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Polybrominated diphenyl ethers (PBDEs), due to their widespread usage as flame retardants and their lipophilicity and persistence,
have become ubiquitous in the environment. It is urgent to understand the environmental characteristics of PBDEs in marine
system, but they have attracted little attention. We summarize the available data and analyze the regional distributions, controlling
factors, and congener patterns of PBDEs in marine and associated environmental matrixes worldwide. Based on meta-analysis, after
separating the estuarial sites from the marine sites, ignoring the extraordinary sample sites such as those located just near the point
source, the PBDE concentration levels are still in the same order of magnitude from global scale. Despite Principal Component
Analysis, the congener patterns of sediments are predominant with the heavy brominated congeners (BDE-209 contributing over
75% to the total load) while the biota abound with the light ones (BDE-47, BDE-99, and BDE-100 taking about 80%). The ratio
between BDE-99 and BDE-100 for the lower trophic-level species often turns to be greater than 1, while for those higher species
the ratio may be below 1, and some species feed mainly on the crustaceans and zooplankton seems to have a higher ratio value. The

data of the PBDEs in marine system are currently limited; thus, data gaps are identified as well.

1. Introduction

Polybrominated diphenyl ethers (PBDEs) have been pro-
duced and applied extensively as additive brominated flame
retardants (BFRs) in various consumer products, such as
plastics, textiles, and electronic equipment, in recent decades
[1-3], as they are not chemically bond to materials and can
be easily released into environment during production, use,
disposal, and recycling process. PBDEs are highly hydropho-
bic and bioaccumulative [4-6] and have the propensity to
enter the gas phase at ambient conditions and undergo long-
range atmospheric transport [7, 8]. They have been found to
have a ubiquitous environmental distribution and have been
measured at remote sites, like the Arctic, where they had

never been used [9, 10] and are ubiquitous in the sediments
[11], soil [12], air [13], and divers biotic species [14]. PBDEs
exposure has become a worldwide pollution problem. These
properties led to the inclusion of the penta- and octatechnical
mixtures in Annex A (elimination) of the convention (SC-
4/14 and SC-4/18) at the meeting of the conference of parties
(COP) in May 2009 [15]. It seems to be the morning twilight
to solve the environmental problem of PBDEs. However,
recent publications report that, overall, legacy PBDEs are still
identified at higher concentrations than emerging non-PBDE
BFRs in Europe [14].

Scientists are devoted to flesh out the status of PBDE
contaminations in environment. PBDEs have been the focus
of numerous studies and reviews for over decades [14],
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including the regional distributions [16-18], exposures [19,
20], toxicities [21], and time trends [22, 23], but seldom of
them have been conducted concerning the environmental
characteristic in marine system. Ocean is the major sink of
these pollutants, via (i) direct deposition from the atmo-
sphere, (ii) runoff from land, (iii) direct discharge from
industry or wastewater treatment [2, 24-26]. Ocean plays an
important role in the fate of PBDEs via gravitational sinking
of particulates into sediments and their biotransformation
via biometabolism process. It is urgent to determine their
distributions in marine environment, based not only on the
absence of any previous data, but also on the complex-
ity of their environmental fate and effects, coupling with
bioaccumulation potential, environmental recalcitrance, and
potential human and wildlife toxicities.

The object of this review is to reanalyze the published data
to portray the current state of knowledge about the distribu-
tions, contents of PBDEs in marine environment worldwide,
where sediments and biota are specially emphasized on. The
controlling factors on the distributions of PBDEs in matrixes
are also discussed here. Furthermore, congener patterns in
marine and associated environmental matrixes are discussed
in detail. The data for PBDEs in marine system are currently
limited; thus, research recommendations and data gaps are
identified and discussed as well.

2. Data Treatment

PBDEs are presented as mixtures of congeners, and thus the
set of congeners reported in the various papers were not
consistent. It is somewhat difficult to evaluate the relative
degree of PBDE contaminations across various studies. As
a compromise of the divergence comes from congeners
chosen, several aspects were taken as considerations. We
were inclined to choose (i) the major components in the
three commercial products (Penta-, Octa-, and Decamix-
tures) (such as BDE-47, BDE-99, BDE-100, and BDE-153 in
Pentamixtures and BDE-153, BDE-183, BDE-197, and BDE-
207 in Octamixtures, and BDE-209 in Decamixtures [27]);
(ii) those frequently reported (such as BDE-15, BDE-17, BDE-
28, BDE-47, BDE-66, BDE-85, BDE-99, BDE-100, BDE-138,
BDE-153, BDE-154, BDE-183, and BDE-209); (iii) excluding
those playing a minor role to the total load or even generally
under the determine limit ones (such as BDE-15, BDE-17,
BDE-66, BDE-85, and BDE-138). Therefore, only eight con-
geners, BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-
154, BDE-183, and BDE-209 are selected for investigation due
to the above considerations. The total PBDE concentrations
have been normalized to the sum of the eight congeners
(hereafter referred to as ) (PBDEs, except when stated oth-
erwise), to exclude the variances of the congener numbers
detected.

The units are made consistent in the same matrix. For
example, ng/g dry weight for sediments and ng/g lipid weight
for marine organisms. ng/g wet weight was converted to lipid-
adjusted concentrations, using given lipid concentrations or
estimating from other published researches (as described
below). Unit of the atmosphere samples is consisted on
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As the data from various studies cannot be assumed to
be normally distributed, in some studies one or two of the
sample locations may have been easily disturbed by occa-
sional point source inputs [28], and median value is chosen
to evaluate the polluted levels of PBDEs rather than average.

In our review, the median was chosen to evaluate the
polluted levels of PBDEs rather than average, because the data
from various study cannot be assumed to be normally dis-
tributed; in some parts of the study one or two of the sample
locations may have been easily disturbed by occasional point
source inputs.

In most of the study the concentrations of congeners
in some samples were not available because of being lower
than detection level. Several authors treated these missing
values as zero or half of the detection limit. Besides these
methods, compound ratios are used in the sum to assess the
concentration of these congeners. A compound ratio (CR) is
the ratio between two or several compounds, as defined in

CR= -4 a)
a ta,

In the formula, g, and g, are the concentration of
compounds 1 and 2 in a sample. When using compound
ratios, missing values do not affect all variables, and their
affecting ratios are defined as missing. If the missing values
are up to 50%, the method is not to be used anymore.

Principal Component Analysis performed by SPSS (ver-
sion 22.0) ORIGIN (9.0) is used to compare the congener
patterns of PBDEs in the sediment, biological, atmosphere
samples, and three commercial mixtures.

3. Marine Environmental Levels

PBDEs released from various sources can be transported
into marine system via riverine inputs and atmospheric
deposition. PBDEs have high binding affinity to particles and
lipids and tendency to accumulate in sediment [26, 29] and
biota [30]. Since the hydrophobicity nature, PBDEs have very
low water solubility [2], and only a little portion of the PBDEs
exist in the water phase. Due to the lower concentrations
and technical difficulty in measurement, to our knowledge,
few papers have been published related with sea water [31,
32]. Here, main focuses were set on the sediment and biota
matrixes.

3.1 Sediment. Sediment is an important sink of anthro-
pogenic pollutants and has large impact on their distributions
and transport in aquatic environment [33]. We examined
most of the available published works and recalculated
the published data to understand the regional distributions
of PBDEs in marine sediments. Although the published
data are still far more enough to describe the worldwide
contamination situation of PBDEs in marine environment,
unless we have no other choice as noticed in the manuscript
or Table 1, most of the interesting data referring to other
aquatic environment such river [11, 34] or lake [35, 36] are not
included in this section, and even some of the papers reported
that the data on marine sediment are not included either, if
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the BDE-209 (mostly the dominant congener in sediment)
was not available for us [37].

As shown in Table 1, pollution level is still comparable
within the data collected worldwide. When we reanalyzed the
published data, separated the estuary sites from the marine
sites, and ignore the extraordinary sample sites such as those
located just near the source input point, the concentration
levels from the different marine areas may be at the same
order of magnitude. Even in the United States, a lot of the
scientists declared that the contamination of PBDEs was the
most serious one [38, 39]. It is said that nearly half of the
total amounts of PBDEs of the world were used in America
in 2001. Taking look at the research carried in San Francisco
Bay sediments, the median values of ) i PBDEs in each sample
area (Suisun Bay, San Pablo Bay, San Pablo Bay, and South
Bay) are about 2-6 ng/g. The median value of 22 samples rep-
resenting the deep-water area of Strait of Georgia, ) ;PBDEs,
is below 1ng/g [40]. It is still comparable to the European
samples (shown in Table 1), which seem to be the less polluted
regions in the world according to the previous comments.
In China, recently, not only the South China Sea but also
the northern or eastern part of China Sea, such as BO Sea
or East China Sea, has been investigated. Data indicate that,
in the samples collected from offshore sediment of northern
South China Sea, ) {PBDE:s is 0.93ng/g [41] and from East
China Sea it is below 1ng/g [2], and all of median values
of each published paper concerning northern part of China,
for example, Laizhou Bay, Bo Sea, do not exceed 5 ng/g [42-
44]. In terms of Korea, in surface sediments sampled from 8
less industrial activity or Shellfish farming or farming areas
(Uljin, Ganggu, Kaduk Island, Wonmunnpo, Kohyonsong
Bay, Gamak Bay, Sacheon Bay, Suncheon Bay, and Garorim
Bay) the median value of the published ) ,,PBDEs [45] is
1.3 ng/g. In Tokyo Bay, PBDE concentrations decreased from
north (near Tokyo municipal areas) to south. Separating the
impacted sites, ) (PBDEs is 2.1 ng/g [33].

It seems that as long as the investigation sites located at
a certain distance from the source pollution point, the PBDE
concentrations would drop a lot, and finally from region to
region they would not vary a lot. However, the pollution
status from different countries is still not the same. It is hard to
conduct a global monitoring program to precisely assess the
pollution situation, and thus we take a look at the pollution
sites; the values from diverse regions are quite different, some
of the highest reported BDE-209 concentrations in sediments
are 7340 ng/g in the Dongjiang River near a heavily indus-
trialized area in southern China [41], and concentrations of
BDE-209 in the Osaka Bay are (7.8-350 ng/dry wt) [46]. Con-
versely, in sediment at four areas in Pialassa Baiona coastal
lagoon, spatial distribution of contaminants is affected by
the location of anthropogenic inputs, the median of the sum
of PBDEs is less than 6 ng/g [47], 17 surface sediments (top
2 cm) were sampled off the coast of Vancouver Island, British
Columbia, Canada, and in the vicinity of the Capital Regional
District’s Clover Point municipal wastewater outfall, 2006,
Y ¢PBDEs is 0.75 ng/g [48]; Furthermore, in sample from east
of Newcastle, Australian, described as Industry/urban area,
the PBDE:s still cannot be detected [49].
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High levels of PBDEs were detected in sediments from
river estuaries but drop quickly along with the distance from
seashore. That is because, comparing with polluted river and
some of the waste water receiving lake, owning to the distant
from the input sources, marine sediment can receive much
less pollutants. Besides, one of the major routes for pollutants
going into ocean is riverine input. The high affinity of PBDEs
to particulate and precipitate into the sediment may result in
sedimentation and burial of PBDEs to the river sediment and
significantly reduce the amount of transportable PBDEs to
marine system [50].

3.2. Biota. When comparing the data of sorts of biological
samples, it is not wise to draw any conclusion just by looking
at tissue levels without regard for the species variation.
Concentrations of PBDEs in food webs from the Baltic Sea
and the northern Atlantic Sea indicated that the detected
Y <PBDEs had a great difference between perch (1713 ng/g
lipid weight) and pike (111.94 ng/g lipid weight) [51]. Accord-
ing to published reports, PBDE levels in marine mammals
may be generally one or more orders of magnitude higher
than those in the invertebrates and fish collected from the
corresponding sampling sites [52], as shown in Figure 1.
Hence, in order to make a comparable data description,
the discussion is limited to bivalves, which are the most
commonly used bioindicator species [53, 54]. The median of
lipid-normalized ) (PBDEs levels in mussels collected from
25 coastal locations in Korea was detected at concentration
of 142.74 ng/g lipid weight [55] (original data quoted based
on the wet weight, recalculated by present authors). PBDE
concentrations measured in these samples, excluding BDE-
209, were lower than those reported from other countries,
whereas BDE-209 concentrations were comparable to or
higher than those reported from other countries. In their
study, the predominant BDE congener in bivalves was Deca-
BDE, which accounted for >60% of the total PBDEs [55].
Green-lipped mussels were used to investigate the concen-
trations of PBDEs in Hong Kong’s marine environment.
Y ¢PBDEs ranged from 909.1 to 5545.4 ng/g lipid weight of
mussel tissue, with a median high up to 2734.5ng/g lipid
weight [56]. Original data are quoted based on the dry weight,
recalculated by present author using the lipid content, 1.1%
derived from the data published by Phillips [53]. It was 2-
3 orders of magnitude higher than that observed in France
which was only 8.75ng/g lipid weight in the mussels (in
the absence of BDE-209). According to early study, mussel
was collected from New Bedford Harbor, MA, USA, every
alternate year from 1991 to 2005. The sum of the existing
BDE congener (28, 47, 99, and 100, BDE-209 is not the target
analysis conger) Y PBDE concentrations in mussel tissues was
in the ranges of 64 to 241 (mean, 135), 128 to 681 (mean, 295),
and 128 to 364 (mean, 256) ng/g lipid weight at reference site,
upper harbor, and lower harbor, respectively [37].

4. Controlling Factors

4.1. Sediment. The distribution patterns of PBDEs in sedi-
ments are complex and varied from area to area, as the distri-
butions are controlled by several potential factors, including
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FIGURE 1: Mean value of lipid-normalized concentrations of
Y ¢PBDEs in different species from Florida coastal waters [52].

the source composition, environmental degradation, and
sedimentary environment. Grain size and organic matter
content are the main characteristics of sediments and the
principal factors that control the sorption of hydrophobic
organic contaminants [57-59].

PBDEs can be readily adsorbed on the particulate matters
due to their high hydrophobicities [60]. Grain size can reflect
the hydromechanic nature of deposition; it is very important
to differentiate the sedimentary environment. It appears that
the distribution of PBDEs pattern resembles to that of grain
size as described in Jiaozhou Bay [61]. The covariation phe-
nomenon was also demonstrated in Moon and his colleagues’
work; grain size was described as factors that control the
sorption of hydrophobic organic contaminants [55]. It is still
hold true for the study in East China Sea. It presented a broad
similar pattern between low-percentage sandy sediments and
the concentrations of PBDEs [62], while the rule is not
suitable for the South China Sea [41].

Because of their hydrophobicity, organic pollutants are
frequently adsorbed to particles with high organic carbon
contents in the environment. Some studies have reported
that total organic carbon (TOC) is a principal factor that
determines the adsorption of organic compounds, such as
organic chlorine pesticides (OCPs) [63], polybrominated
biphenyls (PCBs) [64], and chlorinated paraffin (CP) [65] in
sediments from some regions. Several researchers also found
a positive correlation between the distribution of PBDEs
and organic carbon in sediment of a river estuary [4, 43].
However, poor correlations have also been observed between
TOC and PBDEs in other areas [2, 41, 62, 66, 67].

The inconsistent distribution patterns may come from
the following reasons. They may be due to the fact that
researchers found that sediment organic matter differs in
chemical composition and function among different size
fractions. The coarse-size fractions may contain considerable
inputs of coal and black carbon particles, leading to high

OC concentrations. On the other hand, the higher OC
concentrations of the finer-size fractions are often due to their
large specific surface area and their high sorption for natural
organic matter [58].

The congener-specific partitioning of halogenated con-
taminants onto sediments of differing sizes may be another
potential reason. Generally, because of the greater organic
content and surface area of smaller sediment fractions (i.e.,
colloidal and particulate organic carbon, organic detritus,
silts, and clays), heavier congeners have a greater afhinity for
these sediments than smaller congeners based on equilibrium
partitioning theory [68]. Rayner and his colleagues came up
with a hypothesis that congener-specific partitioning occurs
among sediment grains of different sizes and that the smaller
grains are enriched in the contribution of higher brominated
congeners such as BDEs-99 and BDEs-100 (only lightly
brominated congeners from mono- through hexabrominated
were discussed) [68]. Other studies have shown that heavier
PBDE congeners are the most correlated ones with sediment
grain size thus emphasizing the strong particle affinity of
these compounds [69].

Besides, the possible reasons why the correlation between
PBDE:s and grain size or TOC is week may also be influenced
by the intensive land-based inputs [70, 71], disturbed by
occasional point source inputs [66], and degradation and
reapportionment of PBDEs in water column during resus-
pension and long-range transport processes [60], or it can be
concluded that it resulted from the combined effect of water
dynamic, transport, mixing, and depositional mechanisms
associated with PBDEs [41].

4.2. Biota. PBDE levels in biota can be influenced by many
factors; besides environmental exposure, the deviations in
species, sex, age, exposure duration, temperature, and lati-
tude are all potential factors influencing bioaccumulation of
PBDEs in marine organisms.

Apart from the PBDE concentrations in environmental
medium, species distinction may be the dominated factor of
all. Nine species of marine fish, including teleost fish, sharks,
and stingrays, and two species of marine mammals (dolphins)
collected from Florida coastal waters were analyzed for
PBDEs. As shown in Figure 1, mean concentrations of PBDEs
in different species fluctuated greatly from each other. The
Y <PBDEs levels measured in muscle tissues of teleost fish
ranged from 6.5 ng/g lipid weight (in silver perch) to 77.4 ng/g
lipid weight (in hardhead catfish). The levels may be about
more than 10-fold higher in muscle of sharks ranging from
371ng/g lipid weight (in spiny dogfish) to 1623.2 ng/g lipid
weight (in bull sharks). In the blubber of marine mammals,
high on the food chain such as bottlenose dolphins and
striped dolphins, even the mean concentrations (1120.8 and
632.7 ng/g lipid weight, resp.) might be comparable to the
maximum value in bull sharks. Concentrations of PBDEs in
dolphins and sharks were 1-2 orders of magnitude greater
than those in lower trophic-level fish species [52]. The
same conclusion can be drawn by investigating the levels of
individual PBDE congeners in various species from North
Sea, such as invertebrate species (whelk, starfish, and hermit
crab), the gadoid fish species (whiting and cod), and the



marine mammal species (harbor seal and harbor porpoise).
In the invertebrates, the ) (PBDEs was found only to be
ranging from 23.2 to 577 ng/g lipid weight. However, the
Y PBDEs levels in harbor porpoise liver and blubber were up
to 1762 and 1555 ng/g lipid weight, respectively, which were
generally one or more orders of magnitude higher than in the
invertebrates [72].

The results obtained showed a positive correlation
between trophic-level and PBDE concentrations [51, 72],
which clearly points toward biomagnification potential of
these chemicals [30]. Previous studies pointed out that the
major biomagnification step in the food chain occurs from
fish to marine mammals [72]. However, no clear trends could
be discovered to suggest any biomagnification from benthic
organisms to fish [73]. It can be partially interpreted by the
differences in feeding behavior, nutritional status [74], and
metabolic capacity. In addition, some researchers stated that
body size would play an important role in the biomagni-
fication processes. The size among the lower trophic-level
species, such as fish and invertebrates, did not change a lot,
whereas it could change a lot between the marine mammals
and fish. The ratio of the total surface area of an animal to
its size got smaller when size increased. The surface area of
the gill membrane to total animal volume also had influence.
Both factors resulted in enhanced partition of hydrophobic
chemicals between the water and organisms due to body sizes
of the organisms and lower elimination rates in larger animals
(72, 75].

Even the same species may have different body burden
levels of PBDEs. Previous studies had shown lower PBDE
levels to occur in adult female marine mammals than in
males, reanalysis of the data published by [76]; the median of
adult female harbor seal (709.25 ng/g lipid) is lower than the
male (1098.4 ng/g lipid). The reason was that they can dispose
their contaminants during spawning by incorporating large
amounts of fat and persistent pollutants in the roe [29, 73],
and as a consequence pollutant transferred to their offspring
during gestation and lactation [74].

The sampling time and metabolic capacity can influence
the accumulation processes as well. The organisms suffer-
ing from the long-term exposure to the PBDEs may have
higher body burden levels than that collected immediately
after exposure, for the accumulation processes. Besides, the
metabolic capacity played an important role in the processes,
since some of the congeners may be metabolized and expelled
as dejection.

5. Congener Distributions in Matrixes

The congener distribution patterns for the commercial mix-
tures (Penta-, Octa-, and Decamixtures) and for the samples
of sorts of matrixes from Asia, Europe, and America are
analyzed by Principal Component Analysis based on the
proportion of eight individual PBDE congeners relative to
the ) PBDEs concentrations. The samples were selected
representing or associating with marine environment, such as
sediments from estuary, coast, or open sea and biotic species
(invertebrates, fish, or marine mammals) along with airborne
PBDEs, which is one of the most important paths by which
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PBDEs transport into the ocean. The Principal Component
Analysis plot revealed compositional similarity and differ-
ences both between and within environmental matrixes and
commercial mixtures. The component plot of component 1
versus component 2 is shown in Figure 2. The first two prin-
cipal components explained 88.95% of the total variability of
the data set. As shown in Figure 2, the data points nominated
as “s.#n” indicated “*” matrixes, “#” region, and “n” sample
numbers. The abbreviations indicated the character of these
samples: for matrixes, S is sediments; Bl is invertebrates; BF is
fish; BM is marine mammals; A is atmosphere; and for region,
C is China; K is Korea; | is Japan; U is United States; E is
Europe; SEA is Southeast Asia (detailed data description is
listed in Table S1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2016/1317232). There is clear seg-
regation of three-group cluster around the commercial mix-
tures. Group A has a similar compositional pattern to that
of the Decamixtures, with relative predominant congener
of 209. In this group, most of the data represent sediment
samples, airborne particles, and some biological samples.
Group B includes most of the biological samples which
are similar to the Pentamixtures (Tetra- and Penta-BDEs
are prevalent congeners) on the composition. The congener
patterns will be discussed in detail in later section in this
paper with the sequence of sample matrixes.

It is interesting to notice that some of the samples from
China have a similar compositional pattern to that of the
Octamixtures, as shown in Figure 2, uniquely gathering in
group C.

The samples collected from China, unlike those collected
from other countries, are similar to the Octamixtures and
have a relative high proportion of BDE-183 to the total load of
Y ¢PBDEs (not only the sediment sample, some of the human
sample also showed the same distribute pattern; see our
previous publication [77]). This unexpected phenomenon
can be interpreted by the fact that China is the major port
of electronic-waste (e-waste). BDE-183 can be an indicator
congener of Octamixtures, which are primary used in the
resin or polymer applied to electronic industry [78, 79]. The
use of Octamixtures has been banned in all applications in
the European Union Market since August 2004 (Brominated
Science and Environmental Forum web site), and the Great
Lake Chemical Corporation (USA) had agreed to phase out
the production of the chemicals by the end of 2004 [80].
However, the electronic applications produced in America
and Europe years before 2004, incorporated with these toxic
chemicals, may come to the end of their “life span” and be dis-
carded as e-waste years after ban-time. Instead of being recy-
cled locally, these e-wastes carrying the toxic Octamixtures
have been exported to developing countries, such as China.
Therefore, some of the samples collected from China may
have high proportions of BDE-183, similar to Octamixtures
in congener patterns, uniquely gathering in the group C.

5.1. Sediment. As shown in Figure 2, on the top left cor-
ner of the figure, most of the sediment samples cluster
together (group A), which are similar in compositional
pattern to the Decamixtures. That is because the moderately
and heavily substituted BDE congeners predominate over
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FIGURE 2: Plot of first two factors of Principal Component Analysis of PBDE congener patterns for matrixes (sediments, biotic species, and
atmosphere) from Asia, America, and Europe.

the less brominated congeners in the sediments, especially ~ in the meantime, dominating the congener patterns in the
BDE-209, which is the major congener detected in the two  sediments representing over 85% of the ) ;PBDEs in each
Decamixtures (Saytex 102E and Bromkal 82-0DE) accounting  study, except the samples from Hong Kong [56]. The levels
for 96.8% and 91.6% for the total load, respectively [27], = of BDE-209 are 1-3 orders of magnitude higher than the
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sum of the concentrations of Tri- to Hepta-BDEs in some
studies. There are reasons accounting for the abundance of
BDE-209 in the profiles. PBDEs were reported to be intro-
duced into marine system through wet and dry deposition
[81]. Studies indicated that the percentage of contaminant
adsorbed to particles in both air and wet deposition increased
with bromination [81]. Studies showed that compositions
of PBDEs at urban and suburban sites were similar, in
which BDE-209 was the dominated congener [82], with
an annual average contribution to ) PBDEs of 64 + 23%
in an across-China study [83] or 40-99% in south China.
In these samples BDE-209 was the predominant one over
the 11 congeners investigated, accounting for 40-99% for
the total PBDE concentrations in the atmosphere samples,
except for some irregular site as stated [28]. Along with
the determination from deposition, the physical-chemical
properties of the individual congeners play an important role
as well. According to the octanol-water partition coefficient,
it is expected that the heavier brominated congener (such
as BDE-209) has high affinity to particulate and precipitate
into the sediment [7]. Furthermore, BDE-47 and BDE-99 and
some other lighter congeners are easier to be taken up by
organism while not being restrict into the sediment. All of the
reasons above may lead to the predomination of BDE-209 in
the congener patterns in sediment.

5.2. Biota. PBDE congener patterns of most biota from all
over the world seem to resemble to each other, irrespective
of levels, fish species, and sampling sites. Most of the data
points cluster together with the Pentamixtures. BDE-47 and
BDE-99 are the main components of the Pentamixtures,
including DE-71 (which has a composition of 38.2% and
48.6%) and Bromkal 70-5DE (which has a composition of
42.8% and 44.8%) [27]. The percentage of BDE-209, which
is the main component of Decamixtures, is much lower
than that of BDE-47 and BDE-99 in biological samples.
The general order of decreasing contribution to the total
load is BDE-47 > BDE-99, BDE-100 > BDE-153, BDE-154.
BDE-47, BDE-99, and BDE-100 make up about 80% on
average of the )’ (PBDEs. It is clear that in biological samples
the congeners are dominated by the light brominated ones
and are obviously different from those in sediment and
airborne particle samples, which are dominated by BDE-
209 [84]. The distinction comes from the different bioavail-
ability between those congeners. Bioaccumulation of PBDEs
with six or more bromine atoms seems to be correlated
negatively with the degree of bromination [72]. The reason
may be that the relatively high molecular weight (644-959
Dalton) or molecular size leads to inefficient dietary uptake
[29].

As shown in Figure 2, not all biological samples cluster
around the Pentamixtures. The congener patterns of some
biotic species are much more similar to those of Decamix-
tures than others, because the samples contain more BDE-
209 than other species. BDE-209 has been considered to
be nonbioavailable, because its large molecular size may
impede its passage across tissue membranes in biota [29].
However, some studies have demonstrated that organisms
were able to take up BDE-209. In laboratory, experiments
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were carried out to confirm that the BDE-209 could be taken
up by carp, and uptake of BDE-209 was estimated to be
3.2% [85]. But the accumulation efficiency is extremely low.
It has been proved that BDE-209 can be metabolized by
juvenile carp, since no net accumulation of BDE-209 was
observed throughout the experiment despite an exposure
concentration of 940 ng/day/fish [85]. The same metabolic
capability can be observed in rainbow trout. Dietary uptake
and effects of BDE-209 were studied in rainbow trout. Fish
were fed Deca-BDE for 49 days and then on control diet
for 71 days to study depuration. After depuration, BDE-209
concentrations declined. Generally, as a result of biotransfor-
mation processes, BDE-209 has a short half-life in organisms
[72, 73]. No matter whether the BDE-209 can be taken up
by organisms or not, the rapid metabolism and elimination
of this congener may sequentially result in its absence in
biota as well. To our knowledge, no integrated study has
figured out the relationship between metabolic capacity and
taxonomic group. The absence and presence of BDE-209 can
be attributed to the metabolic differences between species and
the depuration time somehow. The irregular points (BZ.El,
BI.E7, BEU7, BEUS, and BEU9) include the zooplanktons,
roach [29], and sharks (spiny dogfish, Atlantic sharpnose
shark, and bull shark) [52]. It seems that these species,
compared with other marine organisms, can accumulate
the BDE-209 effectively and have a relative long residue
time.

Besides the reasons mentioned above, another significant
reason should be taken to account for the elevated proportion
of BDE-209. In Figure 2, the data point (BL.K1) of bivalves
collected from Korean coastal belongs to group A, with a
high percentage of BDE-209 of the total load. This is due
to the approach of the sample preparation. In their study,
the mussels analyzed were not depurated, and the whole soft
tissues were pooled and homogenized [55]; therefore, the
presence of particles in the gut may contribute to the high
BDE-209 concentration measured. Filter-feeding mussels
ingested the contaminants adsorbed on small particles [55].
Booij et al. [86] suggested that BDE-209 levels measured
in mussels were dominated by the concentrations found in
ingested particles in the gut. This also can explain the data
point BL.C2, representing for the mussel from China.

In the present study, different ratios between BDE-99 and
BDE-100 were calculated in different species (as shown in
Figure 3). The statement made earlier by Christensen et al.
has shown that the mean ratio between BDE-99 and BDE-100
in marine environment locations which were not excessively
polluted was equal to 30:70. Actually, however, according
to our analytical data, it is evident that the ratio is much
like the species-depended. The ratio varied in species even
though the samples were collected from the same region.
In addition to the exposure ambient, molecular size, and
bioavailability, the metabolic differences between the species
would be an important reason accounting for the variance.
Voorspoels et al. have observed that the ratio found for
shrimp (20 : 80) was very similar to the ratio for the Bromkal
mixtures and virtually identical to the ratio found in Western
Scheldt Estuary sediments [73]. This result was consistent
with the measured ratio in shrimp and the sediments of the
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FIGURE 3: The ratio between BDE-99 and BDE-100 for different
species. The lower trophic-level species, like mussels and shrimp
(lake of metabolic capability), often turns to be greater than 1, while
for those higher species, like fish or marine mammals (elimination
of BDE-99), the ratio may be below 1. It is worthy to mention that
some species feed mainly on the crustaceans and zooplankton seems
to have a higher ratio value, as mentioned in the manuscript (data
are collected from references [29, 44, 51, 55, 56, 72, 76, 87, 99-101]).

Pearl River estuary [87]. Shrimp simply reflected the Bromkal
and sediment constitution patterns for these congeners,
suggesting that these compounds were readily bioavailable,
but shrimp clearly lacked metabolic capability [87]. Hites
reported that the selective environmental elimination of
BDE-99 had been observed in some biota [88]. The marine
organisms seemed to increase their metabolic capabilities
when they climb the evolutionary ladder [73]. The ratio
between BDE-99 and BDE-100 for the lower trophic-level
species, like mussels, snail, shrimp, and Calanus, and so forth
(lake of metabolic capability), often turns to be greater than 1,
while for those higher species, like fish or marine mammals
(elimination of BDE-99), the ratio may be below 1. It is worthy
to mention that some species feed mainly on the crustaceans
and zooplankton seems to have a higher ratio value, such as
herring [51, 52, 72], striped mullet [52], or stingray [52] (as
shown in Figure 3).

5.3. Atmosphere. As mentioned above, atmosphere trans-
portation is one of the major routes for PBDEs to transport,
redistribute, and finally deposit into marine system. To esti-
mate the load of PBDEs to marine system, the atmospheric
compositional pattern should be figured out to quantify and
predict their environmental fate and transport.

As shown in Figure 2, some of the atmospheric samples
(A.Cl1, A.C3) belong to group A, which might be similar to the
Decamixtures in composition. On the contrary, the samples
(A.C2, A.Ul, and A.U2) belong to group B which might have
a similar compositional pattern to that of the Pentamixtures.
That is due to the atmospheric PBDE partitions between
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the vapor and particulate phases. On the basis of the KOA
values [26], it can be predicted that the lighter congeners (e.g.,
BDE-47, BDE-99, and BDE-100) will exist almost entirely in
the gas phase, whereas the heavier brominated congeners
(BDE-153, BDE-154, and BDE-183) will be predominantly
associated with particles [26]. BDE-209, according to its
physical-chemical properties (e.g., a log subcooled liquid
vapor pressure, V,, of —8.68, and an octanol-water partition
coefficient, K, 0£9.97), is expected to be partitioned entirely
to the particle phase in both air and rain [81].

Taking the gas-particle partitioning of PBDEs into con-
sideration, the compositional pattern for particulate phase is
similar to that of sediments (group A), in which the relative
abundance of BDE-209 is extremely high as well. This can
be served as a potent evidence for the fact that wet or dry
deposition is one of the major sources of the PBDEs in marine
sediments, whereas the gas phase has a similar congener
pattern to that of biological samples (group B), and the lighter
congeners contribute more than heavier ones to the total load.

Atmosphere samples were collected from four sites in the
city of Guangzhou, a typical urban center in south China to
determine the gas-particle partitioning of 11 PBDE congeners.
The average relative abundances of PBDEs have shown that
the Tetra- to Hepta-BDEs were present in both the gas
and particulate phases. The Tri-BDE (BDE-28) was present
almost exclusively in the gas phase (96-98%) [28]; therefore,
the data point of gas phase sample (A.C2) belonged to group
B, whereas the Deca-BDE (BDE-209) was found only in the
particulate phase [28], resulting in clustering together with
group A. In some studies the atmosphere samples contain
both the particle and gas phases. It becomes difficult to
predict whether it will have a Deca-like profile or Pentaprofile,
since it depends on which phase will be the dominant
one.

Along with the gaseous or particulate phases of samples,
the sample location may significantly influence the composi-
tion profile of atmosphere sample. In samples collected from
urban or suburban sites in China, the dominating conger is
BDE-209, and background/rural air sites, however, are BDE-
47 followed by BDE-99. These differences can be explained as
BDE-209 is easy to bound to particles and hence less subject
to migrate with air mass movement to the background/rural
sites in comparison to other less brominated PBDEs [83]. In
both urban and background/rural sites, the ratio for BDE-209
to the total PBDE in Chinese ambient air was greater than that
in air of the United States [89], while the ratios for BDE-47
and BDE-99 in Chinese air were smaller than those in the US
air, which is possibly due to the larger usage of Pentamixtures
in the United States [89] and Decamixtures in China [83].

6. Recommendations and Data Gaps

Marine system plays an important role in the environment
[24]. However, studies on PBDEs in marine system are
patchy and fragmented. Most of the sampling sites have been
conducted in the bay or near coastal area, which could be
strongly affected by municipal and industrial wastewaters
containing high levels of anthropogenic pollutants. Some of
sample locations even are situated near point sources such
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as harbors or wastewater treatment plants, where concentra-
tions in various environmental matrixes are predicatively to
be relatively high [40]. For a complete understanding of the
distribution of PBDEs in marine system, the investigation
should be expanded geographically. Such background loca-
tions and open sea area should also be included.

The congeners determined varied from study to study,
which has been an impediment for comparing the conclusion
across various studies. The different polluted level may come
from how many and which congeners are determined, rather
than actual polluted status. BDE-209 is of special importance
because it is suspected to be the predominant congener in the
sediments and it may account for over 85% in the samples.
Owing to the unmeasurement of BDE-209, the pollution level
would be underestimated. The US Environmental Protection
Agency has made a list of 16 “priority pollutant polycyclic
aromatic hydrocarbons (PAHs)” that are indicative for moni-
toring PAH contaminations. There is an urgent need to make
a list to guide the researchers in determining congeners to
whom priority investigation are warranted.

To quantify and predict their environmental behaviors
of PBDEs in the marine system, there is a clear need for
more systematic environmental monitoring to understand
how and where these chemicals are being released into the
environment and what is happening to them once they
enter the environment. But the researches focused their
attention ex parte on the sediments and biota [7]. Extra
emphasis should be placed upon the water column, sus-
pended particles, microlayer, and pore-water and properties
in environment such as redox conditions and salinity or some
other geoenvironmental parameter worth for future studies,
to understand what are the fluxes of these chemicals into
marine system, what is happening to them once they enter
the environment, and what fate and transport processes that
are involved in their environmental movement.

Some of previous studies paid attention to the debromi-
nation process of these chemicals in the lab; modeled or
field study of PBDEs in real situation is urgently needed.
It is a major knowledge gap to understand what debromi-
nation process these chemicals undergo in the practical
situation. Can these chemicals be hydrolyzed, photolyzed,
reductively decomposed in the water, particle, and sediment,
or metabolized by marine organisms? And if yes, what are the
resultant products? Do these degradation products turn to be
more deleterious or harmless to the organisms? And is there
any appropriate way to degrade or assimilate the increasing
PBDEs in marine system? There are still a lot of questions
waiting to be resolved.

The Penta-BDE and Octa-BDE commercial mixtures
have been banned in the European Union (EU) in 2004 and
were included in the Stockholm Convention of Persistent
Organic Pollutants (POPs). In addition, Deca-BDE has also
been proposed for listing under the convention [15]. Despite
the ending of the production and use, large quantities of
articles containing PBDEs are still in use as well as in the
recycling and end-of-life flows [90]. Therefore, some trend
study, such as taking sediment core as information carrier or
using material flows approach, should be done to understand
or predict the existing and potential risk.
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