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Hexavalent chromium [Cr(VI)] is a dangerous heavy metal which can impair the
gastrointestinal system in various species; however, the processes behind Cr(VI)-
induced intestinal barrier damage are unknown. Forty-eight healthy 1-day-old ducks
were stochastically assigned to four groups and fed a basal ration containing various Cr(VI)
dosages for 49 days. Results of the study suggested that Cr(VI) exposure could
significantly increase the content of Cr(VI) in the jejunum, increase the level of diamine
oxidase (DAO) in serum, affect the production performance, cause histological
abnormalities (shortening of the intestinal villi, deepening of the crypt depth, reduction
and fragmentation of microvilli) and significantly reduced the mRNA levels of intestinal
barrier-related genes (ZO-1, occludin, claudin-1, and MUC2) and protein levels of ZO-1,
occludin, cand laudin-1, resulting in intestinal barrier damage. Furthermore, Cr(VI) intake
could increase the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA),
tumor necrosis factor-a (TNF-a), interleukin-1b (IL-1b), and interleukin-18 (IL-18) but
decrease the activities of total superoxide dismutase (T-SOD), catalase (CAT), and
glutathione reductase (GR), as well as up-regulate the mRNA levels of TLR4, MyD88,
NF-kB, TNFa, IL-6, NLRP3, caspase-1, ASC, IL-1b, and IL-18 and protein levels of TLR4,
MyD88, NF-kB, NLRP3, caspase-1, ASC, IL-1b, and IL-18 in the jejunum. In conclusion,
Cr(VI) could cause intestinal oxidative damage and inflammation in duck jejunum by
activating the NF-kB signaling pathway and the NLRP3 inflammasome.

Keywords: hexavalent chromium, intestinal barrier, NF-kB, NLRP3, duck
INTRODUCTION

Chromium (Cr) is a crudely occurring element that can be found in diverse environmental media such as
soils, water, air, and sediments (1, 2). It exists in an amount of oxidation states ranging from -2 to +6.
Trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are themost common valence states (3).
org July 2022 | Volume 13 | Article 9526391

https://www.frontiersin.org/articles/10.3389/fimmu.2022.952639/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.952639/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.952639/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.952639/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.952639/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:hgljx3818@jxau.edu.cn
mailto:chbin20020804@jxau.edu.cn
https://doi.org/10.3389/fimmu.2022.952639
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.952639
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.952639&domain=pdf&date_stamp=2022-07-22


Xing et al. Cr (VI) Toxicity in Duck Intestine
Cr(III) is a relatively stable essential trace element that plays a critical
role in human carbohydrate, lipid, and protein metabolism (4).
Unlike Cr(III), Cr(VI) is highly mobile in soil and exceedingly
hazardous to living creatures and is designated as a carcinogen by
the World Health Organization (WHO) (5). With the widespread
use of Cr(VI) in wood preservation, leather tanning, chrome plating,
dye production, and alloy manufacturing, large amounts of Cr(VI)
are mined/produced globally each year, resulting in environmental
pollution (6–8). The total amount of Cr(VI) discharged in soil, water,
and air globally per year is estimated to be 896,000, 142,000, and
30,000 metric tons, respectively (9), which is well above the
international guideline (50–100 kg/year) (10). Cr(VI) has well-
known solubility, mobility, and responsiveness that can easily enter
animal and human bodies through the skin, gastrointestinal tract, or
respiratory tract, thus leading to Cr(VI) poisoning (11). Previous
studies have indicated that Cr(VI) exposure could induce
immunotoxicity, dermatotoxicity, genotoxicity, neurotoxicity, and
carcinogenicity in different tissues of animals and humans (12, 13).

The intestine not only is responsible for the digestion and
absorption of nutrients but also is the largest immune organ that
is closely related to the health of animals (14, 15). It plays a
crucial role in resisting the invasion of pathogenic bacteria and
the entry of xenobiotics (16). Intestinal environment
homeostasis is maintained by the epithelial cell integrity,
intestinal mucosal immunity, and complex interaction between
the intestinal microbiota and nutrients (17, 18). Numerous
investigations have shown that heavy metal exposure
negatively impacts gut function (19, 20). Zhang et al.
demonstrated that lead exposure in carp altered gut microbiota
and destroyed intestinal structural integrity by inhibiting the
expression of intestinal epithelial tight-junction proteins (21).
Zhong et al. demonstrated that arsenic trioxide could cause
jejunum inflammation via increasing the production of pro-
inflammatory cytokines in ducks (22). Furthermore, Zhou et al.
discovered that subchronic mercury exposure led to gut
microbiota dysbiosis and metabolic disturbances in chickens
(23). These studies illustrated that heavy metal exposure could
induce intestinal toxicity by destroying the intestinal barrier in
different ways. In recent years, many studies have also shown
that long-term exposure to Cr(VI) could cause intestinal damage
and adversely affect the intestinal immunity of chickens (24, 25).
Nevertheless, the mechanism by which Cr(VI) induced intestinal
toxicity remains unknown. Proverbially, oxidative stress is one of
the most crucial mechanisms of Cr(VI)-induced tissue injury
(26). When Cr(VI) enters the cell, it acts as a strong oxidant and
can produce additional reactive oxygen species (ROS) (27). The
body’s antioxidants are greatly reduced as ROS continues to
accumulate. The cells are then attacked, resulting in cellular
injury, which then produces inflammatory cytokines, which
activate immune cells, resulting in inflammation that
eventually causes tissue damage (28–32). A slew of recent
studies has suggested that inflammation is linked to the
activation of the NF-kB signaling pathway and the NLRP3
inflammasome (33, 34). However, the activation mechanism of
Cr(VI)-induced intestinal inflammation remains uncertain.
Therefore, the mechanism of Cr(VI)-induced intestinal barrier
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damage in ducks via activation of the oxidative stress-mediated
NF-kB signaling pathway and the NLRP3 inflammasome needs
to be further investigated.

Ducks are more susceptible to Cr(VI) toxicity than other
animals due to ingestion of Cr(VI)-contaminated water and soil.
Ducks better reflect the toxic effects of Cr(VI). Hence, ducks were
used in this study to assist the researchers in better
understanding the potential mechanisms of Cr(VI)-induced
intestinal barrier damage and lay the groundwork for
future research.

MATERIALS AND METHODS

Experiment Animals and Management
The experimental procedures were in favor of the animal ethics
committee of Jiangxi Agricultural University (Approval ID:
JXAULL-2022003). Ducks were purchased from Nanchang
Miaowang Industrial Co., Ltd. (Nanchang, China), and fed
with the standard rations as recommended by the National
Research Council (NRC), which cited Ren et al. (35). Table 1
displays the basic diet. The experimental animals were housed in
a controlled environment with free access to water and a duck
basal diet.

Determination of Lethal Dose 50 (LD50)
The source of Cr(VI) was analytical-grade potassium dichromate
(K2Cr2O7) (Sigma-Aldrich, St. Louis, CA, USA, 99% purity). For
the determination of LD50, 16 healthy Tianfu meat ducks (1 day
old) were stochastically assigned to four groups of four ducks
each. Different doses of Cr(VI) were administered to these
groups that were infected via oral gavage, namely, 0.215, 0.464,
1.0, and 2.15 g/kg body weight. The gavage volume was
calculated as 1% of body weight, fasting before gavage lasted
6 h, drinking water was not restricted, and the observation lasted
14 days. According to the Horn Table (the People’s Republic of
China’s national standard acute toxicity test), the LD50 of
K2Cr2O7 in ducks was 0.464 g/kg, with a 95% confidence limit
of 0.298–0.723 g/kg.

Toxicity Trials and Sample Collection
Before the experiment, 48 Tianfu meat ducks (1 day old) were
housed in an appropriate environment for 7 days. Then ducks
were divided into four groups and given Cr(VI) in doses of 0
(Control), 9.28 (LCr), 46.4 (MCr), and 232 (HCr) mg/kg body
weight for 49 days. All ducks were weighed, and blood samples
were collected from each duck’s wing vein and separated serum
on day 49. The jejuna were removed from each group of 12 ducks
promptly after euthanasia. The length and weight of the jejunum
tissues were measured. Then, the jejunum was cut into small
pieces and rinsed repeatedly with 0.9% NaCl until there was no
stool. A part of jejunum specimens was stored at -20°C for
determining contents of Cr(VI), and a part of jejunum specimens
was fixed in 10% formalin and 2.5% glutaraldehyde for
histopathological and ultrastructural observation, and the rest
of the jejuna were stored at -80°C for RNA isolation and total
protein extraction.
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Histopathological Examination
The jejunum tissues were fixed in 10% formalin for 24 h, then
dehydrated, embedded, sliced, and stained for microscopy (36).
TissueFAXS was applied to measure and analyze villus length
and crypt depth (TissueFAXS Plus, Vienna, Austria).

The effect of Cr(VI) on jejunum tissues was studied using
periodic acid–Schiff (PAS) staining. PAS staining was performed
according to the instructions provided by the manufacturer of
the PAS Kit (Cat # G1049, Service, Wuhan, China). TissueFAXS
was used to count the number of goblet cells in all of the sections
(TissueFAXS Plus, Austria).

Transmission Electron Microscopy
Transmission electron microscopy (TEM) was carried out in
accordance with the protocol previously described (37, 38). After
collecting jejunum tissues, they were processed and examined
using a TEM HT7800 (Hitachi, Tokyo, Japan). The
ultrastructural pathological changes in the jejunum were
observed and compared to the control group counterparts.

Determination of Cr(VI) Contents in
Jejunum Tissues
The jejunum tissues were digested with HNO3 (65%) and H2O2

(30%) before being diluted to 10 ml with deionized water.
Following that, the samples were digested and analyzed using a
microwave system and inductively coupled plasma mass
spectrometry (ICP-MS) (NexION 350, Watertown, MA, USA).
Frontiers in Immunology | www.frontiersin.org 3
Determination of Diamine Oxidase and
Oxidative Stress Index Content
Commercially available diagnostic kits (Jiancheng Biotech,
Nanjing, China) were applied to detect the concentrations of
diamine oxidase (DAO) in serum. Additionally, H2O2 and MDA
concentrations and T-SOD, CAT, and GR activities in jejunum
tissues were also detected as previously described (39).

Determination of Inflammation Cytokines
TNF-a, IL-1b, and IL-18 levels were detected in jejunum tissues
using a commercial kit (mlbio, Shanghai, China). All operation
steps were carried out according to the manual.

Real-Time Quantitative PCR
Total RNA was isolated from jejunum tissues using TRIzol
reagent (Takara, Shiga, Japan) and reverse transcribed, as
directed by the manufacturer. Then, the reverse transcription
product was used for RT-PCR. The gene sequences for duck ZO-
1, occludin, claudin-1, MUC2, TLR4, MyD88, NF-kB, TNFa, IL-
6, NLRP3, caspase-1, ASC, IL-1b, IL-18, and GAPDH are shown
in Table 2. Primers were designed with Primer Express 3.0
software and synthesized by Beijing Qingke Biotechnology Co.,
Ltd. The experiment was carried out on a CFX384 Touch+CFX
PCR instrument (Bio-Rad, Hercules, CA, USA). Pre-
denaturation was at 95°C for 30 s, denaturation at 95°C for 5
s, annealing at 60°C for 34 s, 40 cycles. The data were normalized
to GAPDH expression and analyzed using the 2-△△CT method.

Western Blot
Jejunum tissues were homogenized at 4°C in RIPA lysis buffer
which contained protease inhibitors (PMSF) (Beyotime, Shanghai,
China), and concentrations were determined using a BCA assay
(35). Samples were further diluted, and 5× SDS-PAGE loading
bufferwas added andboiled for 5min.Equal amounts of protein (10
mg) were loaded onto 12% SDS-polyacrylamide denaturing gels
before being transferred to polyvinylidene fluoride (PVDF)
membranes. After blocking with tris-buffered saline Tween
(TBST) containing 5% non-fat milk powder for 1 h at room
temperature, the membrane was incubated overnight with diluted
primary antibodies against ZO-1 (1:1,000; ABclonal, Wuhan,
China), occludin (1:1,000; Selleck Chemicals, USA), claudin-1
(1:1,000; ABclonal, China), TLR4 (1:500; Proteintech, Wuhan,
China), MyD88 (1:500; Wanleibio, Shenyang, China), NF-kB
(1:500; Wanleibio, China), NLRP3 (1:1,000; Wanleibio, China),
ASC (1:500; SantaCruzBiotechnology,Dallas, TX,USA), caspase-1
(1:500; Wanleibio, China), IL-1b (1:500; Wanleibio, China), IL-18
(1:1,000; Wanleibio, China), and GAPDH (1:5,000; Proteintech,
China). Electrochemiluminescence liquid (ECL) (Tanon, Shanghai,
China) was used to detect the signal. ImageJ software was used to
assess protein levels. The target protein levels were normalized to
GAPDH, and the radioactivity was compared with the
control group.

Immunofluorescence Analysis
MUC2 secretion was investigated using immunofluorescence
analysis. A previous report provided detailed descriptions of
TABLE 1 | The composition and nutritional levels of the basal diet.

Item (%, unless noted) Content

Corn 47
Wheat bran 13
Rice bran 9
Soybean meal, 43% 9
Rapeseed meal 9
Cottonseed meal 6
Rapeseed oil 2.88
Calcium corbonate 0.96
Dicalcium plosphate, 2H2O 1.275
L-Lysine-HCl 0.37
D, L-Methionine 0.226
Threonine, 98.5% 0.044
Tryptophan, 98.5% 0.032
Sodium chloride 0.4
Choline chloride, 50% 0.2
Bentonite 0.913
Mineral premix1 0.4
Vitamin premix2 0.2
Analyzed nutrient content
ME (Kcal/kg, calculated) 2914
CP (analyzed) 17.12
Calcium (analyzed) 0.94
Total phosphorus (analyzed) 0.84
Nonphytate phosphorus (calculated) 0.478
1Dietary supply per kilogram: copper, 8 mg; iron, 80 mg; zinc, 90 mg; manganese, 70 mg;
selenium, 0.3 mg; iodine, 0.4 mg.
2Dietary supply per kilogram: vitamin A, 15,000 IU; vitamin D3, 5000 IU; vitamin K3, 5 mg;
vitamin E, 80 mg; vitamin B1, 3 mg; vitamin B2, 9 mg; vitamin B6, 7 mg; vitamin B12, 0.04
mg; nicotine acid, 80 mg; pantothenic acid, 15 mg; biotin, 0.15 mg; folic acid, 2 mg;
vitamin C, 200 mg; 25-hydroxycholecalciferol, 0.069 mg.
July 2022 | Volume 13 | Article 952639

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xing et al. Cr (VI) Toxicity in Duck Intestine
the procedure (40). In brief, the prepared slides were incubated at
4°C for 16 h with the primary antibodies MUC2 (1:200; Service,
Wuhan, China). The sections were then incubated for 1 h at 37°C
with FITC-conjugated goat anti-rabbit Ig G (1:300; Service,
Wuhan, China). Finally, the nucleus was stained for 10 min
with DAPI. A fluorescence microscope was used to observe and
capture the fluorescence patterns (Nikon, Japan).

Statistical Analysis
The data were presented as the standard error of mean (SEM).
Microsoft Excel 2016 and GraphPad Prism 8.0 (GraphPad Inc., La
Jolla, CA, USA) was applied for data analysis and graphing. To
compare differences with the control group, one-way ANOVA and
multiple comparisons were used. The P-values of 0.05, 0.01, 0.005,
and 0.001 were regarded as statistically significant.
RESULTS

Cr(VI) Accumulation in the Jejunum and Its
Effect on Growth Indexes
and Histopathology
As shown in Figure 1A, when compared to the control group, the
Cr(VI) content in the jejunum tissues of the HCr group was
significantly higher (P < 0.001). To investigate the effects of Cr(VI)
exposure on intestinal injury, anatomical pathological and
histological changes were identified. The changes in growth
indexes are shown in Figures 1B–D, and the body weight in all
Cr(VI)-treated groups was observably lower than in the control
group (P < 0.005 or P < 0.001). The jejunum weight in all Cr(VI)-
treated groups was observably lower compared with the control
group (P < 0.05 or P < 0.001). The length of the jejunum in the
MCr and HCr groups was noticeably shortened compared with
the control group (P < 0.05 or P < 0.001). H&E staining
revealed normal morphology, clear borders, and well-arranged
epithelial cells in the control group. Nevertheless, the jejunum
was injured in the MCr and HCr groups, with the shedding of
the apical epithelium of the intestinal villi (green arrows)
Frontiers in Immunology | www.frontiersin.org 4
and destruction of the mucosal layer (blue arrows). In addition,
we also observed intestinal villus breakage (red arrows) in the HCr
group (Figure 1E). The length of the intestinal villus was
significantly shorter in the HCr group compared with the
control group (P < 0.005). The crypt depth (black arrows) was
deepened (P > 0.05), while the ratio of villus height to crypt depth
(VH/CD) in the HCr group was noticeably decreased compared
with the control group (P < 0.05) (Figures 1F–H). The experiment
data showed that Cr(VI) could lead to jejunum damage, thereby
affecting the digestion and absorption of nutrients.
The Effects of Cr(VI) Exposure on the
Intestinal Barrier Function
To explore whether Cr(VI) exposure could cause intestinal
barrier damage, we examined the number of goblet cells
(Figure 2A), the ultrastructural pathological changes
(Figure 2B), and the mRNA and protein levels of intestinal
barrier-related factors (Figures 2C–G). PAS staining showed
that goblet cells reduced in a dose-dependent manner with
increasing Cr(VI) concentration. TEM results showed that the
microvilli of intestinal epithelial cells were shed, the number of
microvilli was reduced, and the TJ structure of intestinal
epithelial cells was damaged in the MCr and HCr groups.
Compared with the control group, the ZO-1, occludin,
claudin-1, and MUC2 mRNA levels were observably down-
regulated in the HCr group (P < 0.05 or P < 0.01 or P <
0.005). Furthermore, the mRNA levels of occludin and
claudin-1 in the LCr and MCr groups were significantly lower
than those in the control group (P < 0.05 or P < 0.01) and the
mRNA level of MUC2 in the MCr group was significantly lower
than those in the control group (P < 0.05). Likewise, ZO-1,
occludin, and claudin-1 protein levels were significantly down-
regulated in all Cr(VI)-exposed groups compared to the control
group (P < 0.01, P < 0.005, or P < 0.001). Meanwhile, MUC2
immunofluorescence results showed that Cr(VI) reduced the
MUC2 fluorescence intensity (Figure 2H, J). DAO was also
measured as a marker of intestinal epithelial cell maturity,
integrity, and function, and the results revealed that DAO
levels in serum were observably elevated in all Cr(VI)-exposure
groups (P < 0.005 or P < 0.001) compared with the control
group (Figure 2I).
The Effects of Cr(VI) Exposure on
Cytokines and Oxidative Stress Indices in
the Jejunum
The contents of cytokines in the jejunum are presented in
Figures 3A–C. The TNF-a and IL-1b levels in jejunum were
dramatically increased dose-dependently (P < 0.01 or P < 0.005
or P < 0.001) in all Cr(VI)-exposure groups in comparison with
the control group. The level of IL-18 in the jejunum was
observably elevated (P < 0.001) in the MCr and HCr groups
compared with the control group. Additionally, oxidative stress
indicators were measured in jejunum tissues to assess the extent
of oxidative damage to ducks caused by Cr(VI) (Figures 3D–H).
TABLE 2 | Premier sequences used for real-time PCR.

Gene 5’-Primer (F) 3’-Primer (R)

ZO-1 ACGCTGGTGAAATCAAGGAAGAA AGGGACATTCAACAGCGTGGC
Occludin CAGGATGTGGCAGAGGAATACAA CCTTGTCGTAGTCGCTCACCAT
Claudin-1 CACACGAGCTTTGATGGTGG ACCAATGCTGACAAACCTGCAA
MUC2 ATGGAGAGCGTTGTGTTTGC GTGAAGACCAGTTCGGGGAG
TLR4 CACCAGTTTCACTTCCCCTTGT GCTTTGCTAGGGATGACCTCCAA
MyD88 GCTTATAGAAAGGAGGTGTCGG TGAAAGTCGCATTCGTCGCT
NF-kB ACAACGTCCTTCATTTAGCAA TCTGATAAAGGTCGTTCCTCA
TNFa TCAGATCATTCAGCGTCACC GACACCATCACAAAGTTTCTGC
IL-6 GGTCATCCCAGATTCAGCTAC CCCTCACGGTTTTCTCCATAA
NLRP3 CCAGCCTGAAGATCGGAGACCT AGGAGCCACCCTAGAGGAGAGT
Caspase-
1

CTATCCCATACTCTTGCCACG TCCTTCACATCCACTTCAGC

ASC CAGCATTCTGGATCGGCTCT ATTTTCTCCTGCCTGATGCTT
IL-1b TCATCTTCTACCGCCTGGAC TAGCTTGTAGGTGGCGATGT
IL-18 ACCTCTGCCTCTATTTTGCTG TTCAAAAGCTGCCATGTTCAG
GAPDH TGATGCTCCCATGTTCGTGA CTTTTCCCACAGCCTTAGCAG
F, forward; R, reverse
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In comparison to the control group, H2O2 and MDA
concentrations were observably elevated, while T-SOD, CAT,
and GR activities were observably decreased (P < 0.01, P < 0.005,
or P < 0.001) in the MCr and HCr groups.
The Influence of Cr(VI) on the NF-kB
Signaling Pathway in Jejunum Tissues
To determine whether Cr(VI) induced inflammation in jejunum
tissues, we measured the mRNA and protein levels of NF-kB
signaling pathway-related factors. TLR4, MyD88, NF-kB, TNF-
a, and IL-6 mRNA levels were observably up-regulated in the
MCr and HCr groups compared to the control group (P < 0.05,
P < 0.01, P < 0.005, or P < 0.001), while TNF-a and IL-6 mRNA
levels were observably up-regulated (P < 0.05) in the LCr group
(Figure 4A). TLR4, MyD88, and NF-kB protein levels were also
markedly up-regulated in the MCr and HCr groups compared to
the control group (P < 0.05, P < 0.01, P < 0.005, or P < 0.001), and
the protein level of MyD88 was markedly up-regulated (P < 0.05)
in the LCr group (Figures 4B, C). The heatmap visually depicts
the changes in these genes and proteins (Figure 4D). These
findings suggested that Cr(VI) exposure activated the NF-kB
signaling pathway in the jejunum, which was more pronounced
in the HCr group.
Frontiers in Immunology | www.frontiersin.org 5
The Effects of Cr(VI) Exposure on the
Activation of the NLRP3 Inflammasome in
Jejunum Tissues
As shown in Figure 5A, NLRP3, caspase-1, ASC, IL-1b, and IL-18
mRNA levels were observably up-regulated in the HCr group
compared with the control group (P < 0.05 or P < 0.01) and
NLRP3 mRNA level was also observably up-regulated in the MCr
group comparedwith the control group (P < 0.05). Simultaneously,
NLRP3, caspase-1, ASC, IL-1b, and IL-18 protein levels were also
observably up-regulated in the HCr group compared to the control
group (P < 0.05, P < 0.005, or P < 0.001) and ASC, IL-1b, and IL-18
protein levels were observably up-regulated (P < 0.005 orP < 0.001)
in the MCr group and IL-1b and IL-18 protein levels were
observably up-regulated (P < 0.01 or P < 0.001) in the LCr group
(P < 0.005) (Figures 5B, C). A heatmap was created to show the
changes in these genes and proteins (Figure 5D). Experimental
results indicated that Cr(VI) exposure activated the NLRP3
inflammasome in duck jejunum tissues.
DISCUSSION

Cr(VI) is a naturally occurring heavy metal that can be found in
air, water, soil, and food. It is classified as highly toxic because it
FIGURE 1 | Cr(VI) exposure induced intestinal damage. (A) Cr(VI) content in jejunum tissues. (B) Body weight. (C) Jejunum weight. (D) The length of jejunum. (E)
Histopathological variation in jejunum tissues (scale bar = 200 mm). (F) Length of intestinal villus. (G) Crypt depth. (H) The ratio of villus height to crypt depth (VH/CD).
All data were presented as mean ± SEM; n ≥ 3 for each group. The symbol “*” denotes a statistically significant difference from the control group (*P < 0.05, ***P <
0.005 and ****P < 0.001).
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FIGURE 2 | Effects of Cr(VI) exposure on intestinal epithelial barrier function. (A) PAS staining was used to determine the distribution of goblet cells (red arrows) in
the intestine (scale bar = 200 mm). (B) Ultrastructure of the jejunum (scale bar = 2 mm). The red and green arrows represent changes in tight connections and
microvilli, respectively. TJ stands for tight connection; MV stands for microvilli. (C) mRNA levels of genes related to the intestinal barrier. (D–G) Effects of Cr(VI)
exposure on tight-junction protein expression levels in the duck jejunum. (E) ZO-1/GAPDH. (F) Occludin/GAPDH. (G) Claudin-1/GAPDH. (H) ImageJ analysis of
MUC2 immunofluorescent staining results. (I) DAO content. (J) Immunofluorescence staining of MUC2 protein expression in jejunum tissue. The symbol “*” denotes
a statistically significant difference from the control group (*P < 0.05, **P < 0.01, ***P < 0.005 and ****P < 0.001).
Frontiers in Immunology | www.frontiersin.org July 2022 | Volume 13 | Article 9526396
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causes severe symptoms in humans and animals such as
diarrhea, ulcers, eye and skin irritations, kidney dysfunction,
and lung carcinoma (41, 42). As a result, many scientists have
concentrated on the negative effects of Cr(VI) on human and
animal health (43). Previous studies have found that long-term
exposure to high concentrations of Cr(VI) in mice can lead to
gastric mucosal bleeding, ulcers, weight loss, and severe effects on
intestinal morphology and function (44, 45). However, its
potential impact on the waterfowl intestine is unknown. We
used a Cr(VI) poisoning model in this study to investigate the
effects of Cr(VI)-induced jejunum damage in ducks and the
underlying toxic mechanisms.

Intestines are crucial digestive organs, and damage to them
can lead to nutrient absorption problems and an insufficient supply
of nutrients to the body (46). In the current study, we noticed that
the content of Cr(VI) was dramatically increased in the jejunum
tissue. Additionally, the weight and length of the jejunum and the
body weight of ducks were significantly decreased with increasing
doses of Cr(VI) in the diet, which may be caused by damage to the
intestinal epithelium. The epithelium of the small intestine is
composed of abundant crypt–villus units. The intestinal villus is
the crucial part in the increase in themucosal surface area and then
enhancement in the absorption of nutrients. Crypts are known as
the home to a population of energetically reproducing epithelial
cells, fueling the active intestinal epithelium. TheVH/CDvalue was
believed to be a sensitive indicator of the absorptive capacity of the
small intestine (47). Therefore, changes in villus or intestinal gland
anatomy have a direct impact on nutrient absorption.
Accumulating evidence indicated that heavy metal exposure
could cause shortening of intestinal villi, increase in recess depth
and VH/CD values, and weight loss (48, 49). Similarly, Cr(VI)
exposure resulted in Cr(VI) accumulation, shortening of the height
Frontiers in Immunology | www.frontiersin.org 7
of the jejunum gland, deepening in the crypt depth, and decrease in
VH/CD values in the jejunum. These findings confirmed that
continuous Cr(VI) accumulation in the jejunum caused
significant damage to the intestinal epithelium, which may affect
nutrient digestion and absorption in the ducks, resulting in poor
growth performance.

Besides ingestion and absorption, the small intestine also has a
barrier function that protects the body from hazardous substance
such as toxins, pathogens, and foodborne antigens. MUC2 is the
main protein component of the intestinal mucous layer that is
secreted into the lumen of the large intestine fromgoblet cells in the
epithelial lining. It formsagelwith small amounts of relatedmucins,
forming an insoluble mucus barrier that protects intestinal
epithelial cells (50). A previous study showed that by gavage of
ducks with 80mg/kg, goblet cells were significantly reduced, and at
the same time, the mRNA and protein levels of MUC2 were also
significantly reduced (22).Our results showed thatwith the increase
inCr(VI) concentration, thenumber of goblet cellswas significantly
reduced and the mRNA and protein levels of MUC2 were
observably down-regulated. Tight-junction proteins are located
between adjacent epithelial cells and play a crucial role in
maintaining tight junctions in intestinal epithelial cells to form a
physical barrier to enhance the intestinal protective function (51).
DAO is a highly active intracellular enzyme in all mammalian
intestinalmucosal epithelial cells, andDAOactivity in serumcanbe
used to assess the maturity, integrity, and functional status of
intestinal epithelial cells (52). Once the barrier function was
compromised, intestinal permeability increased, resulting in
“leaky gut,” and DAO entered the bloodstream via the damaged
mucosa, increasing the DAO levels in serum (53). Cr(VI) has been
demonstrated to damage the intestinal epithelial TJ structure and
decrease the levels of tight-junction proteins in mice by Zhu et al.
FIGURE 3 | The effects of Cr(VI) on inflammation and oxidative stress in the jejunum. (A) TNF-a concentration. (B) IL-1b concentrations. (C) IL-18 concentrations.
(D) H2O2 concentrations. (E) MDA concentrations. (F) T-SOD activity. (G) CAT activity. (H) GR activity. The symbol “*” denotes a statistically significant difference
from the control group (*P < 0.05, **P < 0.01, ***P < 0.005 and ****P < 0.001).
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(54). In the current study, we observed the effects of Cr(VI) on
intestinal epithelial cellmicrovilli andTJ protein by usingTEMand
found that Cr(VI) exposure caused intestinal epithelial cell
microvilli to fall off, the number of microvilli decreased, and the
intestinal epithelial cell TJ structure was damaged. Meanwhile, the
tight-junction proteins were detected, and the results indicated that
Frontiers in Immunology | www.frontiersin.org 8
Cr(VI) exposure decreased the mRNA and protein levels of ZO-1,
occludin, and claudin-1 in the jejunum. To further verify the
damage to the intestinal barrier, the level of DAO in serum was
evaluated to checkwhetherCr(VI) exposure caused the “leaky gut”.
Our result showed that Cr(VI) exposure increased the level ofDAO
in serum.These findings suggested that Cr(VI) exposure caused gut
FIGURE 5 | Effects of Cr(VI) exposure on NLRP3 inflammasome activation in jejunum tissues. (A) Pyroptosis-related gene mRNA levels. (B) Quantitative analysis of
pyroptosis-related factor protein levels. (C) Western blot demonstrates pyroptosis-related protein expression. (D) A heatmap depicts the relationship between the
expression of pyroptosis-related genes and proteins in jejunum tissues. The symbol “*” denotes a statistically significant difference from the control group (*P < 0.05,
**P < 0.01, ***P < 0.005 and ****P < 0.001).
FIGURE 4 | The influence of Cr(VI) on the NF-kB signaling pathway in jejunum tissues. (A) mRNA levels of genes involved in the NF-kB signaling pathway. (B) Quantitative
analysis of NF-kB signaling pathway-related protein expression. (C) Western blot reveals that expression levels of NF-kB signaling pathway-related proteins. (D) A heatmap
depicts the relationship between NF-kB signaling pathway-related mRNA and protein levels in jejunum tissues. The symbol “*” denotes a statistically significant difference
from the control group (*P < 0.05, **P < 0.01, ***P < 0.005 and ****P < 0.001).
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physicochemical barrier damage and increased jejunum
permeability, resulting in more severe intestinal barrier
destruction in ducks.

Substantial evidence suggests that intestinal epithelial barrier
disruption and increased intestinal epithelial permeability increase
exposure to bacteria and toxins, resulting in intestinal immune cell
hyperstimulation and mucosal inflammation (55, 56).
Furthermore, intestinal inflammation can cause intestinal
epithelial barrier dysfunction and increased permeability (57). It
has been reported that trichlorfon exposure decreased the
expression levels of ZO-1, occludin, and claudin-2 in common
carp accompanied by significantly increased expression levels of IL-
1b and TNF-a (58). Moreover, high levels of TNF-a could disrupt
the barrier function of Caco2 cells and increase intestinal
permeability (59). IL-1b is a cytokine that has been linked to
epithelial barrier dysfunction in the gut and has been shown to
suppress the expression of claudin-3 in Caco2 cells (60). In a colitis
model, IL-18 is critical in driving the pathological breakdown of
intestinal barrier integrity; deletion of IL-18 conferred protection
fromcolitis andmucosal damage inmice (61). In this study,TNF-a,
IL-1b, and IL-18 concentrations were elevated with the increasing
level of Cr(VI), which represented that Cr(VI) exposure induced
inflammation in duck jejunum tissues. Many studies indicated that
the production of pro-inflammatory factors is strongly related to
oxidative stress (62). Thus, in the current study, we further
investigated the redox state of the jejunum by measuring
antioxidant enzymes and peroxidation products. T-SOD is a
crucial antioxidant enzyme that converts superoxide O2

•- into
H2O2, protecting the structure and function of cells from
oxidative damage, H2O2 is then converted into water and oxygen
via CAT catalysis (63, 64). Similarly, GR is important for
detoxifying active metabolites and maintaining intracellular redox
balance (65). Additionally, the accumulation of peroxidation
product H2O2 could cause cell structure damage as well as gene
damage and mutation. MDA is a by-product of lipid peroxidation
that could promote cross-linking and polymerization of living
macromolecules such as proteins and nucleic acids, resulting in
cytotoxicity (66). Our results found that excessive dietary Cr(VI)
significantly increased the contents of H2O2 and MDA and
decreased the activities of SOD, CAT, and GR, which indicated
thatCr(VI) exposure could induceoxidative stress in the jejunumof
duck. In line with our results, Zhu et al. reported that excessive Cr
(VI) could damage the intestine by inducing oxidative stress and
inflammation (54).

The NLRP3 inflammasome has been shown to be a novel
mechanism for intestinal inflammation, and it can be activated by
ROS (67). The activation of the NLRP3 inflammasome triggers a
series of immune responses, including the production of
proinflammatory cytokines and chemokines and the recruitment
of neutrophils and other immune cells, as well as cell death (68).
However, activation of the NLRP3 inflammasome requires two
steps: initiation and activation. TLRs recruit the signaling regulator
MyD88 and a TIR domain-containing adaptor protein-induced
interferon (TRIF) in the priming step to connect to signaling factors
viaNF-kB.This process promotes the transcription ofNLRP3, pro-
IL-1b, and pro-IL-18, as well as the production of multiple pro-
Frontiers in Immunology | www.frontiersin.org 9
inflammatory cytokines, including IL-1b, IL-6, and TNF-a (69).
The inflammasome assembly step is triggered by several molecular
and cellular events such as K+ efflux, Ca2+ signaling, and ROS
generation. Procaspase-1 converts to cleaved-caspase-1 during the
assembly of the NLRP3 inflammasome, promoting the cleavage of
pro-IL-1b and pro-IL-18 precursors to IL-1b and IL-18 to induce
inflammation (70, 71). Zhong et al. demonstrated that ATO
exposure impaired intestinal barrier function and caused
inflammatory injury in the duck jejunum by activating the LPS/
TLR4/NF-kB signaling pathway (22). Similarly, Cr(VI) exposure
increased the mRNA levels of TLR4, MyD88, NF-kB, TNF-a, and
IL-6, as well as the protein expression levels of TLR4, MyD88, and
NF-kB in jejunum tissues. Furthermore, Fan et al. demonstrated
that zearalenone could activate theNLRP3 inflammasome viaROS,
resulting in severe intestinal inflammation inmice. Our results also
showed thatCr(VI) exposure elevated themRNAandprotein levels
of NLRP3, ASC, caspase-1, IL-1b, and IL-18 in jejunum tissues.
Thesefindings suggested thatCr(VI), as a strong redoxheavymetal,
was involved in redox behavior and ROS generation, and induced
jejunum inflammation by activating the NF-kB signaling pathway
and the NLRP3 inflammasome. However, whether Cr(VI) induces
intestinal barrier damage through ROS-mediated activation of the
NF-kB signaling pathway and the NLRP3 inflammasome needs to
be further verified by in vitro experiments.
CONCLUSIONS

Overall, our studies revealed the negative impact on
bioaccumulation, digestion, intestinal barrier function,
antioxidant capacity, and immune response of the ducks
following exposure to Cr(VI), further indicating that Cr(VI)
induced intestine injury, oxidative stress, and immunotoxicity in
ducks. Furthermore, the immunotoxicity of Cr(VI) was
associated with the activation of the NF-kB signaling pathway
and NLRP3 inflammasome by oxidative stress.
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