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1  | INTRODUC TION

Temperature is a major factor influencing freshwater fish species dis-
tributions, abundances, and physiological rates (Krenek et al., 2011; 
Schulte et  al.,  2011). Specifically, water temperature influences 
the rate of biochemical reactions in aquatic ectothermic species 
(Angilletta, 2009; Angilletta et al., 2002; Childress & Letcher, 2017; 
Hochochka & Somero, 2002; Rome et  al.,  1992) and consequently 
traits such as growth, development, behavior, metabolic processes, and 

timing and duration of life-history events (Huey & Stevenson, 1979; 
Jonsson & Jonsson,  2009; Jonsson & d’Abée-Lund,  1993; Scranton 
& Amarasekare, 2017; Wootton, 1998). With accumulating evidence 
for increases in the mean temperature and disrupted thermal regimes 
(Field et al., 2014; Jatteau et al., 2017; Scranton & Amarasekare, 2017; 
Souchon & Tissot,  2012), the inclusion of functional traits into the 
analysis of climate change impacts becomes more necessary.

The incorporation of functional traits enables a more reliable as-
sessment of reactions to changing environmental conditions, range 
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Abstract
Extending assessments of climate change-induced range shifts via correlative species 
distribution models by including species traits is crucial for conservation planning. 
However, comprehensive assessments of future distribution scenarios incorporating 
responses of biotic factors are poorly investigated. Therefore, the aim of our study 
was to extend the understanding about the combined usage of species traits data 
and species distribution models for different life stages and distribution scenarios. 
We combine global model predictions for the 2050s and thermal performances of 
Salmo trutta and Salmo salar under consideration of different life stages (adults, ju-
veniles, eggs), timeframes (monthly, seasonally, yearly), and dispersal scenarios (no 
dispersal, free dispersal, restricted dispersal). We demonstrate that thermal perfor-
mances of different life stages will either increase or decrease for certain time peri-
ods. Model predictions and thermal performances imply range declines and poleward 
shifts. Dispersal to suitable habitats will be an important factor mitigating warming 
effects; however, dams may block paths to areas linked to high performances. Our 
results emphasize enhanced inclusion of critical periods for species and proper dis-
persal solutions in conservation planning.
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shifts, upcoming risks, and new conservation opportunities (Floury 
et al., 2017; MacLean & Beissinger, 2017; Vasconcelos et al., 2017). 
Consequently, species traits can be fundamental components for 
investigating spatially explicit impacts of climate change (MacLean 
& Beissinger,  2017). Responses of these functional traits along 
thermal gradients can be parameterized with thermal performance 
curves (TPCs) (Childress & Letcher, 2017; Jonsson & Jonsson, 2009). 
Angilletta (2009) defines performance as any measure of an or-
ganism's capacity to function. Measures of performance can in-
clude, for example, growth, locomotion, or survivorship, which are 
usually expressed as a rate or probability (Angilletta,  2006, 2009; 
Schulte et al., 2011). Thermal performance curves (TPCs) are gener-
ally used for predicting performance for different thermal environ-
ments and inferring the direct effect of temperature on the species’ 
fitness (Childress & Letcher,  2017; Deutsch et  al.,  2008; Frazier 
et  al.,  2006; Huey & Stevenson,  1979). Thus, the incorporation of 
functional traits through TPCs and the corresponding thermal tol-
erance may be promising for exploring range dynamics and species-
specific variation in range shifts under climate change (MacLean & 
Beissinger, 2017).

Thermal tolerance depends on the physiological sensitivity 
of the fish to temperature changes and also on the current life 
stage, with the youngest life phase, that is, the egg stage, being the 
most susceptible to high and low temperatures and temperature 
fluctuations (Brett, 1952; Dahlke et al., 2020; Elliott, 1994; Elliott 
& Elliott,  2010; Jatteau et  al.,  2017; Jonsson & Jonsson,  2009). 
Embryonic development is influenced by the surrounding tempera-
ture conditions, which additionally affects later species traits and 
life-history events, such as smolt size (Jonsson & Jonsson, 2009). 
Thus, changes in climatic conditions in one life stage can have sub-
stantial consequences for later life stages (Fleming et  al.,  1997; 
Jonsson & Jonsson, 1993). For example, in early life stages warm 
temperatures might be favorable for rapid growth whereas in later 
life stages they might limit growth (Angilletta, 2009). Including dif-
ferent life stages of species with complex life cycles becomes es-
sential in regard to assessing the comprehensive effects of climate 
change on species.

Assessments of future impacts of climatic change mostly rely 
on statistical species distribution models (SDMs). There are only a 
few studies that have combined species functional traits with model 
predictions for fish species (Wittmann et  al.,  2016). Wittmann 
et al.  (2016) have found correlations between the probability pre-
dictions of the models for habitat suitability and growth rates for 
the Grass Carp (Ctenopharyngodon idella), indicating that SDMs may 
be able to provide scenarios which incorporate more than just the 
climatic envelope of the considered species in an indirect manner. 
Similar results were also observable in studies of other taxonomic 
groups. For example, Nagaraju et al.  (2013) have shown significant 
positive correlations between the predicted habitat quality and plant 
functional traits for the endemic tree Myristica malabarica Lam. oc-
curring in the Western Ghats in India. To further support these re-
sults, more studies that explicitly test SDMs with respect to species 
traits are necessary.

This study focuses on the salmonid fish species Salmo trutta and 
Salmo salar. Anadromous salmonid species have complex life cycles 
comprising life stages in freshwater, for example, the egg and ju-
venile stage, and also in saltwater, following the transformation of 
the species through a smolting process. After living in coastal areas, 
adults return to their freshwater habitat for spawning (Elliott, 1994). 
Therefore, effects on one life stage throughout the whole life cycle 
can substantially affect species traits of the subsequent life stages 
(Jonsson & Jonsson, 2009), which underlines the necessity for anal-
yses of climate change impacts across life stages of Salmo trutta and 
Salmo salar. Also, life stage-specific analysis enables the detection 
of shifts of certain life-history events, such as spawning (Carlson & 
Seamons, 2008). Although current IUCN Red List conservation sta-
tus for both species is categorized as “Least Concern” (see https://
www.iucnr​edlist.org/), extinction of southern populations accompa-
nied by a northward movement of the thermal niche in the north-
ern hemisphere is expected (Jonsson & Jonsson, 2009). To facilitate 
species movement according to the expected geographical shift, ac-
cessibility to suitable areas in the future must be guaranteed (Ovidio 
& Philippart, 2002). Here, we combine species distribution model-
ing and species’ functional traits to assess future climatic impacts. 
Salmo trutta and Salmo salar are analyzed in regard to their current 
and future thermal performance, here defined as survivorship 
(Angilletta,  2009), based on the species-specific derived thermal 
performance curves (TPCs) (Deutsch et  al.,  2008). Future thermal 
performance is deduced from SDM predictions under three differ-
ent scenarios (“no dispersal,” “free dispersal,” “restricted dispersal”), 
also accounting for habitat fragmentation due to artificial barriers 
and connectivity. SDMs are calibrated with global distribution and 
environmental data at the catchment scale. Specifically, we exam-
ine the changes in performance based on the current and predicted 
distributions across latitude, months, seasons, years, and life stages. 
Performance parameters are evaluated for the life stages adults, ju-
veniles, and eggs for both study species. Finally, we test whether 
the probability predictions of the calibrated SDMs in this study are 
correlated with the performance rates of the TPCs (see Wittmann 
et al., 2016).

2  | METHODS

2.1 | Study area

Global land masses were divided into African, Asian, Australian, 
European, North American, and South American regions (Figure 
S1). Each region was additionally differentiated into sub-watershed 
basins (bas20k) based on the utilization of the integrated water 
resource model WaterGAP3 (Brauman et al., 2016; Eisner, 2016; 
Schneider et  al.,  2017). To reduce uncertainty of environmental 
data calculations, only catchments with an area of ≥3,000  km² 
were included. The total global catchment number was 11,695 
(Table S1). Analyses were restricted to freshwater habitats, be-
cause of the studied catchment scale, prevailing occurrences of 

https://www.iucnredlist.org/
https://www.iucnredlist.org/
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the investigated species in fresh waters and greater threats of 
climate change and anthropogenic disturbances to fresh waters 
rather than marine realms (Dudgeon et  al.,  2006; Pachauri & 
Mayer, 2015).

2.2 | Species data

Global species occurrence data for Salmo trutta and Salmo salar 
were obtained from the Global Biodiversity Information Facility 
(https://www.gbif.org/, accessed November 2018), which pro-
vides occurrence data via longitudinal and latitudinal specifica-
tions. We considered only presences from 1971 onwards with a 
coordinate uncertainty of ≤5  km and with “human observation” 
set as basis of record. Freshwater species data were mapped to the 
bas20k catchments leading to in total 730 and 199 catchment oc-
currences for Salmo trutta and Salmo salar, respectively (Table S1). 
In the case of coarser scales or the creation of range maps, which 
are expected to be less spatially biased (Fourcade, 2016; Merow 
et al., 2016), the number of false absences will diminish rapidly due 
to the diminution in the degree of patchiness, that is, the mapping 
to coarser modeling scales overcomes potentially neglected oc-
currence points and aims at reducing the sampling bias. Therefore, 
by choosing a coarse catchment scale, the effect of such errors 
is minimized and consequently the likelihood for true absences is 
increased (see Rocchini et al., 2011). Furthermore, in comparison 
with point-to-grid mapping used for mapping terrestrial species’ 
occurrences, catchment mapping is more appropriate for freshwa-
ter species due to the dendritic structure of river networks (see 
Fagan,  2002). Catchment assessments are used for large-scale 
freshwater management strategies (commonly referred to as the 
Catchment-Based Approach—CaBA, see DEFRA, 2013), enabling 
the compatibility between the management and the analysis 
scales as well as the optimization of ecological restoration efforts 
(Lévêque et  al.,  2008; Markovic et  al.,  2017; Kümmerlen et al., 
2019).

2.3 | Environmental data

Modern-day (1971–2000, hereafter referred to as baseline) and 
future (2041–2070, hereafter referred to as 2050s) data on nat-
ural river discharge were obtained from the WaterGAP3 model 
(Brauman et  al.,  2016; Eisner,  2016; Schneider et  al.,  2017). 
WaterGAP3 is a state-of-the-art global water model showing 
well performance (Beck et al., 2017; Eisner et al., 2017; Schneider 
et  al.,  2017). Grid-based monthly water balance calculations of 
WaterGAP3 at the 5 by 5 arc-minute resolution (~9 × 9 km at the 
Equator) were mapped to the bas20k catchment scale and used 
for catchment-specific calculations of various single-value dis-
charge statistics for the baseline and 2050s (Table S2). Future 
flow statistics were computed as multimodel ensemble means of 

five different general circulation models (GCMs), namely GFDL-
ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and 
NorESM1-M, provided by ISI-MIP (Hempel et al., 2013). Each GCM 
followed the medium–high emission Representative Concentration 
Pathway 6.0 (RCP6.0) scenario, which comprises a radiative forc-
ing of 6.0 W/m2 in the year 2100 and a global mean temperature 
increase of 2.2°C until the end of the century compared with 
1986–2005 (Riahi et  al.,  2011). Accordingly, the five integrated 
GCMs were used to derive water temperature by transforming 
air temperature to stream water temperature on a monthly basis 
for the baseline and 2050s via a global relationship model (Punzet 
et al., 2012) (Table S2).

We used the Global Land Cover Characterization map (GLCC; 
USGS, 2008) and the CORINE Land Cover map for EU countries 
(CLC2000; EEA, 2004) for obtaining landscape variables (Table S2). 
Land cover data were kept constant for the future scenario.

In order to model species distribution opportunities and restric-
tions, we included the Global Reservoir and Dams database (GRanD) 
(Lehner et al., 2011).

2.4 | Species traits data

We collected laboratory experiment data on species thermal traits 
for Salmo trutta and Salmo salar at different life stages from vari-
ous studies (Tables S3 and S4). Data could be collected for the 
traits “critical minimum temperature for survival” (CTmin), “opti-
mum temperature” (Topt), “critical maximum temperature for sur-
vival” (CTmax) and for the life stages adults, juveniles, and eggs. 
The thermal optimum (Topt) was defined as the upper limit of the 
optimum temperature range following Comte et  al.  (2014). The 
maximum/ minimum temperature for survival was determined 
using different experimental approaches, such as the incipient le-
thal temperature (ILT) method or the critical thermal methodology 
(CTM). The incipient upper/lower lethal temperature (IULT/ ILLT) 
is defined as the temperature that is lethal to 50% of a fish sam-
ple estimated over various acclimation temperatures and exposure 
time intervals whereas for CTM the critical maximum/ minimum 
temperature is determined by exposing species to a constant lin-
ear increase or decrease in temperature until the fish loses its lo-
comotion control (Beitinger et al., 2000). Moreover, a recent study 
by O'Donnell et  al.  (2020) has proven that the critical maximum 
temperature determined with CTM appears to be a robust, repeat-
able estimate of thermal tolerance in cold-water adapted fish. The 
maximum and minimum of the experimentally observed CTmin and 
CTmax, respectively, were set as final CTmin and CTmax. Although ex-
perimental values could be collected from various studies, species 
trait data remain limited. Moreover, TPCs may not be fixed within 
species or individuals but can change as a result of adaptation and 
epigenetic processes in response to temperature signals at differ-
ent time scales. Hence, the conclusions drawn in this study should 
be seen in the context of the collected trait data.

https://www.gbif.org/
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2.5 | Thermal performance curves

Species thermal traits data were used to parametrize thermal per-
formance curves (TPCs), which describe the relationship between 
temperature and a species’ ability to function (Angert et al., 2011; 
Huey & Stevenson,  1979). Typically, TPCs are bounded at the ex-
treme temperatures (CTmin, CTmax), possess a single intermediate 
mode, and appear skewed with a slow performance rise up to the 
maximum level at Topt and a rapid drop afterward (Angilletta, 2006; 
Dell et al., 2011; Huey & Kingsolver, 1989; Sinclair et al., 2016). The 
skewness of the TPCs arises from slower chemical reactions at low 
temperatures and constraints of the cellular function capacity due 
to protein degradation and oxygen limitation at high temperatures 
(Childress & Letcher, 2017; Dell et al., 2011). Here, performance is 
defined as survivorship given as a rate along the thermal gradient 
(Angilletta, 2009). The model of Deutsch et al.  (2008) was used to 
obtain the performance rates by incorporating the observed data on 
CTmin, Topt, and CTmax for the life stages adults, juveniles, and eggs, 
thus, accounting for varying TPCs and stage-specific vulnerability 
(Sinclair et al., 2016).

2.6 | Species distribution modeling

The predictor variable selection was based on a combination of 
three main criteria: (1) the univariate area under the receiver oper-
ating characteristic curve (AUC ≥0.65), (2) avoidance of multicol-
linearity (pairwise correlations of <0.7), and (3) variable selections 
in previous studies. Univariate prediction strength was deter-
mined by using generalized additive models (GAMs) of the R (R 
development Core Team, 2018) package “mgcv” (Wood, 2011) as 
modeling approach. Often-used variables incorporated in scien-
tific literature were only included if at least the second criterion 
was fulfilled.

Fish distributions were modeled using Artificial Neural Networks 
(ANN), Random Forest (RF), Gradient Boosting Machines (GBM), 
Multivariate Adaptive Regression Splines (MARS), Generalized 
Additive Models (GAM), Maximum Entropy Method (MAXENT), 
and Elastic Net (ELNET). ANNs are complex, nonlinear model sys-
tems resembling the biological neural system, that is, ANNs include 
neurons with a specified number of layers that are linked by dif-
ferent types of so-called activation functions (Bishop, 1995; Duda 
et al., 2001; Hastie et al., 2001; Jain et al., 1996; Lee et al., 2016; 
Li & Wang,  2013). Commonly, a three-layer feedforward model is 
used, which consists of the input layer, the hidden layer, and the 
output layer (Bishop, 1995) and which can approximate any smooth, 
finite nonlinear function with high accuracy (He et al., 2011; Thuiller 
et al., 2009). We used the R package “h2o” (The H2O.ai team, 2018) 
for training ANNs as it provides many opportunities to adapt the 
model to the specific problem. RF is a combination of a certain num-
ber of decision trees where each tree is created by considering a 
random sample of the training data set and features (Breiman, 2001). 
The number of votes of each tree of the forest determines the final 

prediction. High performances in species distribution modeling 
can be achieved by using this learning algorithm (e.g., Grenouillet 
et  al.,  2011). For building RF, we used the R package “h2o” (The 
H2O.ai team, 2018). GBMs consist of a group of decision trees, 
which are build and combined by the gradient boosting algorithm 
(Elith et  al.,  2008; Hastie et  al.,  2001). Here, the R package “h2o” 
(The H2O.ai team, 2018) was used for analyses. MARS is a flexible 
regression method based on piecewise splines that are smoothly 
connected and thus able to model linear and nonlinear relationships 
(Friedman, 1991; Zhang & Goh, 2016). The R package “earth” was 
used for MARS modeling (Milborrow, 2018). GAM is a nonparamet-
ric method that is able to account for nonlinear relationships be-
tween the explanatory and dependent variables by using smoothing 
functions (Hastie & Tibshirani,  1986). For GAM, we implemented 
the function of the R package “mgcv” (Wood, 2011). MAXENT as a 
general-purpose machine learning method is a principle from statis-
tical mechanics and information theory (Phillips et al., 2006). It uses 
only presence data to estimate a target probability distribution by 
finding the probability distribution of maximum entropy under the 
constraint of the original data properties (Phillips & Dudik,  2008). 
The package “dismo” of Hijmans et al. (2017) was employed for the 
utilization of MAXENT. ELNET, which consists of a generalized linear 
model with a Lasso and Ridge regularization (L1 and L2 regulariza-
tion) (Friedman et al., 2010), was used from the R package “h2o” (The 
H2O.ai team, 2018).

In order to tailor the models to our specified modeling problem, 
we conducted a hyperparameter tuning for the statistical methods 
ANN, RF, GBM, MARS, and ELNET. The “h2o” package offers many 
tuning options for ANN with the possibility of manual tuning of the 
learning rates and momentum as well as the possibility of using the 
ADADELTA method (adaptive learning rate method) of Zeiler (2012). 
Manual and ADADELTA parameter tuning followed the instructions 
of the “h2o” manuals (https://www.h2o.ai/resou​rces/, accessed 
October 2018). Parameter tunings for RF, GBM, and ELNET from the 
R package “h2o” (The H2O.ai team, 2018) were also carried out ac-
cording to “h2o” guidelines. For MARS, only the tuning parameter for 
the maximum number of terms was tuned (Milborrow, 2018; Zhang 
& Goh, 2016). All tuning parameters are summarized in Table S5. The 
hyperparameter optimization strategy for manual and ADADELTA 
ANN, RF, GBM, and ELNET was random grid search (n = 300) since 
random parameter combination search was shown to find good 
or even better models compared with pure grid search within a 
small fraction of the computation time (Bergstra & Bengio, 2012). 
However, all parameter possibilities were tested for MARS due to 
significantly less computational cost. For each model that required 
parameter tuning, we estimated the best parameter combination 
using the threshold independent performance measure “AUC” re-
sulting from fivefold cross-validation of 80% of the data (Bergstra 
& Bengio, 2012; El-Gabbas & Dormann, 2017). The remaining 20% 
were withheld to simulate performance testing on an unseen and 
independent data set (Bergstra & Bengio, 2012). For the two ANNs, 
only the model with better performance on the test data set was 
used in further analyses.

https://www.h2o.ai/resources/
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Accuracy of various predictive performance measures after final 
parameter determination was tested by randomly splitting the data 
into 80% calibration and 20% validation data 100 times. A threshold 
for the probability predictions, that is, for separating presences and 
absences of a species, was determined by minimizing the absolute 
difference between specificity (the rate of correctly predicted ab-
sences) and sensitivity (the rate of correctly predicted presences) 
(Fielding & Bell,  1997). Minimizing the difference between the 
sensitivity and specificity generally leads to accurate predictions 
(Jimenez-Valverde & Lobo,  2007). Therefore, we also considered 
the threshold-dependent performance measure “true skill statistic” 
(TSS = sensitivity + specificity – 1). Validation performance results 
for AUC, sensitivity, specificity, and TSS were computed each time, 
whereas the average validation performance was used for the as-
sessment of the predictive performance (Dormann et al., 2008).

For species distribution predictions, we applied the consensus 
method by averaging the resulting probabilities of occurrence in order 
to reduce uncertainty of using a single modeling approach (Marmion 
et al., 2009). To ensure reliability and robustness of our statistical ap-
proaches, only those models with a mean validation AUC >0.85 were 
included. Following this validation approach, we also conducted a vali-
dation of the performance measure accuracy for the ensemble model.

We studied three different scenarios in the future spatial distribu-
tion patterns of the considered species in terms of distribution possi-
bilities. The first possibility considers no change in future distribution 
ranges (“no dispersal”), that is, the 2050s distribution range corre-
sponds to the range of the baseline in order to identify affected areas 
in the future of current distributions. The second possibility comprises 
a free distribution of the species on condition that the predicted pres-
ence in a catchment is connected to a catchment with a presence in the 
baseline pattern (“free dispersal”). The third possibility is defined by a 
restricted distribution of the species, which considers dams as dispersal 
barriers (“restricted dispersal”), in order to outline the effects of habitat 
fragmentation on future species distributions and performance.

2.7 | Assessment of species’ thermal performance

Thermal performance analyses were based on the baseline and future 
(“no dispersal,” “free dispersal,” “restricted dispersal”) distribution data, 
water temperature data, and the parametrized TPCs for the different 
life stages (adult, juveniles, and eggs) (see Figure S2). Predictions by 
SDMs were constructed per species prior to thermal performance 
analyses, which were carried out post hoc for each life stage and dif-
ferent timeframes; such that for every predicted occurrence, a ther-
mal performance measure was calculated. Species performance was 
studied at a monthly, seasonally, and yearly timeframe. Monthly and 
seasonal analyses were performed for capturing potential phenology 
shifts either due to enhanced or reduced fitness (Deutsch et al., 2008). 
Seasons were defined as winter (December–February), spring (March–
May), summer (June–August), and autumn (September–November) 
according to the northern hemisphere. The spawning season for 
eggs in the northern hemisphere was defined as October–February 

(Campbell,  1977; Elliott & Elliott,  2010; Jonsson & Jonsson,  2009, 
2011, 2014; Östergren & Rivinoja, 2008) and for the southern hemi-
sphere as April–August, being six months out of phase with northern 
conspecifics (Pankhurst & King, 2010). A broad spawning season was 
chosen to cover phenotypical divergence across populations (Angert 
et  al.,  2011; Hereford,  2009). Seasonal and yearly estimates were 
based on previously calculated monthly performances. Additionally, 
latitudinal distributions of the performance rates were investigated 
in order to understand how the thermal performance might change 
(Sinclair et al., 2016). The main workflow is summarized in Figure S3.

Relationships between modeled habitat suitability given as 
a probability for the baseline and the species’ functional trait ex-
pressed as the thermal performance were quantified via a correlation 
analysis to test the implicit assumption of SDMs that highly suitable 
sites with high probabilities of occurrence imply higher performance 
and fitness than poorly suitable sites with lower probabilities of oc-
currence (Guisan & Thuiller, 2005; Wittmann et al., 2016). Thus, the 
concept of the environmental niche modeling, which commonly uses 
abiotic conditions for explaining species distributions, is examined 
by relating to a biotic factor.

3  | RESULTS

3.1 | Predictor variable selection

Through synthesis of three variable selection criteria (univariate 
analysis, correlation analysis, and scientific literature), we selected 
8 from 29 variables representing climatic, topographic, and an-
thropogenic influences from the baseline data set for each species 
(Table 1, Tables S6–S7, Figure S4). The variable selection accounted 
for seasonal discharge and water temperature influences in regard 
to spawning seasons. Discharge variables were all highly correlated 
with each other, thus limiting the number of discharge variables in 
the model (Figure S4). For example, we explained Salmo trutta dis-
tributions by selecting the Mean autumn water temperature be-
cause of the combination of univariate explanatory strength and 
approaches in scientific literature (Tables S2 and S6). Due to high 
pairwise correlations of the mean autumn water temperature with 
other water temperature variables, only the annual water tempera-
ture range and mean diurnal range were additionally included. Mean 
winter discharge was analogously selected because of the combina-
tion of univariate explanatory strength and its influence on specific 
life stages. Factors of anthropogenic and topographic influences 
were taken into account through built-up area, forest, cropland, and 
altitude, whereas especially cropland and altitude were included due 
to scientific literature.

3.2 | Model performance

Cross-validated AUC values and AUC scores for the test data set 
during parameter tuning showed high performances (AUC >0.90) 
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(Tables S8 and S9) with only ELNET having lower performance 
scores (AUC <0.87) for both species. Final parameter tuning re-
sults are listed in Appendix S1 (Tables S8 and S9). Differences be-
tween the AUC test scores, although small, of the manually and 
ADADELTA tuned ANNs, led to the further inclusion of the manually 
tuned ANN model for Salmo trutta (Table S8) and the ADADELTA 
ANN for Salmo salar (Table S9). The performance validation showed 
high mean scores (e.g., mean AUC ≥0.95) after parameter tuning for 
all included statistical models except for ELNET (mean AUC ≤0.85) 
(see Table 2). Additionally, threshold-dependent performance meas-
ures, that is, sensitivity, specificity, and TSS, attained high values for 
nearly all statistical approaches. Medium performance values (e.g., 
0.7 ≤ AUC ≤ 0.9) were only found for ELNET (Table 2). Thus, ELNET 
was excluded in the ensemble modeling for both species. The valida-
tion performance values of the consensus models were in the range 
of the high values of each included statistical model (Table 2).

3.3 | Current and future species’ thermal 
performance

For the thermal performance assessment of the two salmonids, three 
future dispersal scenarios were considered. While the location and 
number of presences for the “no dispersal” scenario correspond to 
the initial baseline situation (n = 730 for Salmo trutta and n = 199 for 
Salmo salar), the remaining two future dispersal scenarios showed 
a reduction in the distribution ranges. For Salmo trutta, n  =  724 
future presences were predicted with the ensemble modeling ap-
proach. In regard to the “free dispersal” scenario, which required a 
connection of the catchment with a predicted presence to a catch-
ment with a baseline presence, the number of predicted presences 
decreased to n = 582 (~−20%), with 464 out of the 730 currently 
suitable catchments being suitable in the future. The integration of 
the “restricted dispersal” scenario, which included dams as dispersal 

barriers, indicated a further decline of the distribution range, with 
n = 475 (~−35%) remaining predicted presences for the 2050s (see 
Figure S5). For Salmo salar, the consensus model predicted n = 194 
presences for the 2050s. Under the “free dispersal” scenario, the 
predicted number of presences decreased to n = 119 (~−40%) with 
89 out of the 199 currently suitable catchments being still suitable 
in the future. Similarly, the “restricted dispersal” scenario led to a 
further decline in the number of presences to n = 102 (~−49%) (see 
Figure S6).

Monthly thermal performance trends for the three life stages 
were considered separately for the northern and southern hemi-
sphere to account for the shifted seasons (Figure 1 and Figure S7). 
Mean performances for the life stages of adults and juveniles of 
Salmo trutta, respectively, showed similar monthly trends (Figure 1). 
We note that less occurrences were present for the southern hemi-
sphere and that results should be interpreted with caution (see 
Table S1). For the sake of simplicity, the following results focus on 
the species in the northern hemisphere. Compared with the baseline 
performance, a slight increase in performance for all dispersal sce-
narios could be observed from January to June and from September 
to November, whereas for the remaining months in summer (July, 
August) all scenarios predicted a drop below the current perfor-
mance (Figure  1a,d). Future mean performances of the scenarios 
“free dispersal” and “restricted dispersal” were similar, although 
the latter scenario led to fewer predicted occurrences. Additionally, 
both indicated higher performance values from May to September 
compared with those found under the “no dispersal” scenario. 
Future monthly performances of eggs during the spawning season 
showed in general higher performances with a shift of the peak per-
formance from October to November (Figure 1g). For all scenarios of 
the 2050s, a drop below the current performance was observable in 
October. Monthly performances for Salmo salar were only identified 
for populations in the northern hemisphere (Figure S7), because low 
occurrence numbers were present for southern conspecifics (see 

TA B L E  1   Variable selection for modeling species distributions of Salmo trutta and Salmo salar

Category Variable Description

Species

Salmo trutta
Salmo 
salar

Climatic Mean winter discharge Mean discharge for the months December–February Yes Yes

Water temperature seasonality Average of the annual standard deviation of water 
temperatures

No Yes

Mean autumn water temperature Mean water temperature for the months 
September–November

Yes Yes

Mean diurnal range Mean of monthly (maximum–minimum water temperature) Yes No

Annual water temperature range Maximum water temperature–minimum water temperature Yes No

Isothermality Mean diurnal range / Annual water temperature range No Yes

Topographic Altitude Mean catchment elevation Yes Yes

Land cover Cropland Percentage of catchment area covered by cropland Yes Yes

Built-up area Fraction of sealed areas within the catchment Yes Yes

Forest Percentage of catchment area covered by forest Yes Yes
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Table S1). In general, all future scenarios predicted a similar increase 
in monthly performances for Salmo salar adults and juveniles (Figure 
S7). For eggs, the same monthly performance pattern as found for 
northern Salmo trutta eggs emerged.

Seasonal performance patterns of Salmo trutta underlined the 
decrease in the summer performance of adults and juveniles for 
all scenarios in the southern ranges of the northern hemisphere 
(Figures 2 and 3, Figures S8–S13 and Table 3). Summer mean perfor-
mances were higher for the “free” and “restricted dispersal” scenario 
(adults: 0.60, juveniles: 0.54) compared with the “no dispersal” sce-
nario (adults: 0.49, juveniles: 0.45) (Table 3). Mean performances of 
northern populations across the winter, spring, and autumn season 
showed a slight shift from lower to higher performances. The sce-
nario “restricted dispersal” revealed limited distribution possibilities 
in north-eastern USA and eastern Europe (Figure 3 and Figure S9). 
Thus, in northern USA areas where high performance values could 
be attained in summers of the 2050s could not be reached due to 
the existence of artificial barriers. Seasonal mean performances of 

Salmo trutta eggs indicated in general increasing performance values 
for all scenarios (Table 3). Seasonal mean performances of northern 
Salmo salar populations increased similarly for every future scenario 
and life stage (Table  3, Figures S14–S21). Nonexisting differences 
between the seasonal mean performances inferred from the “free” 
and “restricted dispersal” scenario indicated the necessity of geo-
graphical inspections. However, for adults and juveniles only the dis-
appearance of catchments connected to high performances could be 
observed under “restricted dispersal” especially for the summer sea-
son in northern Europe and parts of the USA (Figures S16, S17, S20 
and S21), which could be ascribed to the small difference (n = 17) be-
tween the numbers of predicted occurrences of the two scenarios.

Latitudinal trends of the annual mean performance revealed pole-
ward trends across all scenarios and life stages of Salmo trutta (Figure 4 
and Figures S22–S23). Northward trends were observable due to 
higher performances around 45°–55°N (northern USA and central 
Europe) in the future and range shifts identified by the “free” and “re-
stricted dispersal” scenario (e.g., Figure 4e,g). However, the increases 

TA B L E  2   Validation performance results of all considered statistical methods (Artificial Neural Networks (ANN), Random Forest (RF), 
Gradient Boosting Machines (GBM), Multivariate Adaptive Regression Splines (MARS), Generalized Additive Models (GAM), Maximum 
Entropy Method (MAXENT), Elastic Net (ELNET), and consensus method (CONS))

Species Performance measure

Method

ANN RF GBM MARS GAM MAXENT ELNET CONS

Salmo trutta AUC Min 0.97 0.97 0.97 0.93 0.94 0.95 0.80 0.97

Mean 0.98 0.98 0.98 0.95 0.96 0.96 0.82 0.98

Max 0.99 0.99 0.99 0.96 0.97 0.97 0.84 0.98

Sensitivity Min 0.91 0.92 0.92 0.85 0.87 0.86 0.72 0.90

Mean 0.93 0.94 0.94 0.88 0.90 0.90 0.74 0.92

Max 0.95 0.95 0.96 0.91 0.92 0.93 0.76 0.94

Specificity Min 0.91 0.92 0.91 0.85 0.87 0.86 0.72 0.90

Mean 0.93 0.94 0.94 0.88 0.90 0.93 0.74 0.92

Max 0.95 0.95 0.96 0.92 0.92 0.90 0.76 0.94

TSS Min 0.82 0.84 0.83 0.69 0.75 0.73 0.44 0.81

Mean 0.86 0.87 0.87 0.76 0.79 0.80 0.48 0.84

Max 0.90 0.91 0.92 0.83 0.84 0.85 0.53 0.88

Salmo salar AUC Min 0.95 0.97 0.95 0.93 0.94 0.96 0.81 0.96

Mean 0.97 0.98 0.98 0.96 0.97 0.97 0.85 0.98

Max 0.99 0.99 0.99 0.98 0.98 0.99 0.89 0.99

Sensitivity Min 0.86 0.87 0.86 0.85 0.83 0.86 0.74 0.86

Mean 0.91 0.93 0.93 0.90 0.91 0.92 0.78 0.92

Max 0.95 0.97 0.97 0.94 0.95 0.98 0.83 0.97

Specificity Min 0.87 0.90 0.88 0.85 0.84 0.86 0.73 0.87

Mean 0.91 0.93 0.93 0.90 0.91 0.92 0.78 0.92

Max 0.96 0.97 0.97 0.94 0.95 0.97 0.82 0.96

TSS Min 0.73 0.79 0.73 0.70 0.67 0.72 0.47 0.73

Mean 0.82 0.87 0.86 0.79 0.82 0.83 0.56 0.84

Max 0.91 0.94 0.94 0.89 0.90 0.95 0.64 0.92

Note: For Salmo trutta, the manually tuned ANN was used for further analyses, while for Salmo salar, the ADADELTA ANN was used. Due to a mean 
validation AUC of ≤0.85, ELNET was excluded in the consensus model for both species.
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in performance up to 55°N were followed by declines in the annual 
mean performance for more northern or polar regions. The spawning 
season performance of Salmo trutta eggs in these regions dropped even 
stronger than the performance of adults and juveniles (Figure S23). In 
general, these observations could be made for the southern hemisphere 
vice versa. The observed northward trends of the performances and 

distributions found for Salmo trutta in the northern hemisphere could 
be transferred to all life stages of Salmo salar (Figures S24–S26). Future 
annual and spawning season mean performances increased around 
45°–55°N and were accompanied by in part steep negative slopes when 
moving toward higher latitudes. Trends for the southern hemisphere 
could not be studied because of low occurrence numbers.

F I G U R E  1   Baseline and 2050s 
monthly thermal performance given as 
a rate of survivorship for the life stages 
adults, juveniles, and eggs of Salmo trutta 
under consideration of different dispersal 
scenarios

F I G U R E  2   Global map of the seasonal 
performances of adult Salmo trutta for 
the “baseline” scenario. Note that seasons 
were defined according to the northern 
hemisphere
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3.4 | Species distribution models and thermal 
performance

Relationships between the modeled probabilities of occurrence and 
thermal performances of the two salmonids and the respective life 
stages were investigated in order to test the ability of SDMs to incor-
porate biotic characteristics through abiotic predictors. The inves-
tigation revealed significant positive relationships for all life stages 
of Salmo trutta (p < .01; r = .40 for adults and juveniles; r = .35 for 
eggs) (Figure  5). However, no significant relationships were found 
for Salmo salar adults and juveniles (p > .40). Only between the per-
formance of Salmo salar eggs in the spawning season and the prob-
ability for a species’ presence a significant positive relationship was 
identified (p < .01; r = .28).

4  | DISCUSSION

Comprehensive assessments of future climate change impacts on 
species require not only the investigation of abiotic relationships 
of the species with the environment by using species distribution 
models (SDMs) but also the consideration of species traits (Floury 
et al., 2017; Jonsson & Jonsson, 2009; MacLean & Beissinger, 2017). 
In this study, we assessed climate change impacts by combining 
predictions of SDMs for three different dispersal scenarios (“no 
dispersal,” “free dispersal,” “restricted dispersal”) with thermal per-
formance curves for three life stages (adults, juveniles, eggs) of the 
salmonid species Salmo trutta and Salmo salar. Thermal performance 
curves (TPCs) allowed the detailed investigation of performances 
for different timeframes, that is, monthly, seasonally, and yearly, and 
thus the identification of periods with potentially higher vulnerabil-
ity in the future (Deutsch et al., 2008).

Monthly performance analyses showed in general higher future 
performances for eggs of both studied species with a temporal shift 
of the peak performance in the northern hemisphere from October 
to November. Previous studies have stated that spawning times 

could change quickly under new environmental settings (Carlson 
& Seamons, 2008) and Jonsson and Jonsson (2009) have even ar-
gued that the time of spawning could be delayed under future con-
ditions, being in accordance with the shift of the peak performance 
identified in our results. For adults and juveniles of Salmo trutta and 
Salmo salar, varying monthly performance changes were observed, 
implying different reactions of the species to different time periods. 
For example, there was also a shift of the peak performance from 
June to May of Salmo trutta juveniles in the northern hemisphere. 
As changes in climatic conditions for a certain life stage can substan-
tially affect later life stages (Angilletta, 2009; Fleming et al., 1997; 
Jonsson & Jonsson,  1993), identifying responses of different life 
stages to changing environments is essential. In general, fishes as 
ectothermic species exhibit phenotypic plasticity and thus plas-
tic responses to temperature variations, implying that life-history 
traits besides survivorship, like fecundity or development, change 
accordingly (Dawson et  al.,  2011; Schulte et  al.,  2011; Scranton & 
Amarasekare, 2017). Therefore, analyses of species responses on a 
monthly basis for different life stages enable a more detailed identi-
fication of delayed or shifted species’ traits.

Mean performances increased for the spawning seasons as well 
as winter, spring, and autumn in 2050s for both hemispheres and 
all life stages of Salmo trutta. Rising temperatures affected adults 
and juveniles of Salmo trutta especially during the summer season 
(June–August) of the northern hemisphere, where performance de-
creases were observable. In summer, the inclusion of different dis-
persal scenarios outlined the importance of dispersal possibilities in 
order to escape the increasing temperatures and to reach habitats 
where higher performances may be possible. In regard to increases 
in heat events (Field et al., 2014; Scranton & Amarasekare, 2017), 
movement through the hydrological network will be a major factor 
influencing survival. For the summer season of the southern hemi-
sphere (December–February) similar statements could be made, as 
the “no dispersal” scenario indicated a markedly lower future mean 
performance than the remaining scenarios. Further on, consider-
ing that the reproduction phase and its temperature requirements 

F I G U R E  3   Global map of the seasonal 
performances of adult Salmo trutta for the 
“restricted dispersal” scenario. Note that 
seasons were defined according to the 
northern hemisphere
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is a critical bottleneck in the life cycle of fish (Dahlke et al., 2020), 
the ability of dispersal is even more important for the life stage 
eggs because higher performances were present under dispersal 
scenarios accounting for species movements and thus spawning 
in new habitats. Major differences among the seasonal mean per-
formances of the three dispersal scenarios were absent for Salmo 
salar, which can be ascribed to the lower numbers of presences for 
each scenario and the catchment-scale used for analysis. However, 
performances seemed to increase for every season for Salmo salar 
in the northern hemisphere, whereas for the southern hemisphere 
no analyses could be executed due to low numbers of occurrences. 
In regard of the geographical distribution of the seasonal perfor-
mances for both species, the “restricted dispersal” scenarios, which 
accounted for dams as dispersal barriers, highlighted the negative 
influences of dams on species distributions, since areas with high 
thermal performances identified by the “free dispersal” scenario 
could not be reached anymore. Dams are already known to disrupt 

the hydrological habitat connectivity and thus aggravating climate 
change influences (Markovic et al., 2017).

Future distribution patterns retrieved from the SDMs under 
consideration of the “free” and “restricted dispersal” scenario im-
plied a decline in suitable habitat for the 2050s and northward and 
southward shifts for both species in the northern and southern 
hemisphere, respectively. For example, the “free” and “restricted 
dispersal” scenario predicted a decline by −20% and by −35%, re-
spectively, for Salmo trutta compared with the current global distri-
bution range. Projections of previous studies finding a reduction in 
the number of suitable habitats for brown trout Salmo trutta are thus 
confirmed by our results (Wenger et al., 2011). In addition, north-
ward movements are already projected for Salmo salar and highlight-
ing that increases in water temperature may influence species traits, 
which can lead ultimately to extinctions for southern ranges in the 
northern hemisphere (Jonsson & Jonsson, 2009). With the summer 
season being most critical to species in regard to performance in the 

TA B L E  3   Comparison of the mean baseline and future thermal performance as rate for different scenarios and timeframes

Species Life stage Timeframe

Scenario

Baseline No dispersal Free dispersal
Restricted 
dispersal

NH SH NH SH NH SH NH SH

Salmo trutta Adults Winter (summer) 0.10 0.79 0.14 0.70 0.11 0.85 0.12 0.86

Spring (autumn) 0.39 0.64 0.49 0.70 0.46 0.66 0.47 0.67

Summer (winter) 0.66 0.28 0.49 0.35 0.60 0.28 0.60 0.28

Autumn (spring) 0.46 0.59 0.53 0.68 0.54 0.60 0.55 0.61

Annual 0.40 0.58 0.41 0.60 0.43 0.60 0.43 0.60

Juveniles Winter (summer) 0.12 0.79 0.17 0.67 0.13 0.83 0.14 0.83

Spring (autumn) 0.46 0.71 0.56 0.75 0.54 0.73 0.54 0.74

Summer (winter) 0.64 0.35 0.45 0.43 0.54 0.34 0.54 0.35

Autumn (spring) 0.51 0.68 0.57 0.75 0.59 0.70 0.60 0.71

Annual 0.43 0.63 0.44 0.65 0.45 0.65 0.46 0.66

Eggs Spawning 0.37 0.60 0.40 0.53 0.41 0.62 0.42 0.63

Salmo salar Adults Winter (summer) 0.08 – 0.11 – 0.11 – 0.11 –

Spring (autumn) 0.27 – 0.36 – 0.33 – 0.33 –

Summer (winter) 0.80 – 0.83 – 0.89 – 0.89 –

Autumn (spring) 0.35 – 0.46 – 0.42 – 0.43 –

Annual 0.38 – 0.44 – 0.44 – 0.44 –

Juveniles Winter (summer) 0.07 – 0.09 – 0.09 – 0.09 –

Spring (autumn) 0.21 – 0.29 – 0.25 – 0.26 –

Summer (winter) 0.70 – 0.83 – 0.79 – 0.79 –

Autumn (spring) 0.28 – 0.38 – 0.34 – 0.34 –

Annual 0.32 – 0.40 – 0.37 – 0.37 –

Eggs Spawning 0.32 – 0.37 – 0.38 – 0.40 –

Note: Performances for populations in the northern (NH) and southern hemisphere (SH) were computed separately. Performance was identified for 
the life stages adults, juveniles, and eggs, whereas performance of eggs was only considered within the spawning season of the salmonids Salmo 
trutta and Salmo salar. Note, that values for the southern hemisphere of Salmo salar were excluded because of few observations. Seasons for the 
southern hemisphere are given within brackets.
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southern ranges, conservation actions need to focus on providing 
access to northern habitats within this season to prevent severe 
impacts for southern populations. Future higher annual mean per-
formances in the northern USA and central to northern Europe and 
lower performances for the southern distribution ranges for all sce-
narios and life stages underline the shifts based on the studied biotic 
factor. However, there have to be further investigations carried out 
to analyze whether the inclusion of other species’ traits follows the 
same patterns (MacLean & Beissinger, 2017).

Few studies have tested the combination of species func-
tional traits and model-based predictions for species (Elmendorf & 
Moore, 2008; Nagaraju et al., 2013; Thuiller et al., 2010; Wittmann 
et  al.,  2016). However, these studies have found existing correla-
tions between the model outputs and species traits. In particular, 
Wittmann et al. (2016) added the first fish example to the correlation 
analysis, finding a positive relationship (r = .5) between modeled habi-
tat suitability and growth rates for the Grass Carp (Ctenopharyngodon 
idella). In this study, we investigated the relationship between mod-
eled probabilities of occurrence and the annual mean performances 
for the different life stages of the salmonids. For Salmo trutta, we 
have found significant positive relationships for all three life stages. 
Bravais–Pearson correlation coefficients were around r  =  .40 for 

adults and juveniles and around r = .35 for eggs. For Salmo salar, only 
for eggs a significant positive relationship (r = .28) was found. Less 
studied occurrences of Salmo salar (n = 199) compared with Salmo 
trutta (n = 730) at the analyzed catchment scale may have impaired 
the found relationships. Overall, these results add further answers 
to the question of whether species distribution models are somehow 
able to account for traits through calibrations with abiotic environ-
mental data. Further studies confronting SDMs with performance 
data are necessary for deriving a profound answer to this question.

Although we have included species traits for assessing climate 
change impacts by using thermal performance curves (TPCs), such 
an analysis comes with limitations and should be viewed in the con-
text of this study and the used model for deriving thermal perfor-
mance curves. TPCs were based on experimentally observed data 
for different life stages not representing true settings in the field. 
Acclimation processes in laboratory experiments can substan-
tially modify observed thermal limits and thus the shape of TPCs 
(Angilletta, 2009). Furthermore, resource limitations in the field can 
alter the temperature performance relationship as well as the in-
teraction of temperature with a variety of biotic and abiotic factors 
(Angilletta,  2009; Childress & Letcher,  2017; Schulte et  al.,  2011). 
Martin et al. (2016) have found that laboratory data can significantly 

F I G U R E  4   Latitudinal trends of annual 
mean performance for adult Salmo trutta 
under consideration of different dispersal 
scenarios. Annual mean performance is 
based on monthly performance values
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underestimate field-derived thermal mortality. In addition, due to 
both genetic and nongenetic reasons single individuals in popula-
tions may have significantly differing thermal properties (Kingsolver 
et al., 2011). As such, the preferred temperature (Topt) and thermal 
tolerance may vary from species to species, between populations 
and even individuals and therefore lead to differences in the shape 
of thermal performance curves (Angilletta, 2009). Intraspecific vari-
ations in thermal tolerance might influence the width of TPCs and 
need to be considered when estimating climate change impacts for 

different geographical locations (Fangue et al., 2006). Despite these 
differences, other previous studies have found no significant rela-
tionships between a species’ functional trait or performance and the 
thermal conditions of different populations (Angilletta, 2009; Elliott 
& Elliott, 2010; Forseth et al., 2009; Jonsson et al., 2001; Jonsson & 
Jonsson, 2009). However, Topt is influenced by further factors such 
as the amplitude of thermal cycles and variations which species have 
recently been exposed to or levels of dissolved oxygen (Jobling, 1981; 
Johnson & Kelsch, 1998). Especially for eggs, a strong relationship 
between oxygen limitation and thermal tolerance of fish embryos 
was identified (Martin et al., 2016). Moreover, for this life stage vary-
ing response types might be possible (see Tsoukali et al., 2016). The 
found thermal limits CTmin and CTmax are also not necessarily survival 
limits as species may endure short-term exposures to temperatures 
beyond these limits (Sinclair et  al.,  2016). Brief exposure to such 
temperatures can even cause greater tolerance to temperature ex-
tremes, which is called hardening (Angilletta, 2009). Consequently, 
the duration of the exposure to critical temperatures additionally 
influences the performance, where the performance usually de-
creases with increasing exposure time (Sinclair et al., 2016). Shifting 
from static to dynamic TPCs, which incorporate a time component, 
would enable more comprehensive and realistic studies of climate 
change impacts (Schulte et al., 2011; Woodin et al., 2013). However, 
current data availability restricts such analyses.

In summary, future temperature changes will influence the per-
formance of each life stage of the studied fish species differently ac-
cording to the analyzed timeframes. Dispersal possibilities will become 
more important for fish distributions in order to escape warming and 
reach areas where performance can increase. Dams as dispersal barri-
ers disrupt catchment connectivity and will impede movement to suit-
able habitats linked to high performance values. Thus, we suggest that 
conservation management should incorporate a time component en-
abling the mitigation of severe climate change effects in periods where 
performances of species might drop critically. Additionally, catchments 
where dispersal barriers are present and prohibiting movement to 
places where higher performances could be possible should be recon-
sidered in further conservation planning.
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