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Abstract

Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly
measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory
mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been
shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate
the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose
three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual
information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs
generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli.
According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed
algorithms significantly outperform the MI-based algorithms in GRNs inference.
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Introduction

With the development of high throughout technologies, gene

expression data has provided an excellent approach to investigate

the underlying regulatory mechanism of cellular machines [1].

Inferring gene regulatory networks (GRNs), which explicitly

depicts the regulatory processes, from expression data is still one

of the most important topics in system biology [2] nowadays. But it

is still a challenging problem due to the combinatorial nature of

the problem and the poor information content of the data [3].

Therefore, developing powerful and computationally effective

methods is critical for GRNs inference. To this end, the DREAM

(Dialogue for Reverse Engineering Assessments and Methods)

program and its conference series are devoted to encourage

researchers to investigate novel powerful methods [4-6].

It is extremely important to detect nonlinear dependence in

GRNs inference because the nonlinear regulatory relationship is

common in biology [7]. Among numerous measurements of

nonlinear dependence, mutual information (MI) has often been

applied in modeling the dependence between genes since it is a

natural generalization of correlation and can characterize the

nonlinear dependence [7,8]. A series of MI-based methods have

succeeded in inferring the GRNs such as ARACNE [9], CLR

[10], REL [11], MRNET [12] and PCA-MI [13]. Even though

the MI is quite popular, it still has its limits. For example, to

evaluate the MI usually involves the probability or density

estimator which is challenging especially for multivariate variables.

When the variables are continuous, the MI estimation is not so

easy and the commonly used strategy is to discretize the data [14]

and then to estimate the MI based on these discretized data, e.g.,

empirical estimator [15], Miller-Madow [15], shrinkage [16] and

the Schurmann-Grassberger mutual information estimator [17].

PCA-MI [13] is another example which requires the assumption of

normal distribution. But, it is not realistic because the gene

expression data may strongly deviate from normality [18].

Recently, a novel measurement of dependence, distance

correlation (DC) [19], has emerged as an elegant tool in evaluating

nonlinear dependence, thanks to its appealing features. The DC

has proven its power and computational effectiveness in detecting

nonlinear dependence for two variables with arbitrary dimensions

[19-21].Unlike the MI estimator, the DC estimation is quite simple

without any distribution assumption. Surprisedly, to our best

knowledge, the DC has seldom attracted the attention of the

bioinformatics community.

In this article, we intend to incorporate the DC into GRNs

inferring algorithms and validate the performance of DC-based

GRNs inferring algorithms. Unlike traditional approaches, we

employ the DC to represent the dependence between a pair of

genes. This modification is simple yet critical due to the power and

computational effectiveness of the DC. The results of two

simulated data and real data suggest that the DC-based

approaches can improve the accuracy and sensitivity of the GRNs

inference.
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Methods

In this section, we will review the definitions of the MI and the

DC, and then incorporate the DC into GRNs inference.

Mutual Information
The MI of discrete random variables X and Y is defined as

I(X ,Y )~
X

x[X ,y[Y

p(x,y) log
p(x,y)

pX (x)pY (y)
,

Figure 1. The performance of different methods on DREAM3 challenge Yeast dataset in size 10. (A) The ROC curves of different methods.
(B) The PR curves of different methods. TP rate = TP/(TP+FN), FP rate = FP/(TP+TN), precision = TP/(TP+FP), recall = TP/(TP+FN), where TP, FP, TN and FN
are the numbers of true positives, false positives, true negatives and false positives, respectively.
doi:10.1371/journal.pone.0087446.g001
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where pX ,pY are the marginal probability mass functions of X and

Y , respectively, and p is the joint probability mass function of

(X ,Y ).

For continuous random variables, the MI is defined as

I(X ,Y )~

ð
X

ð
Y

p(x,y) log
p(x,y)

pX (x)pY (y)
dxdy,

where p is the joint probability density function of (X ,Y ) and pX

and pY are the probability density functions of X and Y ,

respectively.

In order to calculate the MI, it is necessary to first estimate the

unknown probability density or mass functions pX , pY and p.

Distance Correlation
Distance correlation proposed by [19] is a creative way to detect

the dependence. The key idea is to measure the discrepancy

between the joint characteristic function and the product of its

marginal characteristic functions in a special weighted L2 space.

Specifically, for random variables (X ,Y ), denote the joint

characteristic function of (X ,Y ) by f(X ,Y ), and its marginal

characteristic functions fX and fY . The distance covariance

between X and Y is defined as the root of the following equation:

dcov2(X ,Y )~

ð
Rpzq

Df(X ,Y )(t,s){fX (t)fY (s)D2w(t,s)dtds,

where p and q are the dimensions of X and Y , respectively, and

w(t,s) is the weight function given by (cpcqDtDpz1
p DsDqz1

q ){1 with

cp~p(1zp)=2C((1zp)=2) and cq~p(1zq)=2C((1zq)=2). By stan-

dardizing the distance covariance, the distance correlation can be

defined as,

dcor(X ,Y )~
dcov(X ,Y )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dcov(X ,X )
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dcov(Y ,Y )
p :

It can be shown that the empirical distance covariance for a

given iid sample f(X1,Y1), � � � ,(Xn,Yn)g can be calculated by

Vn(X ,Y )~S1zS2{2S3,

where

S1~
1

n2

Xn

k,l~1

Dxk{xl DpDyk{yl Dq,

S2~
1

n2

Xn

k,l~1

Dxk{xl Dp
1

n2

Xn

k,l~1

Dyk{yl Dq,

S3~
1

n3

Xn

k~1

Xn

l,m~1

Dxk{xl DpDyk{ymDq:

The empirical form of DC is quite simple in terms of the norms

and does not involve the probability density estimator like the MI.

DC-based GRNs Inference
A central role in GRNs inference algorithms is the dependence

matrix D, whose i,j element Dij measures the dependence between

variables (genes) Xi and Xj . In nonlinear GRNs inference

algorithms, the MI is the common choice in characterizing the

nonlinear association between genes, that is

Dij~I(Xi,Xj):

However, as discussion above, estimating mutual information is

a tough task and the estimator is usually biased and unstable

[12,14]. Here, we use the DC as an alternative measurement to

model the dependence matrix, that is

Figure 2. Networks inferred from DREAM3 challenge Yeast dataset with size 10. (A) The true network with 10 nodes and 10 edges. (B)
Network Inferred by using the REL-MI method. The dashed lines G5-G4,G5-G2,G4-G2 and G1-G9 are false positives, while G4-G9 and G3-G5 are false
negative. (C) Network Inferred by using the REL-DC method. The dashed lines G4-G2 is false positives, while G4-G9 and G5-G7 are false negative.
doi:10.1371/journal.pone.0087446.g002
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Dij~dcor(Xi,Xj):

To verify the importance of incorporating the DC into inferring

GRNs, we consider three popular gene regulatory network

inference algorithms, CLR, MRNET and REL [10-12], and

compare the performances of DC-based algorithms and MI-based

algorithms. For the sake of clarification, we denote the MI-based

algorithms by CLR-MI, MRNET-MI and REL-MI and the DC-

based algorithms CLR-DC, MRNET-DC and REL-DC, repec-

tively.

Results

In this section, we present the results of different methods based

on simulated data and real data.

Validation
The performance will be evaluated by receiver operator

characteristic (ROC) curve and precision-recall (PR) curve. The

ROC curve is a graphical tool in evaluating the predictive results

in order to avoid choosing the threshold. However, the ROC

curve may overestimate the performance of the GRNs inference

method due to the sparsity of GRNs [22]. The PR curve is

recommended to be an alternative to the ROC curves [23]. Here

we use ROC curve, which is a scoring metric adopted by

DREAM3, as well as PR curves to evaluate the methods. The

areas under ROC curve (AUC) and PR curve are also calculated.

Evaluation on Simulation Data
Simulated data from DREAM challenge. We first evaluate

our methods based on the widely-used Yeast knock-out gene

expression data with size 10, 50, and 100 from DREAM3 in-silico

network challenge [4–6]. DREAM challenge is a dialogue for

Reverse Engineering Assessments and Methods, which provides a

standard assessment of GRNs inference methods. In the

DREAM3 challenge, the Yeast knock-out gene expression data

and their gold standard networks are given.

In order to clearly compare the performance of different

methods, the ROC curves and the PR curves are plotted in

Figure 1. Figure 1A presents the ROC curves on DREAM3

challenge Yeast dataset with size 10. Figure 1A shows that the DC-

based algorithms perform much better than the corresponding

MI-based algorithms, the DC therefore has high power in

characterizing the nonlinear regulatory relationship. We can

observe the similar results of the PR curves in Figure 1B. The

ROC curves and the PR curves of three different algorithms on

Yeast gene expression data with size 50 and 100 are described in

Figure S1–S2. In these two cases, the DC-based algorithms

consistently outperform the MI-based algorithms.

Figure 2 displays the networks inferred by using the REL-MI and

REL-DC methods based on the DREAM3 challenge Yeast dataset

with size 10. To equally comparing the performance of the REL-MI

and REL-DC methods, we set the true positive rates of both methods

to be 0.8 and then compare the false positives. We can observe from

Figure 2B that there are four false positives G5-G4,G5-G2,G4-G2

and G1-G9 by REL-MI. The four non-existing regulations G5-

G4,G5-G2,G4-G2 and G1-G9 are probably incurred by the co-

regulators, while the MI-based methods work on the pair-wise

association only. Figure 2C displays the network inferred by using

the REL-DC method. Obviously, the false positives G5-G4,G5-G2

and G1-G9 are successfully removed by REL-DC, which indicates

that the DC-based methods work well in distinguishing direct (or

causal) interactions from indirect associations.

Table 1 provides the results for three different methods on

DREAM3 challenge Yeast dataset with size 10, 50,and 100,

respectively. The results indicate that the DC-based methods

improve greatly the accuracy of GRNs inference compared with

the MI-based methods.

Simulated data from SynTReN. In this section, we also

compare the performance of different methods in another

simulated datasets generated by SynTReN network generator

[24]. SynTReN network generator is used to create synthetic

transcriptional regulatory network and respective simulated data

from the source networks with different levels of noise. Here, the

synthetic transcriptional regulatory networks are generated from

Escherichia coli and the number of nodes is set to be 200, in which

there are 100 nodes in background network. We can observe from

Table 2 that the DC-based algorithms consistently outperform the

corresponding MI-based algorithms. For simplicity, the ROC and

PR curves of different methods with different levels of noise are

deferred to Figure S3–S5. Figure S3–S5 also demonstrate that the

DC-based algorithms are superior to the MI-based algorithms in

characterizing non-linear dependence.

Evaluation on Real Gene Expression Data
We investigate the performance of the DC-based methods in the

well-known SOS DNA repair network and experiment dataset in

Escherichia coli [25]. Figure 3 presents the ROC and PR curves for

Table 1. The ROC areas and the PR areas of different
methods on DREAM3 challenge Yeast dataset with size 10, 50,
100 and Syndata, respectively.

Method CLR-MI CLR-DC MRNET-MI MRNET-DC REL-MI REL-DC

ROC area

Size10 0.83 0.99 0.81 0.99 0.86 0.99

Size50 0.79 0.89 0.76 0.89 0.79 0.89

Size100 0.8 0.87 0.78 0.85 0.75 0.86

PR area

Size10 0.63 0.94 0.5 0.97 0.72 0.92

Size50 0.19 0.5 0.16 0.52 0.34 0.47

Size100 0.15 0.43 0.14 0.36 0.12 0.35

doi:10.1371/journal.pone.0087446.t001

Table 2. The ROC areas and the PR areas of different
methods on SynTReN datasets with noise 0.1, 0.2, 0.3,
respectively.

Method CLR-MI CLR-DC MRNET-MI MRNET-DC MI DC

ROC area

0.1 noise 0.78 0.86 0.78 0.84 0.75 0.84

0.2 noise 0.63 0.73 0.63 0.72 0.57 0.64

0.3 noise 0.63 0.72 0.62 0.73 0.57 0.64

PR area

0.1 noise 0.09 0.20 0.06 0.11 0.06 0.07

0.2 noise 0.07 0.14 0.06 0.09 0.06 0.07

0.3 noise 0.07 0.14 0.06 0.10 0.07 0.09

doi:10.1371/journal.pone.0087446.t002
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the MI-based algorithms and the DC-based algorithms, and

Table 3 presents the ROC and PR areas for different methods. All

of these compared results demonstrate the superiority of the DC-

based methods on this real gene expression data.

Discussion

In this article, we integrate the recently developed DC

into GRNs inference algorithms and verify the power and

Figure 3. The performance of different methods on Escherichia coli. (A) The ROC curves of different methods. (B) The PR curves of different
methods. TP rate = TP/(TP+FN), FP rate = FP/(TP+TN), precision = TP/(TP+FP), recall = TP/(TP+FN), where TP, FP, TN and FN are the numbers of true
positives, false positives, true negatives and false positives, respectively.
doi:10.1371/journal.pone.0087446.g003
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computational effectiveness of the DC in inferring GRNs through

three well-known GRNs inference algorithms: CLR, MRNET and

REL. After comparing them carefully with the existing MI-based

algorithms, we find that the proposed DC-based algorithms can

uncover the nonlinear dependence more powerfully, and increase

the accuracy in inferring GRNs. Although we only incorporate the

DC into three MI-based GRNs inference algorithms, our idea can

be extended to any other MI-based algorithms.

The DC has several strengths in comparison with the MI.

Firstly, both the DC and the MI are nonparametric and have the

property that the DC or the MI of two random variables equals to

zero almost surely if and only if these two variables are

independent, but the MI estimators need to discretize the variables

which may not utilize the data sufficiently and lower the power.

Secondly, the DC has computational effectiveness in detecting

nonlinear dependence between multivariate variables [20]. Lastly

but importantly, the DC can directly investigate the joint

regulations of at least two sets of target genes. However, to the

best of our knowledge, MI can work on pair-wise regulations in

GRNs well. Despite the three-way mutual information (MI3) [26],

a modified version of MI, has been designed to detect the co-

regulators of target genes, the extension is tricky and MI3 can only

detect two of the co-regulators [13].

We also compare the DC with another recently developed

dependence measurement, maximum information criterion (MIC)

[27] in GRNs inference. Table S1, S2 and S3 display the results of

the MIC-based algorithms and the DC-based algorithms. The

results suggest that the DC-based algorithms still outperform the

MIC-based ones significantly in inferring GRNs.

However, none of the MI-based, the MIC-based or the DC-

based methods is capable of detecting edge directionality. This

issue can be partially alleviated by a two-stage procedure: the pair-

wise association is detected first, and then the edge directionality is

inferred using some specified methods such as linear regression

[28]. In any case, this issue is not well understood. Furthermore,

the proposed DC-based algorithms are designed to detect the

direct interaction. Extending the DC-based methods to distinguish

the direct interactions from indirect ones can help identify the false

positive interactions hence increasing the detecting power [13].

Interestingly, comparing with the MI-based methods, the DC-

based methods perform much better in distinguishing direct or

causal interactions from indirect associations even though the DC

considers the unconditional correlation only.

Conclusion

In this paper, we introduce the DC-based algorithms for GRNs

inference. The DC has appealing features such as computational

effectiveness, no normality assumption and high power in

detecting nonlinear dependence. Both of the simulated data and

the real data analysis show that the proposed DC-based algorithms

performs better than the corresponding MI-based algorithms. In

conclusion, the DC-based methods can be served as a starting-

point to characterize complex regulation relationship between

genes, but not limit to infer GRNs.

Supporting Information

Figure S1 Comparison of the performance of different
methods on DREAM3 challenge Yeast dataset in size 50.
(A) The ROC curves of different methods.(B) The PR
curves of different methods. The plots show that the DC-

based methods perform consistently much better than the MI-

based methods, which demonstrate the superiority of DC in

detecting non-linear regulatory relationship between genes.

(EPS)

Figure S2 Comparison of the performance of different
methods on DREAM3 challenge Yeast dataset in size
100. (A) The ROC curves of different methods.(B) The
PR curves of different methods. The plots show that the DC-

based methods perform consistently much better than the MI-

based methods, which demonstrate the superiority of DC in

detecting non-linear regulatory relationship between genes.

(EPS)

Figure S3 Comparison of the performance of different
methods on SynTReN dataset with 0.1 noise. The
number of nodes in the networks was 200. (A) The
ROC curves of different methods. (B) The PR curves of
different methods. The plots show that DC-based methods

perform consistently better than MI-based methods, even though

the difference are not obvious in some cases.

(EPS)

Figure S4 Comparison of the performance of different
methods on SynTReN dataset with 0.2 noise. The
number of nodes in the networks was 200. (A) The
ROC curves of different methods. (B) The PR curves of
different methods. The plots show that DC-based methods

perform consistently better than MI-based methods, even though

the difference are not obvious in some cases.

(EPS)

Figure S5 Comparison of the performance of different
methods on SynTReN dataset with 0.3 noise. The
number of nodes in the networks was 200. (A) The
ROC curves of different methods.(B) The PR curves of
different methods. The plots show that DC-based methods

perform consistently better than MI-based methods, even though

the difference are not obvious in some cases.

(EPS)

Table S1 Comparison of ROC area and PR area of MIC-
based algorithms and DC-based algorithms on DREAM3
challenge Yeast dataset in size 10, 50, 100, respectively.
All of the results show that DC is significantly superior to the MIC

in GRNs inference, which demonstrate that the DC is a powerful

dependence measure in inferring GRNs.

(DOCX)

Table S2 Comparison of ROC area and PR area of MIC-
based algorithms and DC-based algorithms on SynT-
ReN datasets with noise 0.1, 0.2, 0.3, respectively. All of

the results show that DC is significantly superior to the MIC in

GRNs inference, which demonstrate that the DC is a powerful

dependence measure in inferring GRNs.

(DOCX)

Table 3. The ROC areas and the PR areas of different
methods on SOS network in E.coli.

Method CLR-MI CLR-DC MRNET-MI MRNET-DC REL-MI REL-DC

ROC area

SOS 0.53 0.72 0.52 0.78 0.59 0.85

PR area

SOS 0.66 0.77 0.59 0.79 0.61 0.86

doi:10.1371/journal.pone.0087446.t003
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Table S3 Comparison of ROC area and PR area of MIC-
based algorithms and DC-based algorithms on SOS
network in E.coli.data. All of the results show that DC is

significantly superior to the MIC in GRNs inference, which

demonstrate that the DC is a powerful dependence measure in

inferring GRNs.

(DOCX)

Supporting Information S1 The source data and code
used in this article can be freely downloaded at: https://

github.com/xiangdiuxiu/NetworkDC.

Author Contributions

Conceived and designed the experiments: XQW XBG. Performed the

experiments: XBG YZ WHH. Analyzed the data: XBG YZ WHH HZT.

Wrote the paper: XBG XQW YZ.

References

1. Hughes T, Marton M, Jones A, Roberts C, Stoughton R, et al. (2000) Functional

discovery via a compendium of expression profiles. Cell 102: 109–126.

2. Basso K, Margolin A, Stolovitzky G, Klein U, Dalla-Favera R, et al. (2005)

Reverse engineering of regulatory networks in human b cells. Nature genetics

37: 382–390.

3. Margolin A, Wang K, Lim W, Kustagi M, Nemenman I, et al. (2006) Reverse

engineering cellular networks. Nature Protocols 1: 662–671.

4. Marbach D, Schaffter T, Mattiussi C, Floreano D (2009) Generating realistic in

silico gene networks for performance assessment of reverse engineering methods.

Journal of Computational Biology 16: 229–239.

5. Marbach D, Prill R, Schaffter T, Mattiussi C, Floreano D, et al. (2010)

Revealing strengths and weaknesses of methods for gene network inference.

Proceedings of the National Academy of Sciences 107: 6286–6291.

6. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, et al.

(2010) Towards a rigorous assessment of systems biology models: the dream3

challenges. PloS one 5: e9202.

7. Brunel H, Gallardo-Chacón J, Buil A, Vallverdú M, Soria J, et al. (2010) Miss: a
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