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Summary

Curbing unwanted T cell responses by costimulation blockade has been a recognised immuno-
suppressive strategy for the last 15 years. However, our understanding of how best to deploy this 
intervention is still evolving. A key challenge has been the heterogeneity in the clinical response to 
costimulation blockade, and an inability to predict which individuals are likely to benefit most. Here, 
we discuss our recent findings based on the use of costimulation blockade in people with type 1 dia-
betes (T1D) and place them in the context of the current literature. We discuss how profiling follicular 
helper T cells (Tfh) in pre-treatment blood samples may have value in predicting which individuals are 
likely to benefit from costimulation blockade drugs such as abatacept.
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Costimulation and autoimmunity

Autoimmune diseases arise as a consequence of damaging 
immune responses against self-tissues. The strong genetic 
associations between particular major histocompati-
bility antigens and susceptibility to autoimmune disease 
point to the importance of T cells in disease pathogen-
esis. T cell-directed therapies are therefore a promising 
strategy for the treatment of multiple autoimmune condi-
tions. Costimulation blockade as an immunosuppressive 
strategy stems from the so-called ‘2 signal rule’ of T cell 
activation, which postulates that recognition of antigen 
via the T cell receptor alone is insufficient to trigger a 
T cell response; an additional ‘costimulatory’ signal de-
livered after binding of T cell-expressed CD28 to its 

ligands, CD80 (B7.1) or CD86 (B7.2), is required. It fol-
lows that inhibiting this second signal would therefore 
impair T cell immunity. Consistent with this, inhibiting 
the CD28 pathway by genetic deficiency or blockade 
ameliorates autoimmunity in multiple animal models [1], 
while augmenting CD28 signalling by transgenic expres-
sion of its ligands can promote autoimmunity, one ex-
ample being the pancreatic islet expression of CD80 in 
mouse models of autoimmune diabetes [2].

Costimulation blockade in type 1 diabetes

The natural inhibitor of CD28 is the immune regu-
lator CTLA-4 that binds to the same ligands as CD28 
but with higher affinity and, in the case of CD80, higher 
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overall avidity. CTLA-4, therefore, acts as a competitive 
inhibitor, depriving CD28 of access to its ligands and 
limiting T cell costimulation. This function is augmented 
by the ability of CTLA-4 to physically remove its ligands 
from the surface of adjacent cells by a process of trans-
endocytosis [3]. The ability of CTLA-4 to regulate CD28 
signalling and T cell activation has led to the develop-
ment of soluble CTLA-4 molecules for clinical use.

Abatacept (Orencia®) is a chimeric protein com-
prising the extracellular domain of human CTLA-4 fused 
to the Fc region of immunoglobulin (CTLA-4-Ig). It has 
proven clinically efficacious in the treatment of rheuma-
toid arthritis (RA) and was licensed by the FDA for use 
in this disease setting in 2005. In 2011, abatacept was 
trialled in the context of recent-onset type 1 diabetes 
(T1D) [4]. At the end of a 24-month-long randomised, 
double-blind, placebo-controlled study, individuals 
treated with abatacept displayed 59% higher serum 
C-peptide levels (indicative of insulin production) than 
those who received placebo. Furthermore, a subsequent 
follow-up study demonstrated that the beneficial effects 
of abatacept therapy were largely maintained even 1 year 
after cessation of treatment [5]. Despite the encouraging 
signs, heterogeneity in the response to abatacept treat-
ment could also be observed. A clear understanding of 
which T cell populations are affected by costimulation 
blockade would help the identification of immune bio-
markers and facilitate the selection of patients that would 
benefit from abatacept treatment.

Which T cells are impacted by 
costimulation blockade?

Although CD28 costimulation is a key regulator of 
T cell activation, it is becoming increasingly clear that 
certain T cell populations are more dependent on this 
pathway than others. It has previously been shown that 
CD28 plays an important role in the development of fol-
licular helper T cells (Tfh), the CXCR5-expressing T cell 
subset that collaborates with B cells to support humoral 
immunity. In fact, mice deficient in CD28 signalling (as 
a result of transgenic expression of CTLA-4-Ig [6], or 
germline deficiency of CD80 and CD86 [7]) were unable 
to generate Tfh and form germinal centres. Furthermore, 
T cells expressing less CD28 as a result of gene hetero-
zygosity showed a reduced capacity for Tfh formation, 
despite normal proliferation [8]. These data suggest Tfh 
are prime candidates to be targeted by costimulation 
blockade.

We tested this idea using cryopreserved samples from 
recent-onset T1D patients, recruited in the 2011 clinical 
trial of abatacept [4]. CD4 T cells expressing CXCR5 

can be found in the blood and are believed to contain 
memory Tfh that can home to germinal centres upon 
secondary challenge [9, 10]. Our analysis identified ac-
tivated (ICOS-expressing) circulating Tfh cells to be one 
of the T cell populations most reduced by costimulation 
blockade [11, 12]. As well as a decrease in the number of 
circulating CXCR5+ T cells in response to abatacept, we 
also noted a profound change in their phenotype with a 
marked loss of PD-1 and a particularly significant reduc-
tion of ICOS expression (Fig. 1). The decrease in Tfh fol-
lowing costimulation blockade is consistent with studies 
conducted in other autoimmune diseases, including RA 
[13], multiple sclerosis [14], and Sjögren’s syndrome [15]. 
Previous work from Orban et al. suggested an effect of 
abatacept treatment on central memory T cells in T1D 
[16]. Since a substantial proportion of Tfh belongs to 
the central memory compartment [17], it is tempting to 
speculate that the reduction in central memory T cells 
reflects the loss of Tfh.

Interestingly, we identified another population of 
costimulation sensitive cells that expressed PD-1 and 
ICOS but lacked CXCR5 [11]. These cells resemble the 
peripheral helper T cells (Tph) recently described by Rao 
and colleagues that are believed to provide help to B cells 
at inflammatory sites (e.g. RA joint) [18]. Furthermore, 
in our study, regulatory T cells were also shown to be de-
creased by costimulation blockade as reported by others 
[16, 19].

A common characteristic among the T cell popula-
tions revealed to be abatacept-sensitive in our study was 
expression of the costimulatory receptor ICOS. This is in 
line with ICOS expression being highly CD28 driven and 
may explain why T cell populations dependent on ICOS 
signalling, such as Tfh, are particularly sensitive to CD28 
costimulation blockade.

Predicting clinical response to 
costimulation blockade

The heterogeneity in the clinical response to abatacept 
has generated a pressing need to develop predictive bio-
markers. In RA, the presence of anti-citrullinated protein 
antibodies is known to be associated with a better response 
to abatacept [20, 21]. It has also been suggested that 
abatacept responders exhibit a more marked decrease in 
anti-citrullinated protein antibody levels after 12 months 
than non-responders [22]. A  separate study of RA pa-
tients comparing the baseline serum proteome from five 
abatacept responders and five non-responders found car-
tilage oligomatrix protein to be significantly lower in serum 
from responders and suggested that combining this with 
measurement of fibronectin or lipopolysaccharide-binding 
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protein could improve predictive power [23]. Attempts are 
underway to use serum proteomic analysis to develop pre-
diction software that can guide the selection of disease-
modifying drugs in the RA setting [24].

In T1D, early findings showed that an increase in cen-
tral memory T cell frequency was associated with a decline 
in C-peptide at the following measurement time point 
[16]. This change in central memory T cells was therefore 
proposed as an immunological marker for C-peptide loss 
that could inform how well an individual is responding to 
therapy. Two more recent studies used RNA sequencing 
to stratify abatacept responsiveness at the transcriptomic 
level. Data from Cabrera and colleagues indicated that a 
more proinflammatory profile at baseline was associated 
with a poorer response following abatacept treatment [25], 
while Linsley and colleagues showed that a higher B cell 
gene module expression 84 days after abatacept treatment 
initiation may predict C-peptide decline; however, this as-
sociation was lost at later time points [26]. The latter study 
also highlighted the link between age at diagnosis and 
response to abatacept. Given the emerging evidence that 
individuals diagnosed before the age of 7 years exhibit dis-
tinct islet pathology and faster disease progression [27], it 
is likely that age at diagnosis will be a component of all ap-
proaches to predict sensitivity to immunotherapies in T1D.

Our own analysis suggested an unanticipated link be-
tween baseline Tfh phenotypes and an individual’s sub-
sequent clinical response to abatacept treatment [11]. By 
comparing profiles from responders and non-responders, 
we were able to build a predictive model using gradient 
boosting that could predict the response to abatacept with 
85% accuracy and an AUC of 0.81. While the model drew 

on the combined frequencies of multiple populations, the 
population that held most predictive power was ICOS+ 
Tfh cells. Indeed, of the six populations that were most 
important for the generation of the prediction, five ex-
pressed CXCR5. Data-driven analysis using the CellCnn 
algorithm supported the link between Tfh phenotypes 
and sensitivity to abatacept treatment, with the expres-
sion of PD-1 and particularly ICOS on Tfh being associ-
ated with a poor clinical response (Fig. 2).

Since ICOS is highly CD28 dependent, it might be ex-
pected that individuals with strongly CD28-driven path-
ology would be characterised by high ICOS expression 
and show sensitivity to CD28 costimulation blockade. 
Notably, our data showed the exact opposite—individ-
uals with high numbers of ICOS+ Tfh were less likely 
to respond to costimulation blockade. This observa-
tion could suggest that the baseline Tfh profile reflects 
an individual’s disease stage, with patients displaying 
higher frequencies of ICOS+ Tfh having more advanced 
disease and no longer being amenable to this interven-
tion. Extrapolating this notion further, if Tfh profiles can 
indeed serve as a proxy for disease stage, they may be 
helpful in predicting the response to other interventions, 
not just costimulation blockade. However, these findings 
would first require corroboration in independent clinical 
trials involving larger numbers of participants.

Concluding remarks

In summary, recent findings provide a further step 
forward in our understanding of how costimulation 
blockade perturbs the peripheral immune system and 
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Figure 1. Abatacept treatment affects circulating Tfh cell frequency and their phenotype. Circulating CXCR5-expressing CD4 T cells 
(here called Tfh) can express PD-1, ICOS or both (left). Following abatacept treatment the frequency of circulating Tfh cells is re-
duced and the Tfh cells that remain show markedly lower expression of ICOS and, to a lesser extent, PD-1 (right).
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how to identify individuals who will benefit most from 
this treatment. An emerging theme is the sensitivity of 
B-helper T cell populations to costimulation blockade. 
One might speculate that T cell help for B cells, whether 
by Tfh or Tph, is a key CD28-mediated function, 
making these cells particularly effective readouts for 
costimulation blockade.

A better appreciation of the hierarchy of CD28 de-
pendence among T cell subsets will help to shape our 
thinking on which disease settings may be amenable to 
costimulation blockade immunotherapy. In this regard, 
given the importance of tissue-resident T cells in auto-
immune diseases, it will be of interest to determine the 
sensitivity of these cells to costimulation blockade. There 
is little data on this currently; however, in the context of 
influenza infection, it has been shown that at least some 
tissue-resident memory CD8 T cells in the lung are reliant 
on CD28 costimulation [28].

Regarding the use of biomarkers for patient strati-
fication, it will be of interest to see whether predictive 
markers identified in abatacept-treated individuals are 
also applicable to recipients of next-generation CTLA-
4-Ig molecules and antagonistic anti-CD28 antibodies. 
Furthermore, it will be important to establish their 
utility across different disease settings and in recipi-
ents of combination therapy such as the abatacept and 

rituximab combination currently being trialled in T1D 
(NCT03929601).
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Figure 2. Baseline Tfh profile may help predict clinical response following abatacept treatment. Using a predictive modelling ap-
proach, we were able to show that the baseline Tfh profile may help predict an individual’s clinical response following abatacept 
treatment. Responders were shown to have a higher frequency of CXCR5+ICOS-PD-1-CD4+ T cells (left), while CXCR5+CD4+ T cells 
expressing both ICOS and PD-1 were more abundant in non-responders (right).
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