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Fatty liver disease (FLD) is a common liver disease, which poses a great threat to

people’s health, but there is still no optimal method that can be used on a large-scale

screening. This research is based on machine learning algorithms, using electronic

physical examination records in the health database as data support, to a predictive

model for FLD. The model has shown good predictive ability on the test set, with its AUC

reaching 0.89. Since there are a large number of electronic physical examination records

in most of health database, this model might be used as a non-invasive diagnostic tool

for FLD for large-scale screening.

Keywords: fatty liver disease, electronic medical records, genetic algorithm, machine learning, XGBoost,

chi-square binning algorithm

1. INTRODUCTION

Fatty liver disease (FLD) is a lesion with excessive accumulation of fat in liver cells, which is divided
into non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) (1). In
recent years, with the improvement of living standards, changes in lifestyle and diet, and the wide
use of ultrasound and other imaging technology, the prevalence of FLD is growing rapidly (2). In
fact, it has become the most common cause of chronic liver disease in developed and developing
countries (3). According to research, about 25% of people worldwide and 21% of people in China
catch NAFLD (4, 5).

At present, the pathogenesis of NAFLD is not completely clear, and there is no ideal and
effective treatment drug, but it is reversible in the early stages. Research shows that effective
lifestyle interventions such as energy restriction, dietary changes, and increased physical activity
are particularly effective in the early stages of NAFLD (6). Therefore, early detection and treatment
is the key. At present, the main clinical diagnostic methods are ultrasound, CT, and liver biopsy
(7). For their invasiveness and complexity, they are not suitable for large-scale epidemiological
screening (8–10).

Based on the above situation, many scientists try to use machine learning algorithm to build
the prediction model of FLD. In recent years, several machine learning models based on medical
data have been proposed (11–13). Italian scholar Giorgio Bedogni collected data by gender, age,
alcohol intake, alanine aminotransferase, aspartate aminotransferase, bodymass index (BMI), waist
circumference, the sum of four skinfolds, etc., and established a prediction model for NAFLD
(13). However, most of the models are carried out through questionnaire surveys and medical
experiments and use some features that are not easy to obtain in large quantities. The limitation
of data quantity and the complexity of features make these models difficult to generalize.
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The purpose of this study is to establish an efficient and
convenient FLD prediction model using machine learning
algorithm which can help doctors to screen out the patients that
need further liver examination and can be applied to large-scale
epidemiologic screening. To facilitate the generalization of the
model, the features we use will be as convenient as possible, and
the amount of data we use will be as much as possible.

2. MATERIALS AND METHODS

2.1. Dataset
The development of the medical system, the popularity of
electronic physical examination records, and the establishment
of health databases provide data support for large-scale
epidemiological research. The data set used in this study is from
the health database of a hospital in China, which contains the
electronic physical examination records of 44,854 patients. And
in this data set, no patient’s privacy information is included,
only routine physical examination data and age are included.
To simplify and generalize the model, we only extracted 129

FIGURE 1 | Data preprocessing flowchart.

routine physical examination items of all patients, including
blood routine, biochemistry, urine routine, etc.

In this study, patients diagnosed with FLD by ultrasound were
marked as 1, and the remaining patients were marked as 0. The
prevalence of FLD in the data set is 23%, which is close to the
previous research (5).

2.2. Data Preprocessing
Firstly, for the accuracy of the model, we deleted individuals who
had not undergone ultrasound examination because we did not
know if they had FLD. Then, we delete the items with more
than 2

3 missing values that most people have not been examined.
Finally, we randomly select 70% of the data set as the training set
of the model and 30% as the test set.

Figure 1 shows the process of data preprocessing. Figure 2
shows the mean (standard deviation) of the different features
of FLD patients and normal people and whether these features
have passed the chi-square test with significance level of 0.05.
It can be seen that there are significant differences in Male
gender percentage, Uric acid (UA), Triglycerides (TG), Alanine
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FIGURE 2 | Statistical information and chi-square test results of different features in different groups.

aminotransferase (ALT), Aspartate aminotransferase (AST),
Gamma glutamine transpeptidase (GGT), Age and AST/ALT
between FLD patients and normal people, while Carbon dioxide
(CO2), Total bilirubin (TBIL), Total protein (TP), and Anion gap
do not.

2.3. Missing Value Processing
Compared with conducting medical experiments and
questionnaire surveys, the advantage of using electronic
physical examination records in the health database for
modeling is that the amount of data is large and the model is
easy to be generalized, but the disadvantage is that there are
lots of missing values. Therefore, how to fill in missing values is
critical to modeling. The usual practice is to fill in the mean or
median for missing values. In fact, the distribution of medical

indicators varies with gender and age, and the range is large.
So it’s a good choice to fill in the median according to age
and gender.

For age grouping method, standard age grouping can be
used, but the result is not ideal. So we use the chi-square
binning algorithm to group age. Chi-square binning algorithm
is a binning algorithm based on the chi-square test, which is
specifically implemented by the independence test in the chi-
square test. The theoretical basis for binning is: the lower the chi-
square value between two bins, the more likely they are to have
similar distributions (14). If two adjacent bins have very similar
distributions, then the two bins should be merged, otherwise,
they should be separated. Therefore, in each step of the algorithm,
the two bins with the smallest chi-square valuemust be combined
until the number of bins meets the stopping condition.
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In the present study, a bin refers to an age group and
distribution refers to the prevalence of FLD. And we set the
expected number of bins to 5, and the result after calculation
on the training set is: [0, 17], (17, 29], (29, 35], (35, 47], (47, 197].
According to the results of age grouping, Figure 3 shows
the distribution of several important features that need to
be filled with missing values under different age and gender
groups. It can be seen that the difference in distribution is
obvious, so our strategy of filling in missing values is necessary
and effective.

2.4. Feature Engineering
In machine learning modeling, the quality of features often
determines the upper bound of model performance. Therefore,
we need to do feature engineering on the existing routine
features to maximize the usage of them. In clinical diagnosis, the
combination of multiple characteristics often plays an important
role in the judgment of diseases. For example, AST/ALT
(Aspartate aminotransferase/Alanine aminotransferase) is of
great significance in the diagnosis of liver diseases (1). So we want
to generate new features through a combination of features.

In the present study, we use Spearman’s correlation coefficient
as a standard to measure the quality of features and use the
genetic algorithm to find the optimal solution. Spearman’s
correlation coefficient, also known as rank correlation coefficient,
can measure the rank correlation between two variables. If

the machine learning model used is based on a decision
tree, the Spearman correlation coefficient can measure the
correlation between a feature and the target. The genetic
algorithm is a method of searching for the optimal solution
by simulating the natural evolution (15, 16). The algorithm
transforms the problem-solving process into a process similar
to the crossover and mutation of chromosomal genes in
biological evolution. When solving more complex combinatorial
optimization problems, Compared with some conventional
optimization algorithms, it can usually obtain better optimization
results faster (16).

Figure 4 shows the process of feature engineering using
genetic algorithm. In the algorithm, an individual in the
population is defined as a binary tree. Each leaf node of the
binary tree is a certain feature in the data set, and each inner
node of the binary tree is an operator in {+, -, *, /, log, sqrt}.
Each individual represents an expression composed of features
and operators. Fitness is the Spearman correlation coefficient
between the new feature and the target. In each generation,
individuals with high fitness will be retained, and individuals
with low fitness will be eliminated. The upper left of Figure 5
shows an individual example, which represents TG∗AST+GLU.
The upper right and lower parts of Figure 5 respectively show
crossover operations and mutation operations, both of which
generate new individuals by changing subtrees in the way that
simulates biological variation.

FIGURE 3 | Violin chart: the distribution of different features under different age groups and genders.
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FIGURE 4 | Genetic algorithm flowchart.

FIGURE 5 | Demonstration of individual and individual variation.
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We set the number of individuals in each generation to 1,000
and set the maximum depth of the binary tree to three. Use the
normalized features and iterating ten generations, the individuals
with the first three fitness levels are added to the data set as new
features. The result is:GA_fea1 = TG+log(ALT)with fitness 0.89,
GA_fea2 = TG ∗ GGT with fitness 0.87, and GA_fea3 = (UA +

AST) ∗ log(ALT) with fitness 0.79.

3. EXPERIMENTS AND RESULTS

XGBoost (eXtreme Gradient Boosting) is an engineering
implementation of gradient boosting decision tree (GBDT) (17).
Its core idea is to perform a second-order Taylor expansion of
the loss function, and gradually train the decision tree based on
the objective function, and greatly improve the training model
speed (18, 19). XGboost has many advantages. For example,
traditional GBDT only uses first-order derivative information
in optimization, while XGboost performs a second-order Taylor
expansion on the cost function to make the result more accurate.
Xgboost adds a regular term to the cost function to control the
complexity of themodel, which reduces the variance of themodel
and makes the learned model simpler and prevents overfitting.
XGboost supports parallel computing on feature granularity,
which greatly reduces the amount of calculation and improves
the training speed. In addition, XGBoost is a model based on
the decision tree model, it is more explanatory than neural
networks and other algorithms, which can enable us to better
understand how a physical examination data plays a role in the
model (20). Therefore, the present study uses the XGBoost model
for modeling.

The error of a machine learning model includes two aspects:
variance and bias (21). High bias models usually have relatively
simple parameter settings and tend to underfit, that is, there is
little difference in performance between the training set and test
set, but both are relatively low. High variancemodels usually have
complex parameter settings and tend to overfit. They perform
well on the training set, but the performance on the test set
drops seriously. The usual practice is to make a trade-off between
variance and bias to get a reasonable model. AUC (Area Under
Curve) is defined as the area under the ROC curve (Receiver
Operating Characteristic curve), which is a commonly used
indicator to measure the quality of a machine learning model
(22). AUC has nothing to do with the ratio of positive and
negative samples, it represents the model’s ability to sort samples
to a certain extent (23). In present study, we use AUC as the
evaluation criterion of the XGBoost model. On the training
set, Bayesian optimization of hyperparameters is performed
using triple cross-validation, and then the obtained results are
fine-tuned to prevent over-fitting and ensure the rationality of
the parameters. The main results are as follows: max_depth : 3,
learning_rate : 0.07, n_estimators : 150, scale_pos_weight : 2, mi
n_child_weight : 6, gamma : 0.2, reg_alpha : 0.1.

The upper left and upper right of Figure 6 respectively show
the performance of the high variance model and the high bias
model. The lower left shows the effect of the hyperparameter
iterations on the model performance. It can be seen that with

the increase of iterations, the over fitting phenomenon of the
model appears, and the variance of the model becomes larger.
The lower right shows the performance of the model with the
optimal hyperparameter combination set. It can be seen that the
AUC of the model reached 0.89, which shows that the model has
a strong predictive ability for FLD, and the performance of the
model in the test set and training set is basically the same, without
over fitting phenomenon.

4. DISCUSSION

Using the number of times the feature is used as the basis
for splitting in the decision tree splitting as the importance of
the feature, we can sort all the features by importance. Left of
Figure 7 shows the model performance obtained by gradually
adding the top 60 features of importance to the model. It can
be seen that the top 10 features are the most important, and the
features after the 20th place are dispensable. This shows that even
if we only use the first ten features to train the model, its AUC
can still reach the level of 0.87–0.88, but the model is greatly
simplified at this time.

Right of Figure 7 shows the importance of the top 10 features.
According to research, the degree of fat accumulation in the liver
is directly proportional to body weight. The prevalence of obesity
in NAFLD patients is estimated to be 51.34% (95% CI: 41.38–
61.20) (1), so many FLD patients have a significant increase in
TG. At the same time, and when liver disease occurs, ALT and
GGT will increase significantly. Right of Figure 7 shows that
TG, ALT, GGT, GA_fea1, and GA_fea2 play a vital role in the
model, which is in line with the facts. Studies have also shown
that the prevalence of diabetes in NAFLD patients is estimated
to be 22.51% (95%CI: 17.92–27.89) (1), and with the increase of
age, people’s metabolism slows down and people are more likely
to suffer from metabolic diseases. So the importance of GLU and
Age is also well-understood.

We analyzed the patients with FLD who were mispredicted
in the test set and found that their indicators were basically
normal. We think that these people may be patients with AFLD
or patients with mild FLD, they often do not have obvious
symptoms and indicators change (1). Our data set does not
include the alcohol intake and body condition of patients, which
limits our prediction ability, because we can not exclude the
interference of AFLD and we can not use the waist circumference
of patients to judge whether they are obese(Even so, the AUC of
our model is still high). But because of this, our model can be
directly applied to the electronic physical examination records of
the current health database for large-scale epidemics screening.

5. CONCLUSION

In the present study, we use the electronic physical examination
records in the health database as data support, use the chi-square
binning algorithm to help fill in the missing values, and use
the genetic algorithm as the optimization algorithm for feature
engineering, which tentatively solves the two disadvantages of
the large-scale electronic medical record–missing values and
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FIGURE 6 | Trade-off between variance and bias.

FIGURE 7 | The influence of the number of features used on the model and feature importance.

lack of features. In the end, this study established an FLD
prediction model based on the XGBoost algorithm with an
AUC of 0.89. The satisfactory performance of the model makes

large-scale screening of FLD possible, but due to the limited
data breadth, more data is needed for external verification
before applications.
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