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An insight in proteome profiling 
of Tuta absoluta larvae after 
entomopathogenic fungal infection
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Tuta absoluta (L.) (Lepidoptera: Gelechiidae), a major pest of solanaceous plant species, causes serious 
losses in the agriculture sector around the globe. For better pest management, entomopathogenic 
fungi such as Beauveria bassiana and Purpureocillium lilacinum, play an efficient role in suppressing the 
pest population. The present study was carried out to analyse the effects post fungal infections through 
proteome profiling using an Orbitrap Fusion Tribrid mass spectrometer. A total of 2,201 proteins were 
identified from the fourth instar larvae of T. absoluta, of which 442 and 423 proteins were significantly 
dysregulated upon infection with P. lilacinum and B. bassiana respectively. The potential proteins 
related to immune systems as well as detoxification processes showed significant alterations after 
post fungal infection. Studies on T. absoluta proteomics and genomics as well as the consequences 
of entomopathogenic fungal infection on the immune response of this insect could provide an initial 
framework for exploring more fungus-host interactions for the development of better strategies for 
integrated pest management.

Background & Summary
Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is an oligophagous pest causing serious damage to solana-
ceous crop plants, especially tomato (Solanum lycopersicum L.)1,2. With the increase in global trading and lack of 
quarantine measures, T. absoluta has spread to almost every tomato producing country, thus threatening 87% of 
tomato production across the globe3–5. As this pest has a high fecundity rate with overlapping generations, which 
often leads to selection pressure, T. absoluta has developed resistance to numerous insecticides6,7. To overcome 
the problem of chemical insecticides and to eradicate pest infestation, entomopathogenic microbes (biological 
control) can play a significant role in reducing insect populations and avoiding damage from chemical residues, 
which have detrimental effects on humans and the environment8. Among entomopathogenic microbes, ento-
mopathogenic fungi can be considered promising agents to control various insect pests. The generalist entomo-
pathogenic fungi, B. bassiana and P. lilacinum cause pathogenicity to insect hosts by breaching their cuticle and 
degrading insect cuticular proteins, chitin, and lipids, which are hydrocarbons, in nature9–14. After invasion, 
the hyphae of the fungal pathogen perforate the haemocoel of the insect body and proliferate throughout the 
insect host to form hyphal bodies after replication15,16. During the process of invasion, entomopathogenic fungi 
secrete many secondary metabolites that are toxic and immunosuppressive and often lead to the decline of the 
host defence system, leading to the death of insects17,18. To combat the process of colonization by B. bassiana, the 
insect reciprocates by triggering the melanization process, producing antimicrobial peptides (AMPs), detoxify-
ing enzymes and reactive oxygen species19–21. The evolutionary process has favored to the development of insects 
to develop a more potent and efficient immune system in insects to combat invading pathogens and parasites 
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in their surroundings22,23. These pathogens trigger innate immune responses after invasion, which comprise 
cellular and humoral immune reactions.

The present study was carried out to identify proteins in T. absoluta and their alterations upon entomopatho-
genic fungal infection with an advanced and robust proteomic technique using an Orbitrap Fusion Tribrid mass 
spectrometer. A comprehensive analysis was carried out to elucidate the potential proteins involved in the host 
immune response and detoxification by the T. absoluta larvae. These potential proteins have shown significant 
alterations after entomopathogenic fungal infection. The list of potential proteins is provided in Supplementary 
Tables 1 & 2 and were obtained after 48 h of infection with B. bassiana and P. lilacinum.

The raw data were obtained from mass spectrometry analysis against the protein databases of Manduca sexta 
and Plutella xylostella, and a total of 2,201 proteins were identified in T. absoluta. Among these, 1,440 proteins 
mapped to M. sexta, whereas 878 proteins were mapped from the P. xylostella protein database (http://www.
insect-genome.com/data/detail.php?id=19) (Supplementary data file 1). Dynamic changes in the expression of 
proteins indicate that B. bassiana and P. lilacinum were potent and altered the protein expression in fourth instar 
larvae of T. absoluta 48 h post-infection. The pathogenicity of the entomopathogenic fungus B. bassiana resulted 
in the dysregulation (upregulation and downregulation) of 452 proteins, while P. lilacinum revealed 455 proteins 
in fourth instar larvae of T. absoluta. Upon infection with the entomopathogenic fungi, P. lilacinum and B. bas-
siana, there was a significant dysregulation at the protein expression level in T. absoluta. The distribution of pro-
teins is shown by volcano plots, where upregulated and downregulated proteins are highlighted in red and blue, 
respectively (Fig. 1A,B; P. lilacinum-FC 18 and B. bassiana-FC21). Using a threshold of a 2-fold change (FC) dif-
ference and <0.05 FDR (adjusted p value), 442 proteins were identified as dysregulated in P. lilacinum-infected 
larvae when compared with control samples (Supplementary data file 2). Similarly, B. bassiana-infected samples 
revealed 423 significantly dysregulated proteins in comparison to control samples (FC > 2, FDR < 0.05 p) (sup-
plementary data file 3). Heatmaps for significantly dysregulated proteins show clustering of the two types of 
treated samples separately from the control samples (Fig. 2A,B).

Gene ontology enrichment analysis showed that both entomopathogenic fungi affected the biological, cellu-
lar and molecular processes in T. absoluta. These differentially expressed proteins were involved in various met-
abolic activities, including oxidation, hydrolysis and conjugation, catalytic activity, etc., which are activated by 
enzymes with the resultant release of respective metabolites24,25. The bioinformatic analysis revealed many pro-
teins and their interactions with other associated members. The data obtained will provide significant insights 
into understanding the mechanism of the pathogenicity of B. bassiana and P. lilacinum and their interaction with 
T. absoluta larvae.

Methods
Insect culture rearing.  Adults of T. absoluta were procured from the Germplasm Division, ICAR-NBAIR-
Bangalore, India and released into a large sterile breeding chamber with tomato seedlings. The insect culture was 
maintained under laboratory conditions at 27 ± 2 °C and 55% R.H. The moths were supplied with 10% honey 
solution as a source of food. Eggs were collected from the breading chamber and reared in rearing jars containing 
tomato leaves for growth and development. The early 4th instar larvae were collected from rearing jars for treat-
ment with the entomopathogenic fungi B. bassiana and P. lilacinum.

Entomopathogenic fungal strain collection and identification.  B. bassiana and P. lilacinum were 
isolated from soil samples from the agricultural fields of Pune University, Pune, India and were identified on the 
basis of morphology and sequencing with phylogenetic analysis. Sequences have been submitted to the National 

Fig. 1  Volcano plots showing the distribution of proteins in (A) Tuta absoluta infected with P. lilacinum (FC18) 
when compared with the control sample. (B) Tuta absoluta Infected with B. bassiana (FC21) when compared 
with control sample, dysregulated proteins were highlighted in red (overexpressed) and blue (downregulated).
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Center for Biotechnology Information (NCBI) GenBank with accession numbers MT672601 (Purpureocillium 
lilacinum) and MT672634. (Beauveria bassiana).

Preparation of fungal conidial suspension for infection.  In vitro cultures of B. bassiana and P. lilaci-
num were raised following a standard procedure on potato dextrose agar plates. The inoculated plates were incu-
bated and maintained at a temperature of 25 ± 1 °C with 70 ± 5% relative humidity for 2 weeks. The spores and 
hyphae were scraped from a fully grown colony and transferred to sterile water containing 0.01% (vol/vol) Tween-
20. The conidia were dispersed by vortexing, and the hyphae were removed by filtering the suspension with a ster-
ilized muslin cloth. The concentration of conidia was measured using a haemocytometer. A final concentration of 
1 × 107 conidia mL−1 with sterile 0.01% Tween-20 solution was used for the experiments.

Infection of T. absoluta larvae with B. bassiana and P. lilacinum strains.  The fourth instar larvae 
of T. absoluta were infected with B. bassiana and the P. lilacinum strain separately at a concentration of 1 × 107 
conidia mL−1 by the dipping method for 15 sec. For each treatment, 100 larvae were immersed in the conidial 
suspension and then released onto tomato leaves after removing extra spores. The larvae in the control set were 
treated with sterile distilled water containing 0.01% Tween-20.

Sample preparation for proteomic analysis.  Whole fourth instar larvae were collected from both 
infected and control sets 48 h post infection. One hundred larvae from each group were ground to a fine powder 
in liquid nitrogen using a prechilled mortar and pestle. To this, 500 µl extraction buffer (0.5 M Tris-HCl (pH 7.5); 
50 mM EDTA; 0.5 M sucrose; 0.1 M KCL and 2% β-mercaptoethanol) was added and vortexed for 10 min. The 
homogenate was centrifuged at 10,000 rpm for 10 min, and the supernatant was transferred to a new tube. To 
the supernatant, an equal amount of water-saturated phenol was added, and the mixture was vortexed well for 
10 min, and centrifuged at 10,000 rpm for 10 min. The phenol phase was retracted and precipitated with 5 vol-
umes of 0.1 M ammonium acetate. After 24 h, the precipitate was centrifuged at 10,000 rpm for 10 min, and the 
supernatant was discarded. To the pellet, 200 µl of 0.1 M ammonium acetate was added, the mixture was vortexed 
and again centrifuged at 10,000 rpm for 5 mins. This process was repeated twice. Then, the obtained pellets were 
washed with 200 µl of 100% acetone, air dried, suspended in 8 M urea and stored at −70 °C for further use. The 

Fig. 2  Clustering of treated samples and control sample separately in heatmap (A) P. lilacinum (FC18) infected 
larvae and control. (B) B. bassiana (FC21) infected larvae and control. Red colors indicate the intensity of 
expression of the protein in the sample and green color represents low expression level.
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entire process of centrifugation and precipitation was carried out at 4 °C. The total proteins from three biological 
replicates were pooled and dried in a speed vac concentrator and stored at −80 °C until till further use.

Preparation of samples for mass spectrometry.  Dried samples were reconstituted in 50 mM triethyl-
ammonium bicarbonate buffer and processed for in solution digestion. Briefly, the protein concentration of the 
samples was measured by a PierceTM BCA Protein Assay Kit. Based on the protein concentration, equal protein 
amounts (~100 µg) from each sample were taken. Reduction of the samples was carried out using a final concen-
tration of 5 mM dithiothreitol (DTT) at 60 °C for 30 mins followed by alkylation by 10 mM iodoacetamide (IAA) 
for 30 min in the dark at room temperature. Samples were digested using Promega sequencing grade modified 
Trypsin at a ratio of 1:20 (enzyme: protein) at 37 °C overnight. Peptides were then acidified by 1% formic acid 
(FA) and were cleaned by a Sep-Pak C18 cartridge. Eluted samples were dried in a Speed Vac and stored at −80 °C 
until further analysis.

LC–MS/MS analysis.  Data acquisition for digested samples was carried out on a Thermo ScientificTM 
Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) interfaced with a 
Thermo Scientific EASY-nLC 1000 (Thermo Fisher Scientific, Germany). Peptides were reconstituted in 0.1% 
formic acid and loaded onto a trap column (Thermo ScientificTM AcclaimTM PepMapTM 100 C18 LC Column, 
75 µm × 2 cm, 3 µm). Peptides were resolved on an analytical column (Thermo ScientificTM AcclaimTM PepMapTM 
100 C18 LC Column, 75 µm × 50 cm, 2 µm) at a flow rate of 300 nl/min using an optimized linear gradient of 
8–32% solvent B (0.1% formic acid in 100% ACN) over 100 min. The total run time for each replicate, including 
sample loading and column reconditioning, was 120 min. One microgram of peptide was used in each mass 
spectrometer run. The MS data acquisition was carried out from the 350–1600 m/z range using an Orbitrap mass 
analyser. The AGC target was set to 400,000 with an ion injection time of 50 ms and dynamic exclusion of 30 sec. 
Precursor ions were fragmented using high energy collision dissociation (HCD) (NCE 32%) and analysed using 
an Orbitrap mass analyser with a resolution of 15000. For MS/MS scans, the AGC target was set to 100,000 with 
an ion injection time of 100 ms. Samples were analysed in technical triplicates.

Data Records
The mass spectrometry proteomics data have been deposited in the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) using the PRIDE partner repository with the dataset identifier 
PXD02937426–28.

Technical Validation
Data analysis.  The MS/MS raw data searches were carried out using SEQUEST search algorithms using 
Proteome Discoverer 2.2 (Thermo Fisher Scientific, Bremen, Germany) against RefSeq protein databases of 
Manduca sexta and Plutella xylostella. The search parameters involved carbamidomethylation at cysteine residues 
(+57.021 Da) as a fixed modification and oxidation of methionine (+15.995 Da) as a dynamic modification. The 
precursor and fragment mass tolerances were set to 10 ppm and 0.05 Da, respectively. Trypsin was specified as 
protease, and a maximum of two missed cleavages were allowed. An FDR of 1% was applied as a cut-off value for 
reporting identified peptides. All 9 raw files pertaining to the three samples were searched against databases. In 
the peptide and protein quantifier node of the proteome discoverer, we specified the total peptide intensity of each 
sample for normalization. This node calculates the sum of abundance values of all peptides identified in each raw 
file referred to as the channel hereafter. The channel with the highest total abundance is then used as a reference 
to normalize all other channels by a constant factor per channel. In the end, the total abundance was the same 
for all channels. The software groups the abundance values of each peptide across three technical replicates. For 
statistical analysis we used Perseus proteomics software (version 1.6.2.2), where Student’s T test was performed 
to calculate p values. A fold change cut-off of 1.5 was applied to determine significantly dysregulated proteins.

Gene ontology analysis.  Gene ontology analysis of differentially expressed proteins was performed by the 
Blast2GO® software package (BioBam Bioinformatics Solutions, Spain). The protein sequences were imported 
into Blast2GO® in Fasta format and aligned against the nonredundant (nr) NCBI database using the inbuilt Blast 
function (blastp) with an e-value cut-off of x10−3. The resulting hits were matched against the Gene Ontology 
Annotation database, and Gene Ontology was assigned to each hit on the basis of protein sequences using the 
mapping and annotation functions. The blast hits obtained were also subjected to Gene Ontology assignment 
based on protein domains and families using the InterProScan. The Gene Ontology results from the two steps 
were then merged together, followed by the generation of relevant graphs. The summary statistics of the anno-
tation are provided in Table 1. The full list includes enriched GO terms for biological processes (BP), cellular 
components (CC) and molecular functions (MF) in T. absoluta infected with P. lilacinum and B. bassiana using 

Summary of Merged Annotations

P. lilacinum B. bassianaType

GOs Before Merge 1351 1343

GOs After 1469 1442

Confirmed IPS GOs 2456 2658

Too General IPS GOs 251 263

Table 1.  GO annotations before and after merging in blast2GO in P.lilacinum and B.bassiana. GO annotations 
obtained before and after merging GO terms from core annotation and InterProScan annotation.
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blast2GO analysis along with the genes for each term. The topmost enriched GO terms for P. lilacinum and B. 
bassiana are summarized in Fig. 3 (A: Biological Processes; B: Cellular Compartments; C: Molecular Functions). 
Of the top enriched biological process terms, proteolysis, ion transport, nitrogen compound transport, organic 
substance catabolic process, and carbohydrate derivative metabolic process were enriched by when infection 
with P. lilacinum, whereas cellular protein modification process, catabolic process, and organic cyclic compound 
biosynthetic process were enriched after B. bassiana infection. From the uppermost enriched cellular component 
terms, the endomembrane system was enriched with P. lilacinum treatment, whereas in B. bassiana most of the 
proteins were localized to the endoplasmic reticulum. The top enriched molecular function was common to both 
datasets, although the enrichment score varied.

Furthermore, with the protein sequences and abundance values obtained from the mass spectrometry 
analysis, we used the abundance ratio column for the classification of upregulated and downregulated genes. 
The genes whose abundance ratio was greater than 1 with respect to the control were classified as upregulated 
genes, and those whose abundance ratio was less than 1 were considered downregulated genes. In addition, 
gene enrichment analysis of biological processes (upregulated and downregulated) of T. absoluta proteins was 
also performed separately after entomopathogenic fungal infection. B. bassiana (FC21) showed 213 upregulated 
genes and 210 downregulated genes and the genes involved in organic substance transport, protein localization 
to organelles etc., were upregulated, whereas those involved in cytoskeleton organization, actin filament-based 
processes etc., were downregulated (Supplementary Fig. 1i & ii). Similarly, P. lilacinum (FC18) infection 
resulted in 203 upregulated genes and 242 downregulated genes. Genes involved in organic substance transport, 
nucleotide-containing small molecule metabolic processes etc., were upregulated whereas cytoskeleton organ-
isation, actin filament-based process etc. are downregulated (Supplementary Fig. 1iii & iv). Most importantly, 
through KEGG pathway analysis, we found that some of the proteins were involved in melanin biosynthesis 
(Supplementary Fig. 2). Melanin is known as an important defence molecule in invertebrate immunity29,30.

Code availability
Perseus proteomics software version 1.6.2.2 (https://www.perseus-framework.org) was used for statistical 
analysis, where p values were calculated by Students t test. The volcano plots and heatmaps were also generated 
from the Perseus proteomics tools. The differentially expressed proteins were further subjected to Gene Ontology 
analysis using the Blast2GO® software package (BioBam Bioinformatics Solutions, Spain) (https://www.biobam.
com/omicsbox). These annotated genes were used for enrichment analysis of the gene ontologies of upregulated 
and downregulated genes by clusterProfiler version 4.2.2 (https://bioconductor.org).
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