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Abstract
Machine learning (ML) opens new perspectives in identifying predictive factors 
of efficacy among a large number of patients’ characteristics in oncology studies. 
The objective of this work was to combine ML with population pharmacokinetic/
pharmacodynamic (PK/PD) modeling of tumor growth inhibition to understand 
the sources of variability between patients and therefore improve model predic-
tions to support drug development decisions. Data from 127 patients with hepa-
tocellular carcinoma enrolled in a phase I/II study evaluating once-daily oral 
doses of the fibroblast growth factor receptor FGFR4 kinase inhibitor, Roblitinib 
(FGF401), were used. Roblitinib  PKs was best described by a two-compartment 
model with a delayed zero-order absorption and linear elimination. Clinical effi-
cacy using the longitudinal sum of the longest lesion diameter data was described 
with a population PK/PD model of tumor growth inhibition including resistance 
to treatment. ML, applying elastic net modeling of time to progression data, was 
associated with cross-validation, and allowed to derive a composite predictive 
risk score from a set of 75 patients’ baseline characteristics. The two approaches 
were combined by testing the inclusion of the continuous risk score as a covariate 
on PD model parameters. The score was found as a significant covariate on the re-
sistance parameter and resulted in 19% reduction of its variability, and 32% vari-
ability reduction on the average dose for stasis. The final PK/PD model was used 
to simulate effect of patients’ characteristics on tumor growth inhibition profiles. 
The proposed methodology can be used to support drug development decisions, 
especially when large interpatient variability is observed.
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INTRODUCTION

Oncology trials, especially in phase I, are associated with 
high patients’ heterogeneity (e.g., inclusion of patients 
with multiple previous lines of treatments), small sample 
size, and rapid escalation in dose. Large variability in re-
sponse is also usually observed implying the need for a 
deep understanding of potential contributing factors.

Pharmacometrics modeling and simulation (M&S) ap-
proaches are widely used in pharmaceutical industries to 
understand drug exposure-response relationships and to 
support drug development decisions, such as dose finding. 
Pharmacokinetic/pharmacodynamic (PK/PD) modeling 
of tumor growth inhibition (TGI) has been extensively ap-
plied to identify the optimal dose.1 Nevertheless, patients’ 
heterogeneity is reflected in the high interpatient variabil-
ity of model parameters and can limit the usefulness of 
model simulations.

Over the past decade, progresses in technology and grow-
ing automation enabled companies to collect vast amounts 
of data. Machine learning (ML) is a subfield within arti-
ficial intelligence (AI), which aims to develop and utilize 
algorithms that learn from big data and then make a pre-
diction about the future state of any new data set.2,3 ML is 
gaining increasing interest within the pharmaceutical in-
dustry as it can promote data-driven decision making and 
has the potential to accelerate and reduce failure rates in 
drug discovery and development. Opportunities to apply 
such approaches occur in all stages of drug discovery and 

development, from identification of novel targets to analy-
sis of digital pathology data in clinical trials.4–6 ML methods 
are also being applied within the healthcare setting leading 
to significant advances in personalized medicine.7

Additionally, ML opens new perspectives to comple-
ment M&S approaches with a potential for combining both 
approaches to improve model performance, personaliza-
tion, and predictivity, and make informed decisions from 
all available patients’ data using robust algorithms.8–14

The main objective of this paper is to share a method-
ology combining ML with population PK/PD modeling to 
understand and characterize the sources of variability be-
tween patients and therefore improve model predictions 
for drug development support. For that, we used data from 
the phase I/II study evaluating the daily oral administra-
tion of Roblitinib (FGF401) in hepatocellular carcinoma 
(HCC) and other solid tumors.15 Fibroblast growth factor 
(FGF)401 is a fibroblast growth factor receptor (FGFR)4 
inhibitor, mainly indicated for the treatment of HCC, a 
deadly disease with limited treatment options, for which 
the FGF19–FGFR4–β Klotho (KLB) signaling pathway is 
a key driver.16

The relationship between FGF401 exposure and clini-
cal efficacy was explored with a population PK/PD model 
of TGI, using tumor size expressed as the sum of the lon-
gest diameter (SLD). ML was used to derive a composite 
score of baseline factors predictive of time to progression 
(TTP), which was subsequently included in the PK/PD 
model.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Oncology trials, especially in phase I, are characterized by high patients’ hetero-
geneity and variability in response, implying the need for a deep understanding 
of potential contributing factors.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can machine learning be combined with population pharmacokinetic/pharma-
codynamic (PK/PD) modeling to explain the high variability observed in clinical 
trials?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A new approach combining machine learning and PK/PD modeling is pro-
posed to improve model predictions by including a large set of patients’ baseline 
characteristics.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This approach is susceptible to detect unexpected factors as covariates of interest 
in PK/PD models, supporting the definition of inclusion and exclusion criteria in 
future studies and could pave the way for precision medicine and individualized 
therapy.
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METHODS

The proposed methodology along with the data used to 
combine ML with population PK/PD modeling of TGI is 
presented in Figure 1.

Data

Data from the first-in-human (FIH) phase I/II study eval-
uating oral administration of Roblitinib in HCC and other 
solid tumors (NCT02325739) were used.15 The study pro-
tocol and all amendments were reviewed by the inde-
pendent ethics committee or institutional review board 
at each study center. The study, including data collection, 
was conducted according to the International Conference 
on Harmonization (ICH) E6 Guidelines for Good Clinical 
Practice, which have their origin in the Declaration of 
Helsinki. This study was designed as a multicenter, open-
label, nonrandomized study starting with a phase I dose 
escalation part followed by a phase II part. In the phase 
I part, the escalated Roblitinib dose regimens included 
daily (q.d.) administration of 50 mg, 80 mg, 120 mg, and 
150 mg under fasted condition, and 80 mg and 120 mg 
under fed condition. Patients enrolled in the phase II part 
received Roblitinib at 120 mg q.d. under fasted condition, 
which was the recommended dose for expansion defined 
in the phase I part. A complete treatment cycle was de-
fined as 21 days of continuous dosing.

In the phase I part, 10 PK blood samples per individual 
were collected on the first and the eighth day of cycle 1, and 
on the first day of cycle 2. In the phase II part, four PK blood 
samples were collected on the first day of cycle 1 and cycle 2. 
Several trough samples were also collected during the study.

Tumor size assessments, expressed as SLD, were sched-
uled at baseline and subsequently every 6 weeks (± 7 days) 
from cycle 3 until disease progression.

The TTP, used for the ML analysis, was defined as the 
time from the start of treatment date to the first docu-
mented progression or death due to underlying cancer. If 
a patient had no event, TTP was censored at the date of the 
last adequate tumor assessment.

SLD was chosen to account for the longitudinal profile 
of the drug effect on the tumor. TTP was selected as it was 
the primary end point from the trial and the closest PD 
end point related to tumor size.

PK data from all patients, whatever the tumor type, were 
first analyzed. Then, as HCC was the main indication for 
Roblitinib, patients with other tumor types were excluded 
for PK/PD modeling of TGI and ML analysis. Only data 
from patients with at least one PK sample and one post-
treatment SLD measurement were kept in the analyses.

The limit of quantification (LOQ) was equal to 1.5 ng/
ml for Roblitinib PK samples. The LOQ value for SLD data 
was assumed to be equal to the minimal value observed 
among patients. Concentrations and SLD values below 
the LOQ (BLOQ) were set to the LOQ values and flagged 
as left-censored observations in the dataset. BLOQ values 
were automatically taken into account in the likelihood as 
the probability of having an observation within an interval.

Two sets of baseline patients’ characteristics were de-
fined: (i) “basic set” including seven commonly tested 
covariates (i.e., height, weight, body mass index [BMI], 
age, race, sex, and food); and (ii) “extended set” includ-
ing 75 individual factors (demographics, disease history, 
SLD, and laboratory data listed in Table 1). The basic set 
was used to evaluate covariates in the PK and TGI PK/PD 
models. The extensive set was used for the ML analysis.

F I G U R E  1   Contribution of ML to PK/PD tumor growth inhibition modeling for patients with hepatocellular carcinoma under 
Roblitinib drug treatment. A population PK model was first developed to describe Roblitinib concentrations. Then, the estimated individual 
PK parameters were used as inputs for the population PK/PD TGI model to described longitudinal SLDs data. ML was used to derive a 
composite score of baseline factors predictive of time to progression, which was subsequently included in the PK/PD model. FGF, fibroblast 
growth factor; ML, machine learning; PD, pharmacodynamic; PK, pharmacokinetic; SLD, sum of the longest diameters; TGI, tumor growth 
inhibition.
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T A B L E  1   Descriptive summary of PK and SLD data and patients’ characteristics

Characteristics
Median [minimum − maximum]/number of individuals or 
observations [%]

Data for PK model development

Number of individuals 160

Number of PK observations 3036

Number of PK observations per individual 16 [1–39]

Number of BLOQ values [LOQ = 1.5 ngml] 175 [6%]

Number of individuals and PK observations per first dose 
levels:

Number of individuals Number of observations

50 mg 11 217

80 mg 11 317

120 mg 131 2304

150 mg 7 198

Number of doses per individual 65 [1–808]

Time of follow up of PK concentrations, days 61 [0.08–650.92]

Basic covariates

Height, cm 170 [149–186]

Weight, kg 68.5 [38.0–114.0]

BMI, kg/m2 24.2 [14.2–35.2]

Age, years 62 [21–85]

Number of individuals per race:

Non-Asian 87 [54%]

Asian 73 [46%]

Number of individuals per gender

Male 118 [74%]

Female 42 [26%]

Number of individuals with food

Fasted 136 [85%]

Fed 24 [15%]

Data for PK/PD tumor growth inhibition model development

Number of individuals 127

Number of SLD observations 511

Number of SLD observations per individual 3 [1–20]

Number of BLOQ values [LOQ = 9 mm] 6 [1.2%]

Number of individuals and SLD observations per first dose 
levels

Number of individuals Number of observations

50 mg 8 22

80 mg 10 43

120 mg 103 406

150 mg 6 40

Time of follow-up, months 2.7 [0–26.3]

Baseline SLD, mm 92 [15–352]

Abbreviations: BLOQ, below the limit of quantification; BMI, body mass index; LOQ, limit of quantification; PD, pharmacodynamic; PK, pharmacokinetic; 
SLD, sum of the longest diameters.
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Model development

Tumor growth inhibition PK/PD model

A minimal mathematical PK/PD model was developed 
to establish the relationship between Roblitinib exposure 
and longitudinal profiles of SLD. Population typical pa-
rameters and their interindividual variability (IIV) were 
estimated based on a population analysis applying a non-
linear mixed-effect modeling approach.17

A sequential approach was applied, with the estimated 
individual PK parameters (mode of the conditional pa-
rameter distribution for each individual) from the final 
population PK model used as inputs for the population 
PK/PD TGI model.

Several PK structural models were tested including 
one, two, or three compartments, with first- or zero-order 
absorption, with or without absorption delay.18

For the tumor growth inhibition, several structural 
models were investigated to describe longitudinal SLD data 
starting from a standard TGI structural model that com-
bines tumor growth and killing rates.19,20 Various models 
were tested for unperturbed tumor growth, such as expo-
nential and linear growth. To reproduce the observed delay 
in drug effect, effect and transit compartments were eval-
uated. Drug effect on tumor growth was investigated with 
various parametrizations and inclusion of a resistance term 
was tested to reproduce tumor regrowth under treatment.21 
The model was parametrized to allow direct estimation of 
an individual dose for tumor stasis instead of drug potency.

In both PK and PK/PD models, visual inspection of the 
potential covariate relationships was investigated by plot-
ting the conditional distribution of each parameter versus 
covariates.22 Selection of covariate-parameter relationship 
to be retained in the final model was based on several cri-
teria: difference in Akaike information criterion (AIC), 
reduction of IIV, and significant p values (p ≤ 0.05) for the 
Wald test on model parameters. The clinical relevance of 
the statistically significant PK covariates was evaluated by 
simulating their effect on PK exposure (e.g., area under the 
curve [AUC] and maximum plasma concentration [Cmax]).

PK and PK/PD model evaluation and selection

Model evaluation and selection were assessed using the 
following criteria: Stochastic Approximation Expectation–
Maximization (SAEM) algorithm convergence assessment, 
change in the objective function value and AIC, precision 
of the parameter estimates (relative standard error [RSE]) 
and degree of correlation between them, decreases in both 
IIV and residual variability, and visual inspection of di-
agnostic plots. Diagnostic plots were assessed to evaluate 

model adequacy and possible lack of fit or violation of as-
sumptions. The predictive performance of the final model 
was evaluated by simulating data using parameter esti-
mates (fixed and random effects) and plotting visual pre-
dictive check (VPC). Prediction-corrected VPCs (pcVPCs) 
were provided, to remove the baseline variability coming 
from the various doses and/or potential covariates.23

Application of machine learning to identify 
baseline predictive factors of progression

A survival Cox proportional hazards model was applied 
on the individual TTP end point. The following equation 
was used to describe the instantaneous risk of an event at 
time t for an individual i with a set of p baseline character-
istics xi =

(
xi,1,… , xi,p

)
:

where h0(t) is the baseline hazard representing the hazard 
when all o te predictors � =

(
�1,… , �p

)
 are equal to zero. 

The predicted hazard h
(
t|xi

)
 is the product of the baseline 

hazard and the exponential function of the linear combi-
nation of the predictors.

The extended set of 75 baseline individual factors was 
used to evaluate predictors of TTP. Each variable was stan-
dardized to have a mean of zero and an SD of one.

First, a univariate Cox regression analysis was per-
formed to evaluate the effect of each baseline character-
istic on survival. Data were split using random sampling 
into a training set of 80% and test set of 20% of the total 
number of patients. Then, a supervised ML approach, 
using a penalized Cox regression, in combination with 
cross-validation (leave-one-out cross-validation) meth-
odology was implemented using training set data. This 
approach allows to obtain reliable survival prediction 
models for high-dimensional predictors.24 The penalized 
likelihood approach used to take into account correlated 
predictors and solve multicollinearity was the elastic net 
that integrates the ridge and the lasso penalties.25 Root 
mean squared error (RMSE) criteria was used to select 
the optimal tuning penalties (alpha and lambda) for the 
elastic net model during the cross-validation part. Then, 
model prediction performance for the final elastic net 
model was assessed using the time dependent receiver op-
erating characteristic (ROC) curves on the test set.26

The elastic net model coefficients using the best penalties 
during the tuning on the training part were used to derive a 
composite risk function and applied on each patient (training 
and test sets) to obtain a continuous risk score value. To facil-
itate clinical interpretation, the risk score was used to catego-
rize the population into two subgroups based on the median 

h
(
t|xi

)
= h0(t) ⋅ e

xi⋅�
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value: (i) patients at low risk of progression if the score was 
below the median, and (ii) patients at high risk of progression 
if the score was above or equal to the median.

Combination of machine learning with 
PK/PD modeling

The selected approach to combine ML with PK/PD modeling 
was to evaluate the continuous risk score as a potential co-
variate of interest on PD parameters. Redundancy between 
baseline covariates and factors from the risk score was 
avoided by excluding them from the multivariate analysis. 
Selection of parameter-score relationship to be retained in 
the final model was based on the same criteria as the classi-
cal approach: AIC improvement, IIV reduction, significant p 
values (p ≤ 0.05) for the Wald test on model parameters.

Model simulations

The final PK/PD model including the risk score derived from 
ML was used to simulate FG401-induced tumor growth in-
hibition at the observed dose levels given patients’ baseline 
characteristics (500 simulations of the available dataset). 
Quantitative comparisons of the various dose levels were 
assessed by simulations of the proportion of responders by 
risk group at 4 and 6 months (based on clinical considera-
tions) after the start of treatment. Simulated patients were 
considered as responders when SLD change from baseline 
was lower than +20% at the time considered.27

The final PK/PD model was also used to simulate, across 
5000 virtual patients, the time to 50% loss of drug potency 
function of the risk score in the range of patients’ study values.

Computing process

Population PK model development was performed using 
the MonolixSuite2018.R1 software and population PK/
PD model using the MonolixSuite2019.R2 version.28,29 R 
version 3.4.3 software was used for data and outputs pro-
cessing and R version 3.6.1 for simulations.30 Simulations 
were performed using simulx function from the R package 

mlxR_4.2.0. Elastic net model was performed in R version 
3.4.3 software using packages caret version 6–0.84 and 
glmnet version 2.0–18.

RESULTS

Data

The analysis of Roblitinib PK included 3036 observations 
from 160 individuals with HCC and other solid tumors. 
A total of 50 PK samples has been initially excluded 
due to: (i) abnormal PK concentration (e.g., abnormally 
high trough concentrations), (ii) predose sample col-
lected postdosing, or (iii) vomiting within 4  h of drug 
administration.

A total of 33 individuals among the 160 (21%) were ex-
cluded due to non-HCC tumor type for the PK/PD and ML 
analyses. The longitudinal analysis of SLD data used 511 
observations from 127 patients with HCC. Each patient 
had at least one PK sample and one SLD measurement. 
A descriptive summary of these data and the basic covari-
ates are given in Table 1.

Individual SLD kinetics profiles by dose group are 
shown in Figure  2. Large variability between individual 
profiles was observed.

The minimal SLD value observed among patients was 
equal to 9 mm and was assumed to correspond to the LOQ.

A total of 103 progression events in the 127 patients 
with HCC (81%) were observed, with a median TTP of 
2.92 months (95% confidence interval [CI]: 2.66 months 
– 4.07 months).

Selected PK/PD model of tumor 
growth inhibition

A two-compartment model with a delayed zero-order ab-
sorption and linear elimination was adequately describing 
Roblitinib PK data. The structural PK model is summarized 
in Figure 3 and is described by the following equations for 
one given patient, with k corresponding to the dose admin-
istration number and the time of first administration being 
tD,1 = 0:

tD,k < t≤ tD,k+Tlag:
dA1
dt

=0 A1(0)=0

tD,k+Tlag< t≤ tD,k+Tlag+Tk0:
dA1
dt

=
Dosek
Tk0

−
Cl

V1
⋅A1(t)+k21 ⋅A2(t)−k12 ⋅A1(t) A1(0)=0

Tlag+Tk0+ tD,k < t≤Tlag+Tk0+ tD,k+1:
dA1
dt

= −
Cl

V1
⋅A1(t)+k21 ⋅A2(t)−k12 ⋅A1(t) A1(0)=0

∀t:
dA2
dt

=k12 ⋅A1(t)−k21 ⋅A2(t) A2(0)=0
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Considering:

With:

•	 A1(t), the Roblitinib amount in the central compart-
ment at time t

•	 A2(t), the Roblitinib amount in the peripheral compart-
ment at time t

•	 tD,k, the time of kth dose administration
•	 Tlag, the delay before the absorption
•	Tk0, the duration of the zero-order absorption
•	 Cl, the clearance
•	V1, the volume of distribution
•	Q, the intercompartmental clearance
•	V2, the volume of distribution of the peripheral 

compartment.

The apparent clearance (Cl∕F) was estimated at 19.7 L h−1 
and apparent volume of distribution (V1∕F) at 110 L. Six co-
variates from the basic set were found significant on key PK 

model parameters. Food, high Roblitinib dose, and low BMI 
were associated with a longer absorption. Gender and race 
(Asian vs. non-Asian) were found as statistically significant 
covariates on Cl∕F and V1∕F, with lower values predicted 
in females and Asians. Increasing baseline weight was as-
sociated with increasing V1∕F. None of the covariates had 
a clinically meaningful influence on Roblitinib exposure 
metrics. Parameter estimates from the final PK model are 
reported in Table 2.

Unperturbed tumor growth was best characterized 
by an exponential function with a growth parameter kg. 
Predicted Roblitinib individual plasma PK profiles were 
linked to the tumor-killing rate parametrization through 
an effect compartment to reproduce the observed delay 
before drug effect. A resistance component, with param-
eter λ, was added to describe the tumor regrowth under 
treatment.21 The structural TGI model, is summarized in 
Figure 3 and is described by the following ODE equations:

Q=k12 ⋅V1

V2=
k12
k21

⋅V1

dE

dt
=ke0 ⋅C(t)−ke0 ⋅E(t) E(0)=0

dSLD

dt
=kg ⋅SLD(t)−kr(t) ⋅SLD(t) ⋅e−�⋅t SLD(0)=SLD0

F I G U R E  2   Observed individual SLD 
kinetics profiles by dose levels. Individual 
SLD kinetics profiles (a) raw data and 
(b) percent change from baseline stratified 
by dose group. SLD, sum of the longest 
diameters.
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With:

•	 E(t), the concentration in the effect compartment at 
time t

•	 ke0, the transit rate
•	 C(t), the drug concentration at time t
•	 kg, the tumor growth rate
•	 SLD(t), the SLD at time t
•	 kr(t), the drug killing rate at time t
•	 λ, the resistance parameter
•	 SLD0, the baseline SLD.

The killing rate at time t, assuming a linear PK and for an 
administration period τ, was calculated as:

With:

•	 Cl∕F, the apparent Roblitinib clearance
•	 τ, the dosing interval (24 h)
•	 avDS, the average dose for tumor stasis in absence of 

resistance.

None of the basic covariates was found significant on any 
PD model parameters.

Univariate Cox regression and Elastic 
net models

The resulted forest plot from the univariate Cox regres-
sion analysis using the 75 patients’ baseline characteris-
tics is available in Figure S1.

Elastic net model with cross-validation methodology 
resulted in four baseline predictive factors of the risk 
of progression: age, number of metastases, lymphocyte 
count, and portal vein invasion (PVI). Of note, individual 
PK parameters from the final population PK model were 
also tested. The individual apparent volume of distribu-
tion V1,i∕Fi was found as a predictive factor, indicating a 
link between the PK and TTP (results shown in Material 
S1). As individual PK parameters were already part of the 
PK/PD model, V1,i∕Fi was removed from the risk function. 
Parameter estimates from the univariate Cox models are 
shown in Table 3. The predictive accuracy of the elastic 
net model is available in Table S3. The accuracy was 67% 
in the training set and 64% in the testing set at 2 months.

The following composite risk function was derived to 
calculate the continuous risk score for each patient:

Each individual predictive factor, factor∗, was standard-
ized to have a mean of zero and a SD of one. Mean and 
SD for each factor from the training set are reported in 
Table S2.

The lymphocyte count was found to have the highest 
effect on TTP, followed by age, number of metastases and 
PVI. A median score of 0.22 was observed in the popula-
tion with first quartile at 0.06 and third quartile at 0.36 
(Figure S2). Patients were stratified into two groups: (i) 
patients at high risk of progression if scorei was greater 
than or equal to 0.22, and (ii) patients at low risk of 
progression if scorei was less than or equal to 0.22. The 
survival curves stratified by risk group are available in 
Figure S3.

kr(t) =
E(t) ⋅ Cl∕F ⋅ kg ⋅ �

avDS

Scorei=0.197−0.184 ⋅ lymphocytesi
∗−0.044 ⋅agei

∗

+0.027 ⋅metastasesi
∗+0.024 ⋅PVIi

∗

F I G U R E  3   Structural PK/PD tumor growth inhibition model. Tlag (h−1) is the delay before the absorption. Tk0 (h) is the duration of the 
0-order absorption. C(t) (ng/ml) corresponds to the drug concentration in the central compartment at time t (h). Cl/F (L h−1) is the apparent 
clearance. V1 ∕F (L) is the apparent volume of distribution. Q/F (L h−1) is the apparent intercompartmental clearance. V2 ∕F (L) is the 
apparent volume of distribution of the peripheral compartment. E(t) represents the concentration in the effect compartment at time t. ke0 
(h−1) is the transit rate of the effect compartment. SLD(t) (mm) represents the sum of the longest diameters at time t. kg (h−1) is the tumor 
growth rate. kr (h−1) is the drug killing rate. λ (h−1) is the resistance parameter. PD, pharmacodynamic; PK, pharmacokinetic.
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Final tumor growth inhibition model

The continuous risk score was evaluated as a covariate on 
PD parameters from the TGI model and found significant 
on the resistance parameter, λ, with an increasing score 
associated with an increasing typical λ value. The score 
effect on the resistance parameter was implemented using 
the following equations:

With:

•	 �i, the resistance parameter value for the individual i
•	 �pop, the typical resistance parameter value in the 

population
•	 �Score, the score effect on the resistance parameter
•	 Scorei, the risk score value for the individual i.

�i = �pop ⋅ e
�Score⋅(Scorei−0.22)

Parameter (unit)
Fixed effect 
(% RSE)

IIV: SD of random 
effect (% RSE)

p value 
Wald test

PK model

Tlag (h−1) 0.268 (11) 0.63 (12) /

Tk0 (h) (fasted condition) 0.811 (10) 0.64 (10) /

Tk0 in fed condition (h) 1.58 (25) / 5 × 10−5

BMI effect on Tk0 −1.66 (25) / 7 × 10−5

Dose effect on Tk0 0.983 (28) / 4 × 10−4

Cl∕F (L h−1) (non-Asian male) 19.7 (4) 0.29 (6) /

Cl∕F in Asian 16.3 (26) / 1 × 10−4

Cl∕F in female 15.1 (21) / 2 × 10−6

V1 ∕F (L) (non-Asian male) 110 (3) 0.15 (12) /

Weight effect on V1 ∕F 0.332 (33) / 0.002

V1 ∕F in female 84.5 (20) / 5 × 10−7

V1 ∕F in Asian 84.5 (17) / 2 × 10−9

Q∕F (L h−1) 5.59 (6) 0 FIX /

V2 ∕F (L) 49.2 (7) 0.68 (9) /

Combined residual error: additive 
(ng/ml)/proportional (%)

4.1 (7)/33 (2) / /

Tumor growth inhibition model

ke0 (h
−1) 7.79 × 10−4 (33) 1.50 FIX /

SLD0 (mm) 89.95 (6) 0.62 (6) /

� (h−1) 3.40 × 10−4 (30) 1.15 (16) /

�Score 2.87 (32) / 0.002

kg (h−1) 1.05 × 10−4 (12) 0.78 (14) /

avDS (mg) 59.42 (24) 0.53 (28) /

Residual additive error (mm) 6.44 (5) / /

Abbreviations: BMI, body mass index; FIX, fixed parameter; IIV, interindividual variability;  
PD, pharmacodynamic; PK, pharmacokinetic; RSE, relative standard error.

T A B L E  2   Parameter estimates of the 
final PK/PD tumor growth inhibition 
model using a sequential PK/PD modeling 
approach

T A B L E  3   Parameter estimates of the univariate models

Predictive factor

Summary (mean 
[SD]/number of 
individuals [%]) HR (univariate)

Age, years 61.5 [12.1] 0.98 (0.97–1.00, 
p = 0.016)

Number of 
metastases

1.9 [1.0] 1.23 (1.02–1.49, 
p = 0.033)

Lymphocyte count 
(109 cells L−1)

1.1 [0.5] 0.43 (0.29–0.65, 
p < 0.01)

Portal vein invasion

Yes 27 [21.4] 2.22 (1.35–3.66, 
p = 0.002)No 99 [78.6]

V1,i ∕Fi (L) 93.4 [22.0] 0.99 (0.98–1.00, 
p = 0.006)

Abbreviations: HR, hazard ratio; p, p value; V1,i ∕Fi, volume of distribution 
from the population PK model.
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Inclusion of the risk score as a covariate on λpop re-
sulted in reduction of the SD of its random effect by 19% 
(decrease from 1.42 to 1.15). The SD of the random ef-
fect on the average dose for tumor stasis (avDS) was also 
reduced by 32% (decrease from 0.79 to 0.53). Parameter 
estimates from the final population PK/PD model 
of tumor growth inhibition are reported in Table  2. 
Uncertainty on estimated parameters were considered 
as acceptable, with all RSE less than or equal to 32%. IIV 
on all PD parameters were relatively high, reflecting the 
observed heterogeneity in spaghetti plots. Variability on 
the parameter ke0, the transit rate from the effect com-
partment that reproduces the delay in drug effect, was 
fixed to a high value (>100%) to obtain stable model pa-
rameter estimation with SAEM convergence achieved 
for all parameters. Simpler structural models, with 
no delay component, were resulting in worst AIC and 
goodness-of-fit plots.

Model evaluation

According to goodness-of-fit plots, VPCs and pcVPC, 
Roblitinib PK and change in SLD data were adequately  
fitted by the final models with no apparent bias 
(Figures S4–S10).

Model simulations

The proportion of responders at 4 and 6 months in both 
high-risk and low-risk patients are provided in Table  4. 
These simulations reproduced a dose-dependent tumor 
growth inhibition. A dose of 120 mg q.d. leads to a re-
sponse (median [25th–75th quantiles]) at 4 and 6 months 
in 59.4% [54.7%–64.1%] and 43.8% [39.1%–48.4%] of pa-
tients at high risk, and in 69.8% [66.7%–74.6%] and 60.3% 
[55.6%–63.5%] of patients at low risk, respectively.

Interestingly, a typical patient with a median risk score 
is predicted to show 50% loss of drug efficacy at (median 
[10th–90th percentile]) 81.5 days [19.7 days–352.0 days] 
(Figure S11).

DISCUSSION

The present analysis illustrates the combination of ML 
with a population PK/PD model to improve model predic-
tion. First, a population PK model was developed to de-
rive individual PK parameters that were used as inputs for 
the population PK/PD model of tumor growth inhibition 
in patients with HCC. Then, a penalized Cox regression 
model was applied to evaluate baseline predictors of TTP 
and derive a composite risk score used to supplement the 
population PK/PD model. For the purpose of that analysis, 
the elastic net regression was selected among other linear 
and nonlinear ML algorithms (e.g., random forest, neu-
ral net, and support vector machine) based on interpret-
ability and parsimony. Four baseline factors predictive 
of TTP were identified among the 75 patients’ character-
istics. Decreasing age and lymphocyte count, increasing 
number of metastases, as well as PVI were associated with 
an increasing risk of progression. Even if the number of 
metastases and PVI were expected to influence TTP,31,32 
the lymphocyte count had the highest effect. Evidence 
suggests that lymphocytes play a key role in the develop-
ment and progression in HCC, as liver cancer arises upon 
chronic hepatic inflammation.33 However, inflammation 
effect is still controversial as it exerts both pro- and anti-
tumor effects, and the associated molecular and cellular 
cascades are still not well understood.33 One hypothesis 
for the observed decreasing age associated with increas-
ing risk of progression would be a lower tumor growth in 
elderly patients, a trend found with the parameter kg in 
the PK/PD model without score, but that was not statisti-
cally significant. Another hypothesis would be a potential 

T A B L E  4   Simulated proportions of responders at 4 and 6 monthsa in patients at high and low risk of progression (median [25th–75th 
quantiles])

End point/dose 50 mg 80 mg 120 mg 150 mg

High risk

% Patients at 4 months 40.6 [37.5–45.3] 50.0 [46.9–54.7] 59.4 [54.7–64.1] 64.1 [59.4–67.6]

% Patients at 6 months 25.0 [20.3–28.1] 34.4 [29.7–37.5] 43.8 [39.1–48.4] 50.0 [43.8–53.1]

Low risk

% Patients at 4 months 49.2 [44.4–54.0] 60.3 [57.1–65.1] 69.8 [66.7–74.6] 74.6 [71.4–79.4]

% Patients at 6 months 33.3 [30.2–38.1] 47.6 [42.9–52.4] 60.3 [55.6–63.5] 66.7 [61.9–69.8]

Note: Patients with SLD change from baseline lower than +20% (including stable disease) were considered as responders.
Abbreviation: SLD, sum of the longest diameters.
aAssuming months of 30 days.
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selection bias, as patients are part of a trial population that 
could result in younger patients with worse disease and 
older patients with less aggressive disease.34

Genetic information data, such as patients’ mutation 
profile, was not available for the current analysis, but ge-
netic influence on TTP could be considered to inform fu-
ture studies and optimize recruitment criteria on top of 
the four baseline predictive factors.

Results from the penalized Cox regression model were 
combined with the TGI model by including the derived 
continuous risk score as a covariate on the PD model re-
sistance parameter λ. The IIV on λ and on the average dose 
for stasis, avDS, was reduced by 19% and 32%, respectively, 
and the score was statistically significant (p value from the 
Wald test p = 0.002). Parameters of the model were well-
estimated, but large unexplained variability was found 
on all PD parameters, including λ. Prediction intervals 
of the pcVPC are wide and shows that observations were 
not well captured beyond 8 months; the integration of a 
dropout model could be investigated to potentially solve 
this bias. Influence of the risk score on the resistance pa-
rameter λ could be expected as this parameter reflects the 
exponential loss of efficacy in function of time and the re-
sulting regrowth of the tumor.

The score derivation is dependent on the observed TTP, 
which is a post-baseline end point. Consequently, the use 
of the score as a covariate on the λ parameter is derived 
from baseline patients’ characteristics but influenced by 
a post-baseline observation. However, even if the ML end 
point (TTP) and PK/PD model end point (SLD) were not 
similar, the risk score appeared to be a significant covari-
ate in the PK/PD model.

The predictive accuracy of the elastic net model is as-
sociated with a poor discrimination, that can be explained 
by the absence of dose and PK information in the compos-
ite risk score. The PK information was excluded to avoid 
inclusion of a post baseline parameter and redundancy 
with the PK/PD model. However, this composite risk 
score appears to be useful and relevant, as it was found to 
be highly significant on the PK/PD resistance parameter, 
and to explain a part of its variability.

The final PK/PD model including the risk score 
was used to simulate the dose-dependent TGI profiles. 
Nevertheless, the developed PK/PD model does not reflect 
the full Response Evaluation Criteria in Solid Tumors 
(RECIST) criteria, and thus simulations of responders are 
only based on the simulated longitudinal SLD profiles and 
do not consider other aspects, such as apparition of new 
lesions.

It was not possible to validate the results on an inde-
pendent dataset to assess the robustness of the findings. 
In addition, this modeling framework has been per-
formed based on limited data from a homogenous disease 

population and some results, such as influence of the 
score on the resistance parameter, may not be applicable 
to other tumor types or drugs.

In this work, the composite risk score from the penal-
ized Cox regression model is used to keep the potential 
benefit of the collinearity between factors. Integration of 
the factors from the risk score as separate covariates on 
the resistance parameter in the PK/PD model have been 
explored. Results showed that only the age effect was sta-
tistically significant (p value from Wald test = 0.01) and 
identifiable. In addition, the variability on the resistance 
parameter was higher compared to the model including 
the score (SD of random effect: 1.45 vs. 1.15). Nevertheless, 
evaluation of the relevance of these factors as independent 
covariates could have been an alternative approach to in-
vestigate. In this case, ML would then be used as a screen-
ing tool to reduce data dimension and identify covariates 
of interest to be explored in a classical covariate search.35

PK/PD TGI modeling has been already combined with 
ML by Zwep et al.36 They applied the least absolute shrink-
age and selection operator (LASSO) method on the empir-
ical Bayes estimates-derived TGI parameters to identify 
high-dimensional genomic predictors. They also used a 
group LASSO regression model to identify pathways asso-
ciated with treatment response or resistance. Their results 
assumed that there is no misspecification in the structural 
models, whereas in the present work, ML was applied on 
a clinical end point (TTP), which is independent on the 
structural PK/PD model. Other approaches may be consid-
ered to combine ML and PK/PD modeling. Sibieude et al. 
showed that ML methods for covariate search achieved 
a better predictive ability of empirical Bayes clearance 
compared to classical methods (SCM and COSSAC).37 
Other publications applied ML approach to predict PK 
parameters, for example, the nivolumab clearance based 
on baseline cytokine data.38 However, in our proposed 
work, we combined ML with a PK/PD model of efficacy 
using a more challenging end point (SLD) that is associ-
ated with high variability. We could also imagine using 
ML approach, such as long short term memory (LSTM) to 
predict longitudinal outcome, or as published by Lu et al. 
to apply a neural-PK/PD model with which they predicted 
drug concentration and platelet dynamics.39,40

ML provides several opportunities to improve robust-
ness of data-driven decision making across drug discovery 
and development in oncology.41 Combining ML and PK/
PD modeling is proposed to improve model predictions by 
including a large set of patients’ baseline characteristics. 
The proposed methodology is not limited to efficacy but 
could also be applied for safety events. This approach is 
susceptible to detect unexpected factors as covariates of 
interest in PK/PD models, supporting the definition of in-
clusion and exclusion criteria in future studies and could 
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pave the way for precision medicine and individualized 
therapy.
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