pitx2 role in left sinus venosus myocardium 299

http://cardiovascres.oxfordjournals.org/lookup/suppl/doi:10.1093/cvr/cvr314/-/DC1


Genome-wide study populations in humans12 have indicated PITX2
as a candidate susceptibility gene for atrial arrhythmias, later con-
firmed by functional studies in adult Pitx2 heterozygous mice.13– 15

Parallel microarray analysis has additionally identified a wide range
of Pitx2 transcriptionally modulated left targets, possibly mediating
its action.13,14 Future studies will be required to precisely refine
their sites of expression and effective role, thereby delineating a Pitx2-
dependent anti-arrhythmogenic road map.
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