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Abstract: Rubber-based materials are widely used in a variety of industrial applications. In these
applications, rubber components withstand various loading conditions over a range of temperatures.
It is of great significance to study the mechanical behavior of vulcanized rubber at different temperatures,
especially in a range of high temperatures. The temperature dependence of the constitutive behavior of
filled rubber is important for the performance of the rubber. However, only a few constitutive models
have been reported that investigate the stress–temperature relationship. In this paper, based on an
analysis of experimental data, the effects of temperature on the hyperelastic behaviors of both natural
rubber and filled rubber, with different mass fractions of carbon black, were studied. The regulation
of stress and strain of natural rubber and filled rubber with temperature was revealed. In addition,
an eight-chain model that can reasonably characterize the experimental data at different temperatures
was proved. An explicit temperature-dependent constitutive model was developed based on the
Arruda-Boyce model to describe the stress–strain response of filled rubber in a relatively large
temperature range. Meanwhile, it was proved that the model can predict the effect of temperature on
the hyperelastic behavior of filled rubber. Finally, the improved Arruda-Boyce model was used to
obtain the material parameters and was then successfully applied to finite element analysis (FEA),
which showed that the model has high application value. In addition, the model had a simple
form and could be conveniently applied in related performance test of actual production or finite
element analysis.

Keywords: filled rubber; temperature-dependent; eight-chain model; hyperelasticity; finite element
analysis (FEA)

1. Introduction

Due to its superior comprehensive properties, rubber has been widely used, such as for tires,
motor bases, footwear, pipes, transmission belts, etc. Rubber products are often used in harsh working
conditions, and in a wide range of temperatures [1,2]. Seasonal temperature changes can cause
significant variations in the mechanical properties of rubber. Therefore, the impact of temperature on
the mechanical properties of rubber must be considered.

Excessive temperature of elastomeric components may be caused by either the surrounding
environment or inherent heating due to internal dissipation during cyclic loading. In addition, the low
thermal conductivity of rubber exacerbates this situation [3]. The degradation and dynamic instability
of the rubber elastomer due to cyclic loading overheating have been investigated in the literature [4].

Although the mechanical responses of filled and unfilled rubber have been characterized at room
temperature [5–9], the effects of temperature on the mechanical response of rubber materials in a
certain deformation range, such as 150% strain, have rarely been studied. Especially, the operation
temperatures of rubber are usually in a wide range depending on the application [10]. Most tensile
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tests on rubber-like materials have only been performed at room temperature [11,12]; therefore, it is
necessary to investigate the properties of these materials at various temperatures other than room
temperature. In addition, a change in temperature affects the interaction between the filler and rubber
matrix [13]. From previous studies, filled rubber exhibited more complex temperature-dependent
characteristics, and the performance of rubber material significantly depended on temperature [14–18].
It is important to develop a constitutive model which can clearly reveal and describe the temperature
characteristics of elastomeric components [19].

The basic characteristics of the stress–strain behavior of rubber are usually described by the
large strain elastic model, which is based on two methods [20,21]. In the first method, the change
of configurational entropy of randomly oriented long molecular chains is considered based on the
framework of statistical mechanics [22,23]. These models provide a good tool for predicting the elastic
behavior of large strains and have a minimum number of physically related material parameters.
The second method is phenomenological, which is based on the invariance of stretches and the
framework of continuum mechanics. This phenomenological method has been successfully used to
simulate large strain elastic responses of unfilled and filled rubber [24,25].

Some thermomechanical models have been proposed, including a model to evaluate the influence
of temperature on the mechanical properties of filled rubber [3,15,18]. However, these models have
various defects when it comes to characterizing the mechanical behavior of filled rubber. In summary,
based on the Arruda-Boyce model [26], which is also known as the eight-chain model, a hyperelastic
mechanical model with explicit temperature parameters was proposed. The model can accurately
describe the hyperelastic behavior of tire rubber at different temperatures.

In this work, a series of uniaxial tensile tests of natural rubber and four different types of filled
tire rubber were performed at different temperatures. Based on the accurate test data, the effects
of temperature on the mechanical properties of tire rubber were discussed, and the ability of the
eight-chain model to describe the experimental data of filled rubber at different temperatures was
confirmed. The Arruda-Boyce model was extended to an explicit temperature-dependent form by
considering the relationship between Arruda-Boyce model parameters and ambient temperature.
The evaluation results showed that the model can accurately reveal the influence of temperature on the
hyperelastic behavior of tire rubber.

The tensile process of rubber specimen was successfully reproduced by using the improved
eight-chain model in the finite element software ABAQUS, and the simulation data were compared
with the experimental data. The results showed that the improved eight-chain model can ideally
represent the experimental data and can easily be applied in engineering.

2. Experimental Section

2.1. Experimental Materials

Four types of rubber materials filled with different contents of carbon black were used. The rubber
matrix was natural rubber and the filled carbon black was N234. Among the four rubber formulations,
only the amount of filled carbon black was different. The filling mass fractions of carbon black in the
four types of rubber, i.e., C00, C20, C40, and C60, were 0 phr, 20 phr, 40 phr, and 60 phr, respectively.
The codes and formulas of the four types of rubber used in the tests are shown in Table 1. Natural rubber
was obtained from Shandong Haoshun Chemical Co., Ltd., Jinan, Shandong, China. CB N234 was
obtained from Shanghai Auman Chemical Co., Ltd., Shanghai, China. The other agents were used
as purchased. Stearic acid, zinc oxide, sulfur, accelerator NS, and antioxidant 4020 were industrial
grade products.
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Table 1. Formulas and codes of four kinds of carbon black filled vulcanized rubber (UNIT: PHR).

Code C00 C20 C40 C60

NR1 100 100 100 100
CB2 N234 0 20 40 60
Zinc oxide 5 5 5 5
Stearic acid 3 3 3 3

Sulfur 2 2 2 2
Accelerator NS 1 1 1 1

Antioxidant 4020 1.2 1.2 1.2 1.2
Total 112.2 132.2 152.2 172.2

1NR, natural rubber; 2CB, carbon black.

2.2. Sample Preparation

The mixing was carried out with an open roll mixing mill (Type: S(X)-160A, Shanghai No. 1 rubber
machinery, Shanghai, China). Firstly, NR was masticated on a two roll mill at for 5 min. Then, sulfur,
accelerator NS, antioxidant, stearic acid, and zinc oxide were added in order over the following 15 min.
Finally, carbon black was added to mix the natural rubber composite well, which took about 10 min.
The vulcanizations were carried out at 150 ◦C for 20 min under 10 MPa.

The prepared samples had a dumbbell Type 2 shape according to ISO 37-2017. The thickness
of the rubber specimen was 2 mm. A uniaxial tensile test was performed using an MTS CMT4104
microcomputer-controlled electronic universal testing machine with a temperature box. The force
value and displacement accuracy were both 0.5, the temperature control accuracy was ±1 K, and the
gauge length of the displacement sensor was 20 mm. The fixture used a double eccentric wheel clamp,
RA-4-1, which is a special tensile clamp for rubber. Because of the low thermal conductivity of rubber,
the temperature must be accurately controlled. Specifically, in order to ensure the specimen reached
the required test temperature, the temperature control box was stabilized for 10 min before the tensile
test, after reaching the test temperature. In order to eliminate the Mullins effect (stress softening
effect of the rubber material) [27–29], before the formal test, each sample was modulated by repeating
the loading–unloading cycle in a certain deformation range 10 times. The purpose of this step was
to reproduce the stress state of the tire rubber more accurately. During the modulation process,
150% strain was selected as the modulation strain, and the modulation temperature was set to 281 K.
After the modulation, the rubber specimens were allowed to stand for more than 24 h so that the elastic
deformation was completely restored and the performance was stable. The experiment under each
condition was repeated at least 4 times, and the average obtained served as the final experimental result.

3. Uniaxial Tensile Test Results of Filled Rubber at Different Temperatures

The deformation of rubber is generally less than 100% in engineering strain, and 150% strain can
be applied to most working conditions. Thus, in the uniaxial tensile test, 150% strain was used to
characterize the mechanical properties of rubber materials.

Figure 1 shows the relationship between nominal stress and nominal strain of four types of
rubber in Table 1: C20, C40, C60, and C00. The temperatures were 293 K, 313 K, 333 K, 353 K, 363 K,
and 383 K, respectively. In order to show the difference in stress-strain curves among the four rubber
samples at different temperatures more clearly, the corresponding close-up views of these curves
are shown in Figure 1a2–d2. From the figures, the hyperelastic behavior of rubber material had
obvious temperature dependence in the deformation range of 150%. For CB-filled rubber C20, C40,
and C60, as the temperature increased, the stress–strain curve first dropped and then increased after
the temperature exceeded a certain critical value. In other words, with the increase of temperature,
the rubber specimen first softened and then hardened after the temperature exceeded a certain critical
value. For unfilled natural rubber, C00, the stress–strain curve always increased with the increase of
temperature and there was no transition point in the curve.
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Figure 1. Uniaxial tensile stress–strain curves of four types of rubber compounds at different
temperatures, (a1–d1) are the uniaxial tensile experimental data of four types of rubber. (a2–d2) are the
corresponding local closed-up views.
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Figure 2a–c shows the stress-temperature relationship of rubber specimens at certain strains
of 0.3, 0.6, 0.9, and 1.2. From the results, as the temperature increased, the stress under constant
strain for the three different types of filled rubber (i.e., C20, C40, and C60) first decreased and then
increased. Therefore, with the increase of temperature, the filled rubber first softened and then
gradually hardened when the temperature reached a certain value. In addition, the temperature at
the transition point was different for the rubber with different carbon black filling mass fractions.
From the results, the filling amount of carbon black had great influence on the mechanical properties
of rubber. For the unfilled rubber C00, at constant strain, the stress increased nearly linearly with the
increase of temperature, as shown in Figure 2d. These results are consistent with the conclusions of the
corresponding stress-strain curves described above.
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(a–c) are the Equations (8)’s model curves and experimental data of CB-filled rubber C20, C40, and C60.
(d) is the experimental data of unfilled natural rubber C00.

4. The Capability of Eight-Chain Model in Characterizing Temperature-Dependence in a Certain
Deformation Range

Based on the uniaxial tensile data of filled rubber at different temperatures, the capability of
the eight-chain model in characterizing the temperature-dependence was investigated. According to
the Langevin statistic of Kuhn and Grün [30], the entropy of a single molecular chain (schain) can be
obtained as follows:

schain = k
[
c−N

(
rchain

Nl
β+ ln

β

sinhβ

)]
(1)

where c is a constant, k is the Boltzmann constant, β is the inverse of the Langevin, N is the number
of the segments in a single chain, l is the length of each segment of chain, and rchain is the length of



Polymers 2020, 12, 932 6 of 15

the current chain during the stretching process. β = L−1[rchain/Nl], where the Langevin function is
defined as L[β] = cothβ− (1/β).

The deformation work is proportional to the change of entropy in the stretching process of
molecular chains, which can be expressed by the length of chains. Then, the expression of the strain
energy density function of the single chain can be obtained.

W = nkθN
(

rchain
Nl

β+ ln
β

sinhβ

)
− θc′ (2)

where n is the number of chains per unit volume, θ is the absolute temperature, c’ is a combination of
constants, and the other terms are the same as previously defined.

As shown in Figure 3, the eight-chain model consists of eight molecular chains extending from
the center of a cube to the eight vertices of the cube [26,31]. The expression of the strain energy density
function of the eight-chain model can be inferred:

W8 = nkθ
√

N
[
βλchain +

√

N ln
(

β

sinhβ

)]
(3)

where λchain = rchain/r0 , which is defined as the drawing ratio of the chain in the stretching process of
rubber. r0 is the initial chain length.
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The eight-chain model can be expanded to the form of the Taylor series (only the first five terms
are retained):

W8 = nkθ
[1
2
(I1 − 3) +

1
20N

(
I2
1 − 9

)
+

11
1050N2

(
I3
1 − 27

)
+

19
7000N3

(
I4
1 − 81

)
+

519
673750N4

(
I5
1 − 243

)]
(4)

where I1 is the first invariant of stretches.
According to the formula given by Rivlin [32,33], the relationship between nominal stress f and

stretch λ under uniaxial tension is:

f = 2
(
λ−

1
λ2

)[
∂W
∂I1

+
1
λ
∂W
∂I2

]
(5)

From Equations (4) and (5), the nominal stress expression of the eight-chain model under uniaxial
tension can be obtained as follows [34]:

f = CR

(
λ−

1
λ2

)[
3 +

3
5N

(
λ2 +

2
λ

)
+

33
175N2

(
λ2 +

2
λ

)2
+

57
875N3

(
λ2 +

2
λ

)3
+

1557
67375N4

(
λ2 +

2
λ

)4]
(6)
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CR can be defined as CR = nkθ. Two parameters, CR and N, need to be determined from
experimental data.

According to Equation (6) and test results, the stress–strain curves of rubber materials at different
temperatures were fitted by Levenburg-Marquardt non-linear least square method [35]. The results are
shown in Figure 4, where the fitting results and test data of C20, C40, C60, and C00 are successively
provided. In addition, in order to further observe the fitting results, the local enlarged views are
shown in Figure 4a2–d2. Table 2 shows the fitting parameters of the eight-chain model for each rubber
at different temperatures. From Figure 4, the fitting curve agreed well with the experimental curve,
which indicated that the eight-chain model can accurately characterize the stress–strain process of the
rubber at different temperatures.

Table 2. Model parameters of four types of rubber at different temperatures.

Temperature
(K)

C00 C20 C40 C60

Cr N Cr N Cr N Cr N

293 0.29118 4.19267 0.44451 3.07656 0.57884 2.39836 0.74927 1.87504
313 0.31922 4.48929 0.40255 2.99207 0.48903 2.33111 0.62706 1.92656
333 0.34026 4.67243 0.3835 3.14015 0.55098 2.81744 0.59364 2.03099
353 0.34248 4.38657 0.47456 4.03382 0.57048 3.39614 0.64449 2.33785
363 0.36903 4.54359 0.52195 4.43646 0.63029 3.63281 0.69873 2.69641
383 0.39834 4.29581 0.57828 4.81267 0.6774 3.31172 0.87105 2.71005
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5. Explicit Expression of Temperature-Dependence in Eight-Chain Model

At present, in the eight-chain model, the effects of temperature on the characterization results of
rubber at different temperatures is not explicitly analyzed. Thus, the eight-chain model cannot directly
reflect the dependence of rubber elasticity on temperature. The fitting curves obtained by the eight-chain
model at different temperatures were in good agreement with the experimental results. In addition,
for different tested rubber, the parameters Cr and N at different ambient temperatures were obtained.
Therefore, temperature was implicitly considered in the stress-strain relationship in Arruda-Boyce
model. To facilitate the application of the model, it is necessary to extend Arruda-Boyce model to a form
with explicit temperature dependence. Therefore, the relationship between material parameters and
temperature in the eight-chain model was explored using the macroscopic phenomenological theory.

The test results of rubber specimens were used as an example to describe the analysis process of
the temperature-dependence clearly. The relationship between the parameters and the temperature
is given in Table 2 and is shown in Figure 5. From Figure 5, as the temperature increased, the two
parameters of the eight-chain model showed different trends. By analyzing the trends based on the
characteristics of the graph and the physical meaning of the parameters, the following conclusions can
be obtained:

(1) Based on the variation of model parameter curves with temperature in Figure 5 and the
simplicity of the model, the quadratic function relationship was suitable to describe the trend of Cr
with temperature.
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(2) According to Arruda-Boyce’s eight-chain theory, the second parameter N in the eight-chain
model is a temperature-independent constant. However, according to literatures [36,37], N was actually
temperature-dependent. From Figure 5, as the temperature increased, N changed approximately in the
form of a quadratic function.

According to Figure 5 and the correlation coefficients in Table 3, the numerical fitting results using
quadratic function were basically consistent with the experimental data. Thus, the numerical fitting
with quadratic function can fully meet the accuracy requirements of practical application.

Therefore, the relationship between material parameters and temperature in the eight-chain model
can be quantitatively expressed as follows.{

Cr = A0 + A1T + A2T2

N = B0 + B1T + B2T2 (7)

where A0, A1, A2, B0, B1, and B2 are the temperature-dependent characterization parameters of the
eight-chain model, which can be obtained by fitting the parameters of the eight-chain model. For the
same filled rubber with CB content, the temperature-dependent characterization parameters were
obtained by fitting the eight-chain model parameters at different temperatures using Equation (7),
as shown in Table 3.
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obtained by fitting the eight-chain model parameters at different temperatures using Equation (7), as 
shown in Table 3. 
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Table 3. Temperature-dependent characterization parameters of the four types of rubber.

Code A0 A1 A2 Value R B0 B1 B2 Value R

C00 0.3057 −0.00101 2.71 × 10−5 0.9973 7.27996 −0.17078 0.00204 0.9855
C20 0.50255 −0.00426 4.64 × 10−5 0.9568 3.05639 −0.00888 2.39 × 10−4 0.9691
C40 0.50255 −0.00384 4.10 × 10−5 0.92004 1.7326 0.02563 −8.57 × 10−5 0.8978
C60 0.95029 −0.0122 1.04 × 10−4 0.99989 1.76326 0.00219 6.59 × 10−5 0.9550

Furthermore, combined with Equations (3) and (7), the eight-chain model with explicit temperature
parameters can be obtained as follows:

W8 = nkθ
√

N
[
βλchain +

√
N ln

( β
sinhβ

)]
Cr = A0 + A1T + A2T2

N = B0 + B1T + B2T2
(8)

From Equation (8) and the parameters of Table 3, the stress–strain curves of four types of rubber
at a certain temperature can be obtained, which are called the ‘model curves’ of the eight-chain model
with explicit temperature parameters. The ‘model curves’ are shown in Figure 6 together with the
closed-up views. Figure 6a2–d2 are the closed-up views. From Figure 6, the stress–strain curves of the
eight-chain model with explicit temperature parameters agreed well with the experimental results.
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Therefore, the eight-chain model with explicit temperature parameters can accurately describe the
temperature-dependence of hyperelastic mechanical behavior for rubber materials.

According to Equation (8), in the temperature-dependent model, by setting the nominal strain
to a constant value, the relationship between stress and temperature under constant strain can be
obtained. Figure 2 shows the stress–temperature model curves for three types of filled rubber at strain
ε = 0.3, 0.6, 0.9, and 1.2. From Figure 2, under constant strain, the stress–temperature curves of the
improved eight-chain model with explicit temperature parameters agreed well with the experimental
data. Therefore, the improved eight-chain model can accurately describe the trend of the stress of the
filled rubber over temperature under a constant strain.
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6. Application of Eight-Chain Model with Explicit Temperature Parameters in FEA

According to the eight-chain model with explicit temperature parameters and Table 3, the model
parameters were obtained, and then the parameters were applied to the finite element simulation.
The following finite element simulation was carried out for the experimental data of sample C60 at
293 K. The corresponding values of Cr and N were obtained according to Table 3 and Equation (8),
and then the FEA of uniaxial tension was carried out using ABAQUS. Figure 7 shows the stress contour
picture under uniaxial tension analysis. We can clearly see that the stress distribution in the middle part
is homogeneous. Moreover, the stress–strain curve of the tensile is obtained from the homogeneous
deformation region in the middle, as shown in Figure 8. It can be seen from Figure 8 that the simulated
tensile data are in good agreement with the experimental data. From the comparison results, it is
obvious that the eight-chain model with explicit temperature parameters has a good ability to predict
the uniaxial tensile test data and can be well applied to the actual working conditions as it can fully
ensure the accuracy requirements. Furthermore, it can be concluded that the eight-chain model with
explicit temperature parameters has good engineering practicability.
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According to the eight-chain model with explicit temperature parameters, as long as the
temperature of the rubber specimen is known, the corresponding model parameters can be calculated
immediately, so the improved eight-chain model can be quickly applied to FEA. The improved
eight-chain model can well avoid the parameter instability of the eight-chain model caused by
experimental data fitting and provides a more convenient and accurate method for the FEA of various
other finite element models. There is still a small deviation between the simulation results of the
improved eight-chain model and the experimental data to a certain extent, indicating that the model
still has room for improvement.

7. Discussion

An eight-chain model with explicit temperature parameters was developed based on the
Arruda-Boyce model of the network constitutive Equation. The Arruda-Boyce model has a stable form
of strain energy density function and has been proved to be feasible, not only under uniaxial tension,
but also under other deformation states. Therefore, it is also possible to extend the application of the
improved eight-chain model with explicit temperature parameters to multiaxial stress-strain state.

8. Conclusions

Based on the experimental data of rubber samples, the following conclusions can be obtained:
(1) The hyperelastic mechanical behavior of carbon black filled rubber was dependent on

temperature in a relatively large deformation range. Based on the stress-strain curves, compared
with unfilled rubber, the filled rubber exhibited more complex mechanical characteristics with the
change of temperature. In addition, the filling amount of carbon black also had a great influence on the
mechanical properties of rubber.

(2) The ability of the eight-chain model to characterize the dependence of rubber elastic mechanical
behavior on temperature was analyzed. The fitting stress-strain curves of the rubber obtained by
the eight-chain model at different temperatures were in a good agreement with the experimental
results. Therefore, the eight-chain model can accurately characterize the temperature-dependent elastic
mechanical behavior of rubber in a certain deformation range.

(3) Based on the eight-chain model and the phenomenological theory, an improved eight-chain
model with explicit temperature parameters was developed. The model with explicit temperature
parameters can well describe the elastic mechanical behavior of rubber at different temperatures,
which can further expand the application scope and ability of the eight-chain model.
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(4) The eight-chain model with explicit temperature parameters is used to FEA. The comparison
between the simulation results and the test data verified the rationality of the model.
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