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Abstract

The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding
of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety
of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel
approach to infer cell-specific pathways and identify a compound’s effects using gene expression and phosphoproteomics
data under treatments with different compounds. Gene expression data were employed to infer potential targets of
compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the
generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of
this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways
by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used
to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways
reliably predicted a compound’s effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the
effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced
topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and
caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine
blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway.
Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good
accuracy in predicting effects of 4 compounds. In summary, our computational model can be used to elucidate potential
mechanisms of a compound’s efficacy.
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Introduction

The identification and functional understanding of a com-

pound’s effects on the pathway level is becoming more and more

important [1]. It is a critical channel to deeply study the

mechanisms of cancer cells so that more effective drugs can be

developed. The Library of Integrated Network-Based Cellular

Signatures (LINCS) project (http://www.lincsproject.org/) aims to

create a network-based understanding of biology by cataloging

changes in gene expression and other cellular process that occur

when cells are exposed to a variety of perturbations. The gene

expression data in LINCS (L1000) were cataloged for human

cancer cells treated with compounds and genetic reagents. Similar

to Connectivity Map (CMap) [2], the L1000 assay (Luminex-bead

detection system) aims to connect diseases with genes and drugs at

low costs. The gene expression profiles from L1000 data are

potentially useful to infer the targets of compounds. However, little

is known about how the downstream pathways of the inferred

targets in signaling pathway are affected. P100 data in LINCS is

one type of phosphoproteomics data which contains measure-

ments of hundreds of proteins (roughly 700 proteins in our study)

for the MCF7, PC3, and HL60 cell lines treated by 26

compounds. Immobilized metal affinity chromatography was used

to reflect the response of cancer cells and the change of pathways

as a result of treatments. P100 data potentially reveal the phospho-

signaling groups of compounds when the signaling pathways come

to a steady state after treatments.

A key question is how to integrate these two types of data to

systematically infer the cell-specific pathways induced by those

perturbations, and then to predict the compound’s effects. Because

the measurements in P100 data only cover one time point (6 hours

after administration of the compounds), traditional pathway

modeling with ordinary differential equations may not be suitable

to handle such kind of mid-stage phosphoproteomics data [3].

Mitsos et al developed an integer linear programming approach to

identify drug effects from phosphoproteomics data by discerning

topological alterations in pathways [4]. However, the causal

relationships for phosphorylation in the signal transduction process

can be reflected in early responses, they are hard to capture later

on. For example, phosphorylation of ERK K peaks under the

stimulation of EGF and decreases within 1 hour [5]. Therefore,

the challenge is how to infer the cell-specific pathways using data

obtained from mid- or late-stage signaling responses.
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To address this challenge, we developed a binary linear

programming (BLP) approach to predict a compound’s efficacy

by integrating L1000 gene expression and P100 phosphoproteo-

mics data (Figure 1). In our approach, L1000 data are first

employed to infer candidate targets of compounds and thereby

create the generic pathway map. Secondly, we used BLP to

optimize the generic pathways based on the mid-stage phospho-

signaling response. Finally, we applied BLP to re-optimize the cell-

specific pathways and thus evaluate the effects of compounds. To

test the effectiveness of the proposed approach, we applied this

approach to the MCF7 breast cancer cell line and the PC3

prostate cancer cell line. Cross-validation analysis showed that the

cell-specific pathways inferred by our approach are reliable and

the predicting accuracy of a compound’s effects is high. In

summary, our computational approach can shed light into the

mechanisms of a compound’s efficacy and facilitate drug

discovery.

Results

Experimental data
In this study, we considered L1000 gene expression profiles and

P100 phosphoproteomics data for MCF7 and PC3 cell lines (both

included in L1000 and P100 data) treated with 15 compounds

(Table 1). The 15 compounds were viewed as 15 sample

conditions in the experimental data: The first 11 compounds

were used to optimize the cell-specific pathways. The remaining 4

compounds were used to predict treatment effects (Table 1). We

screened the gene expression profiles for 11 compounds and 3,712

shRNA-perturbations from the L1000 database to infer potential

targets. For some compounds, their targets are unknown. These

inferred targets were used as guides to create the generic pathway

map (see Materials and Methods). We also screened two

subsets from P100 phosphoproteomics data. The first subset with

11 compounds was employed to optimize the cell-specific

pathways via our BLP approach. The second subset with 4

compounds was used to evaluate treatment effects by re-

optimizing the inferred cell-specific pathways via BLP. The

rationale is that we expect that some targets of certain compounds

(e.g., Scriptaid [6]) were validated in literature and some targets of

other compounds (e.g. daunorubicin) were unknown. Hence we

need to infer the potential targets for those compounds with

unknown targets based on the L1000 gene expression data. In the

testing set, the first two compounds were HDAC1 inhibitors, while

the targets of other two compounds were unknown. Based on the

current fixed split, we tried to validate our model to learn whether

the model could identify the effects of compounds even if their

targets are unknown.

L1000 data were downloaded and processed as normalized log2

fold change value (http://cmap.github.io/l1ktools). The raw data

of P100 (log2 ratio of treatment to control) were converted to

binary values (0 or 1) according to the sign of raw data, where 1

corresponds to the fully activated state and 0 to no activation. In

addition, if the targets or other co-regulators (some key proteins

inhibited or activated after treatment) of some compounds were

already validated in the literature, this prior knowledge was

presented as constraints in our BLP approach.

Proposed approach to infer cell-specific pathways and to
identify a compound’s effects

The workflow of the proposed approach is presented in

Figure 1. In the first step, we inferred the potential targets of

the compounds from L1000 gene expression profiles and

information from the literature, and then created the correspond-

ing downstream pathways of those inferred targets by integrating

the PPI, transcriptional factor, and KEGG pathway database [7].

We also searched the pathways related to MCF7 and PC3 cell

lines in IPA (http://www.ingenuity.com) and the literature [8–10].

After that, we integrated these pathways with inferred targets and

their downstream pathways together to construct a generic

pathway map. In the second step, the optimized cell-specific

pathways were obtained by fitting the P100 data to the generic

pathway map with our BLP approach. Finally, we applied BLP to

re-optimize the cell-specific pathways to identify a compound’s

effects by discerning topological alterations in the pathway map.

Inference of potential targets of compounds using L1000
gene expression profiles

To construct the generic pathway map, we needed to determine

the potential targets of compounds in this study. If some targets

were already validated in literature, they were directly included in

our generic pathway map. For example, the compound Scriptaid’s

target is HDAC1, and thus HDAC1 is one protein included in our

generic pathway map [6]. On the other hand, some compounds

may not have validated targets, such as daunorubicin, digoxin, etc.

If so, we inferred the targets from the L1000 assay. Here we briefly

summarize target discovery using L1000 data. If a compound

inhibits the function of a protein, the compound-induced L1000

gene expression changes should be similar to those of the

knockdown of the gene of this protein. Therefore, the potential

targets of a compound can be defined as a list of genes whose

knockdowns show similar effects as this compound does on the

gene expression.

We used an algorithm from Kolmogorov–Smirnov test-based

gene set enrichment analysis (GSEA [11]) to calculate the

Enrichment of Gene Effect to a Molecule. We assume that the

disturbance of a gene by knockdown ‘‘drives’’ changes in

expressions of other genes. Therefore, we defined each knocked-

down gene as the ‘‘driver gene’’. For each compound’s effects on a

cell line, enrichment of the compound-induced DEGs to the gene

expression profiles induced by a knocked-down gene was

calculated as a connectivity score (indicates the correlation

between the compound’s target and the driver gene). Top driver

genes were screened as candidate targets according to their

connectivity scores for a compound on that specific cell line. For

example, STAT1 and HDAC1 were inferred as the potential

targets of digoxin and irinotecan using the connectivity score,

respectively. The details were described in Text S1 in File S1.

Next, we created the corresponding downstream pathways of

those targets by integrating the PPI data (HPRD [12]), transcrip-

tional factor (TRANSFAC [13]), and KEGG pathway database

[7]. PPI database also can provide some clues for pathway analysis

because a certain protein might be regulated by its interaction

partner via intracellular signaling [14,15]. After inferring the

targets of some compounds from L1000 genomics data, we started

to search the paths connected with the targets based on the

protein-protein interaction network. The paths will end at one

protein when it is a transcriptional factor (TF). Finally, the

directions of these paths were determined based on the knowledge

from IPA, KEGG database, and literatures. For example, HDAC1

is a potential target of compound irinotecan and BRCA1 is a

HDAC1’s interaction partner, so that we have a potential path

HDAC1 { BRCA1. Meanwhile we also found another protein-

protein-interaction partner of BRCA1 as P53 [16]; and then a

potential downstream pathway of HDAC1 was determined as

HDAC1 ? BRCA1 ? p53 [17,18]. The results of inferred

compound’s targets and downstream pathways were represented

in Table S1 and Table S2 in File S1.

BLP-Based Compound’s Effects Prediction
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Construction of a generic pathway map
After determining the potential targets of compounds and their

downstream pathways, we manually created the generic pathway

map. First, we searched the names of important pathways which

were widely discussed in literatures; and then we used IPA to pick

up the pathway topological structure of those pathways, including

the estrogen signaling pathway, EGFR signaling, TNFR signaling,

PI3K/AKT pathway, MEK/ERK pathway, JNK/p53/p21

pathway, p38 MAPK pathway, and HDAC1 pathway

(Figure 2A).Because the pathway topology from IPA might not

be suitable for all the cell lines, we combined the pathways from

IPA with the potential downstream pathways of inferred targets

together to get a generic pathway map. We show some important

pathways in Figure 2A. The estrogen pathway induces tumor

growth in estrogen receptor-positive breast cancers [6]; the PI3K/

AKT pathway is an important player in cell survival [9]; the TNF

signaling is anti-cancer related pathway [19]; and MEK/ERK

pathways are usually associated with proliferation and anti-

apoptosis; the NFkB pathway is involved in many cell functions,

such as cell proliferation, cell survival, and cellular stress [20]; the

JNK/p53/p21 pathway may induce cell apoptosis [8]; and

HDAC1/BRCA1/DDB2 is a cell survival pathway [21]. In

Figure 2A, the edges with green color are our inferred

downstream pathways of some compounds. The results of inferred

compound’s targets and downstream pathways were represented

in Table S1 and Table S2 in File S1.

Figure 1. The flow chart of the proposed approach to infer a cell-type specific pathway map and to identify a compound’s effects.
doi:10.1371/journal.pone.0102798.g001

BLP-Based Compound’s Effects Prediction
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Next we represented the generic pathway map with Boolean

operations (Boolean network) [22,23]. Nodes in the network

represent biological species and they have associated logical values

(1 or 0) determining whether the species is activated or not. The

signaling events (reactions) are encoded by Boolean operations on

the nodes, which also have logical values (‘promotion’ (1) or

‘inhibition’ (0)). A Boolean network consists of a set of nodes and a

set of directed edges. All the edges are linked via ‘‘OR’’ and

‘‘AND’’ logic gates. Figure 2A shows the Boolean topology of

generic pathways for the MCF7 cell line. The actual signaling

pathway map has many types of topological structures (shown in

IPA and Figure 2A), but most signaling pathways can be

summarized as a Boolean network using four topological structures

(Figure 3). The two cases in Figure 3A (‘‘AND’’ gate for single

activation) and Figure 3B (‘‘OR’’ gate for multiple activations)

were discussed by Mitsos et al [4]. The topological structure

pattern in Figure 3A indicates that a single activation will occur if

no inhibitors are activated and at least one of signaling species is

activated. Figure 3B shows that multiple activations can possibly

activate the downstream protein and these activations are logic

‘‘OR’’. However, these two linking patterns do not present all

connections in pathway topology because of the complicated

pathways in KEGG and IPA database (such as two cases in

Figure S5 in File S1). In the current study, we also considered

two more cases in Figure 3C (‘‘OR’’ gate for multiple inhibitions)

and Figure 3D (‘‘OR’’ gate for mixed reactions). Figure 3C
suggests that multiple inhibitions can possibly inhibit the

downstream proteins and these reactions are logic ‘‘OR’’. As to

Figure 3D, it indicates the states of downstream protein might be

regulated by activation and inhibition, simultaneously. More

details about the difference between our approach and the

approach developed by Mitsos were described in Text S3 and

Figure S6 in File S1. Table 2 shows some combinations of our

binary linear constraints developed to infer the states of nodes and

edges from these topological structures. Details regarding these

constraints in Table 2 were described in Text S2 in File S1. For

more details regarding Boolean representation of pathways, please

refer to [22].

Table 1. The details of 15 compounds which are both
covered in L1000 and P100.

Index Compounds Treatment Conc in P100 (uM)

1 Fulvestrant 1

2 Paclitaxel 1

3 Doxorubicin 6.8

4 GW-8510 10

5 Daunorubcin 7

6 Irinotecan 100

7 Scriptaid 10

8 Anisomycin 15

9 Valproic acid 1000

10 Digoxin 5.2

11 Geldnamycin 1

12 Trichostatin A 1

13 MS-275 10

14 Staurosporine 1

15 Digoxigenin 10.2

doi:10.1371/journal.pone.0102798.t001

Figure 2. Boolean network topologies of the generic and inferred cell-specific pathways for the MCF7 cell line. (A) The MCF7 generic
pathway map included some important classic pathways. The edges with green color were potential downstream pathways of some compounds. (B)
After optimization via BLP, the red nodes and grey dash lines were removed from generic pathway map so that the cell-specific pathways were
obtained.
doi:10.1371/journal.pone.0102798.g002

BLP-Based Compound’s Effects Prediction
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Inference of cell-specific pathways by BLP
To infer cell-specific pathways based on the generic pathway

map constructed above, we then minimized the differences

between the measurements and the simulated values, as well as

the complexity of the signaling pathway structure’s topology. To

simplify this optimization problem, we developed a binary linear

programming (BLP) approach to optimize such multi-objective

functions. The concept behind BLP is that the states of the

proteins (variables) are normalized to binary numbers (activated

state or no activation); edges between two proteins are also

represented as binary numbers (inhibition or promotion); binary

linear constraints are used to describe the relationship between

upstream and downstream proteins; and the optimization is done

with binarized values taken by variables, edges, and constraints

[4,24](see Materials and Methods).

The BLP is solved with the optimization toolbox in MATLAB

that guarantees minimal differences between phosphoproteomics

data and predicted data, as well as the Boolean topology of the

generic pathway map. Because P100 data are captured at the mid-

stage of signal transduction, we developed constraints to simulate

the change from early to mid-stage so that we can still obtain many

important causal relationships of phosphorylation. The fitting

precision of the optimized cell-specific pathways is 87.66% (File
S2) for MCF7, which proves that our model works well on mid-

stage phosphoproteomics data.

Figure 2B shows the inferred cell-specific pathways of MCF7.

The blue nodes are the measured phosphoproteins, while the red

nodes and grey dotted lines were removed after optimization.

After our BLP system simultaneously optimizes the two objective

functions with the P100 data, we keep those reactions whose edges

exist for some compounds, and remove those reactions whose

edges completely do not exist for all compounds. For example,

HDAC1 inhibitor-induced JNK activation in turn activates the

downstream pathways p53 and p21 (JNK ? p53 ? p21), and

eventually results in cell cycle arrest. Another example is that the

reaction between cJUN and p53 (cJUN decreases the expression of

p53) did not appear in the pathways induced by all compounds, so

we removed this reaction, although it does exist for certain

conditions [25]. In addition, to keep the proteins at the end of each

pathway as measured phosphoproteins, all other proteins at the

end of each pathway not measured in P100 were removed (e.g.

(ERK AND CK2) ? ELK-1 reaction in Figure 2B). Thus, the

inferred cell-specific pathway map was smaller but contains only

those elements that can fit the experimental evidence very well.

When this approach was applied to the PC3 cell line, the goodness

of data-fitting on the inferred cell-specific pathways was 90.91%.

The details of the generic and inferred specific pathways of PC3

are shown in Figure S1 in File S1. In addition, the effects of the

different combinations of compounds to the inferred cell-specific

pathway map were described in the section of ‘‘Discussion’’.

Cross-validation
To prove the reliability of the developed approach, we

examined the effects of leave-one-out cross-validation on the

phosphoproteomics data of 11 compounds. For each compound,

we employed data from 10 compounds to optimize a cell-specific

pathway topology and evaluate the treatment effects of the

remaining one compound on this pathway map by predicting the

states of all the proteins via BLP. The mean values for fitting

precision in MCF7 and PC3 cell lines were 84.85% and 86.20%,

respectively, which suggests the inferred cell-specific pathway map

is reliable for prediction of a compound’s effects (File S3).

According to the leave-one-out cross-validation we did on MCF7

cell line, we calculated the similarity of topological structures

among 11 cases (each corresponds to one compound) where each

case represents cell-specific pathway map trained from the

remaining 10 compounds after leaving one compound out). The

connected edges in all inferred pathways are 80. The similarity of

the inferred cell-specific pathways based on the different combi-

nations is defined as the ratio of the number of connected edges in

each cell-specific pathway divided by the total number of

connected edges (80). The average value of the similarity of 11

cell-specific pathways generated by leave-one-out cross-validation

was 98.9%. This again indicates our inferred cell-specific pathway

map was reliable.

Prediction of a compound’s effects via compound-
induced topological alterations

Our assumption is that the cell-specific pathways are fixed when

there is no perturbation. So we can try to infer the cell-specific

pathways first with some drug treated data and then use the

reconstructed cell-specific pathways to predict effects of new drugs.

Here, we first used the BLP model to train the generic pathways

with the first part of phosphorylation data (11 training com-

pounds), and obtained the cell-specific pathways. Then we fit the

second part of data (4 testing compounds) to the optimized cell-

specific pathways with BLP model, the state of phosphoproteins

could be inferred to represent the compound’s treatment effects

via topological alterations. Figure 4 shows the changes of states at

0 min, saturation state, and 6 hour of some important phospho-

proteins in the downstream of the signaling pathway map where

12 proteins are measured in P100 (3 proteins are not). These

predicted changes of states are consistent with the biological

functions shown in Figure 5. In addition, for all 27 measured

phosphoproteins in the MCF7-specific pathways, the accuracy of

data-fitting of these phosphoproteins for 4 compounds were

85.19%, 81.48%, 92.59%, and 96.30%, respectively (File S2).

The detailed results were discussed below.

For identification of a compound’s effects, we applied the

inferred MCF7-specific pathways to 4 compounds: trichostatin A,

MS-275, staurosporine, and digoxigenin. The first two compounds

are HDAC inhibitors [26,27], and staurosporine promotes

apoptosis [10]. Figure 5 depicts the pathway’s topological

alterations for these compounds. Including trichostatin A, a

HDAC inhibitor, removes the branches (subsets of the pathways)

as follows: some downstream paths of IGF1R and EGFR, TNFR

? TRAF2 ? TAK1, AKT ? p53, HDAC1 ? BRAC1 ?
DDB2, CycE/CDK2 ? Rb-E2F (phosphosite Thr373) and

CycD/CDK4 ? Rb-E2F (phosphosite Thr826). Figure 5A
suggests that HDAC1 and its downstream pathway are blocked,

which may cause cell growth arrest. The p53 signal is up-regulated

after the activation of JNK. This was also confirmed in Figure 4,

where the states of the phosphoproteins were inferred with BLP. In

the meantime, p21 was activated by p53, which then induced cell

cycle arrest by inhibiting phosphorylation of the Rb-E2F complex

triggered from CycE/CDK2 and CycD/CDK4 [28–30]. In

addition, up-regulated Fas activated by p53 will potentially

promote cell apoptosis.

MS-275 [27], also a specific HDAC inhibitor, altered the

pathway topology in a similar pattern as trichostatin A. MET was

inhibited by trichostatin A but activated by MS-275 (Figures 5A
and 5B). These two compounds induced similar changes on most

key proteins; only the expression of HSP27 and ELF1 were

different (Figure 4). In Figure 5B, p21 activation inhibited

phosphorylation of the Rb-E2F complex and blocked the

disassociation of this complex [28–30]. Therefore, our results

suggest that the effects of trichostatin A and MS-275 block cell

growth in the MCF7 cell line.

BLP-Based Compound’s Effects Prediction
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Figure 3. Four types of linking patterns in the pathway topological structures. Most of the actual pathways can be represented as Boolean
networks using these linking patterns. (A) ‘‘and’’ gate for single activation; (B) ‘‘or’’ gate for multiple activations; (C) ‘‘or’’ gate for multiple inhibitions;
(D) ‘‘or’’ gate for mixed reactions.
doi:10.1371/journal.pone.0102798.g003

Table 2. Four types of linking patterns between species and products in pathway topology.

Type Logic gate The index of Constraints for addressing each type of topological structure Description

A AND gate (7),(8),(9),(10),(11) Single activation

B OR gate (7),(9),(10),(11) Multiple activations

C OR gate (7),(9),(12),(13) Multiple inhibitions

D OR gate activation: (7),(13),(14) (15) Mixed reactions

inhibition: (7),(13),(12) (15)

doi:10.1371/journal.pone.0102798.t002

BLP-Based Compound’s Effects Prediction
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With regard to staurosporine [10], a pro-apoptotic compound,

double effects were detected from the pathway’s topological

alterations: p21 obviously blocked the cell cycle by inhibiting the

phosphorylation of the Rb-E2F complex, while DDB2-induced

cell growth also occurred via activated HDAC1 (Figure 5C).

Figure 4 also shows similar results.

Digoxigenin induced the activation of HDAC1 and inhibition of

p53 (Figure 5D). It blocked the reaction JNK ? p53 so that p21

was also inactivated. DDB2 was activated by HDAC1 through

BRCA1. The absence of p21 indicates phosphorylation of the Rb-

E2F complex, which increases the chance for the disassociated

transcription factor E2F to promote transcription and cell growth

[30]. Therefore, our findings indicate digoxigenin potentially

induce cell cycle and promote cell growth on MCF7 cell line.

As shown in Figure S2 in File S1, MS-275, staurosporine, and

digoxigenin induced the inhibition of TNFR and part of its

downstream signaling pathway such as IKK, which is very

important for survival of PC3 cells [31]. Finally, double effects

were detected: p21 blocked the cell cycle, but HDAC1 induced

cell growth via DDB2 (Figure S2C and S2D in File S1).

Discussion

In this paper, we present a computational approach to optimize

generic pathways and identify a compound’s effects on an inferred

cell-specific pathway map by integrating gene expression profiles

and phosphoproteomics data collected from various types of

perturbations. For constructing the generic pathways, we com-

bined the pathway information from the literature and the

potential targets of compounds inferred from gene expression

profiles under perturbations. A generic pathway map of MCF7 cell

line with 60 proteins and 94 reactions was obtained. With our

binary linear programming (BLP) approach for pathway topology

optimization, a cell-specific pathway map of 54 proteins and 80

reactions that cover 27 measured phosphoproteins was finally

inferred. In the optimized cell-specific pathways, we monitored 4

cases of compound-induced topological alterations to the pathways

to predict a compound’s effects using BLP.

We used BLP formulations in two ways. For inference of the

cell-specific pathways using the perturbation-induced data of 11

compounds, the BLP system included 4,014 constraints and 2,002

Figure 4. Change of states of some important proteins during two time points. In this figure, the binary value ‘‘1’’ and ‘‘0’’ are represented
as high level and low level signal, respectively. Sat means the moment that the signaling pathways come to saturation condition in the early stage of
signal transduction after treatment with compound. In the BLP approach, Sat and 6 h are the time t and tz1, respectively.
doi:10.1371/journal.pone.0102798.g004

BLP-Based Compound’s Effects Prediction
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variables in the generic pathways. When the optimized cell-specific

pathway map was utilized to predict the effects of each compound,

it had about 306 constraints and 155 variables every time. In

addition, there were 27,887 constraints and 9,732 variables used in

a generic pathway map of 74 proteins and 105 reactions in ILP

approach [4]. Then 2,477 constraints and 947 variables were

needed for predicting the effects of each compound on the cell-

specific pathway map, which contained 49 proteins and 44

reactions. These data suggest our BLP approach is significantly

simplified and less redundant than that in [4].

Compared to other phosphoproteomics-based and mass spec-

trometry-based target identification approaches, which use com-

Figure 5. The BLP approach revealed the compound-induced topological alterations in the MCF7-specific pathways. The treatment
effects of four compounds on MCF7 cell line were shown in the Figure. Red arrows denote these reactions were blocked after treatment with
compounds.
doi:10.1371/journal.pone.0102798.g005

BLP-Based Compound’s Effects Prediction
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pound affinities measured either by in vitro or in vivo assays, our

method uses perturbation-induced gene expression profiles to infer

the potential targets and downstream paths [32,33]. After that, a

generic pathway map could be created based on pathways in the

literature and inferred targets. We developed BLP to monitor

alterations in pathway topology as a way to evaluate a compound’s

effects.

An important aspect of our approach is the inference of the cell-

specific pathways. Our approach, which is based on Boolean

modeling, can simplify the representation of pathway topology and

boost the optimization process. Compared with ordinary differ-

ential equation-based methods, a Boolean logic model has limited

abilities to model kinetic behavior, but as a non-parametric

estimation approach it can be applied for the simulation of large-

scale topological structures. The actual signaling pathways have

many types of topological structures, but the ILP approach can

only deal with two examples of the topological structure, and its

rules are rather redundant [4]. Our method can handle four types

of linking patterns of topological structures in pathway map. Our

binary linear constraint system can infer the cell-specific pathways

from the mid-stage phospho-signaling response, which only covers

one time point, by constructing rules that reflect the continuous

changes of phosphorylation or states. In addition, we simplified the

design of constraints, so that our Boolean model contains much

fewer constraints than others [4].

Effects of Binarization on resulting networks
We also notice that different binarization techniques resulted

different networks. We investigated the effects of three binarization

approaches on our resulting networks [24]. In our study, the P100

phosphoproteomics data is defined as log2(treatment/control). We

used zero (‘‘0’’) as a fixed threshold. If the state of a protein is

positive (.0), it indicates this protein is up-regulated; otherwise,

this protein is down-regulated. The BASC approach tries to find a

robust threshold for data binarization by assessing whether such a

threshold is possible to divide the data into two stable groups at

different scales [24]. The basic idea is to build a family of 1-

dementional time series by approximating the original ordered

time series gene expression data with step functions, whose

number of discontinuities decreases gradually. The authors

proposed two algorithms (BASC A and BASC B) for implementing

this idea. BASC A performs better than BASC B without

elimination of noisy genes. Hence, we applied BASC A approach

to our MCF7 phosphoproteomics data. The Figure S7 in File S1
presents the MCF7-specific pathway network inferred using BASC

A approach. After comparing with the pathway network inferred

using our normalization method in Figure 2B, we found that

these two cell-specific pathway networks were identical except an

extra link (HDAC1 {D p53) found by BASC A. Biologically

HDAC1 can increase inhibition of phosphorylated active p53

[34]. In addition, the fitting precision of our method is also similar

to BASC A (Figure S8 in File S1). In conclusion, BASC

algorithm also can be applied to binarize p100 data. Some detailed

results about BASC approach applied to our MCF7 data are

presented in Text S4 in File S1. In addition, we also selected two

well-defined binarization techniques on MCF7 phosphoproteo-

mics data: (A) we used the mean value as a threshold [35] (B) we

used a K-means clustering approach to find a threshold [36].

Based on the first method, the inferred MCF7-specific pathway

topology included 80 edges. The fitting precision of the inferred

cell-specific pathways to 11 compounds is 87.99%. When the cross

validation was applied on the 11 compounds, the fitting precision

is 85.5%. We then used the inferred specific pathway network to

identify the effects of 4 compounds. The average prediction

accuracy is 87.04%. Moreover, for the second method, our

inferred MCF-7 specific pathway topology included 79 edges. The

fitting precision of the inferred cell-specific pathways on 11

training compounds is 88.31%. The average predicting accuracy

on 4 testing compounds is 87.96%.

When applied to the MCF7 cell line, our approach identified

both known and unanticipated results. Trichostatin A and MS-275

both are HDAC inhibitors; thus, their inhibition of HDAC1 can

be seen in the pathway map and cell cycle is blocked via the up-

regulated p53. Digoxigenin acts on MCF7 cells to inhibit p53 and

induce cell cycle changes and cell growth promotion. In the case of

staurosporine, a pro-apoptotic compound, double effects were

detected from the pathway’s topological alterations: p21 blocked

the cell cycle by inhibiting the phosphorylation of the Rb-E2F

complex, and DDB2-induced cell growth occurred via activated

HDAC1. Finally, we detected no obvious topological alterations

for the proteins BAD, 4E-BP1, RPS6, or c-Myc (Figure 5). It is

possible that our mid-stage phosphoproteomics data missed some

early response signals, so that the proposed approach might not

detect all the changes of reactions.

When we applied the proposed approach to the PC3 cell line,

the precision of fit for the inferred cell-specific pathways on the

experimental data of 11 compounds was 90.91% (File S2). We

also evaluated the effects of 4 compounds (trichostatin A, MS-275,

staurosporine, and digoxigenin) on the PC3 cell line. All these

compounds induced the inhibition of EGFR, which plays an

important role in apoptosis [37]. Comparing the four subfigures in

Figure S2 in File S1, MS-275, staurosporine and digoxigenin

induced the inhibition of TNFR and part of its downstream

proteins such as IKK which is very important for cell survival of

PC3 [31]. Finally, double effects were detected in Figure S2C
and S2D in File S1: p21 blocked cell cycle; however, HDAC1

induced cell growth via DDB2.

The effects of different combinations of compounds
We tried to test the changes of MCF7-specific pathways by

using different combinations of compounds from 5, 6, …, to 15.

For example, according to the order shown in Table 2, we tried

to combine the first five compounds for inferring the cell-specific

pathways; then we added the sixth compound to that pool to infer

the cell-specific pathway again, …, we repeat this procedure until

the combination includes all the 15 compounds. The connected

edges in all inferred pathways are 80. The similarity of the inferred

cell-specific pathways based on the different combinations is

defined as the ratio of the number of connected edges in each cell-

specific pathway divided by the total number of connected edges

(80). We notice that the different combinations with 5 to 9 training

compounds have the similarity value being 88%. However, the

similarity is 100% for the cases trained with the combination of

compounds from 10 to 15. This result indicates that the inferred

topological structure will be steady when at least 10 training

compounds were used.

Redundancy analysis
In our study, the redundancy analysis (RDA) of compounds was

performed on our P100 dataset via R-package ‘‘Vegan’’ [38]. In

Figure S4 in File S1, the correlations among 11 training

compounds in the training set were represented with blue arrows

and 4 testing compounds were denoted with red markers. The

cosine of the angle between blue lines is approximately equal to

the correlation between the corresponding variables. ‘‘sit1’’-

‘‘sit28’’ means the markers of 28 measured proteins in the generic

pathway map. Obviously, most of the blue lines (training set) have

obvious angles; the average value of the correlation coefficient
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between any two training compounds is 0.31. Therefore, there was

low redundancy of these 11 compounds. Based on the result shown

in Figure S4 in File S1, we considered our LOO cross-validation

on training set as reliable.

Network behavior
Although network behavior is not the focus of this study, we

tried to evaluate our network behavior over time after a drug is

applied based on the inferred pathway topology when most

proteins researched to saturation conditions through phosphory-

lation. Because the state of most proteins (in cell-specific pathways)

at time t (defined in BLP model, see the section of Materials and
Methods) satisfied our Boolean constrains, cell-specific pathway

network treated by certain compound transits from saturation state

to a steady state (all the proteins had no-changes) more quickly

than this network transits from a random state. As an example

with MCF7 cell line, we inferred the states of all the proteins at

next time point (tz1) to represent the next state of the pathway

network. The states of a downstream protein at tz1 were inferred

from the states of its upstream proteins at time t with constraints

and pathway topological information. By that analogy, we can

infer the transition of the network’s states from the saturation

condition (time point t) to the steady state. Treated by 11 training

compounds separately, the saturation state of MCF7-specific

pathway network reached to a steady state with 7.1818 steps by

average; when we randomly generated 10 (random) states of the

specific pathway network, it were 10.3 steps for the network to

reach a steady state.

In summary, we provide a novel methodology to infer the cell-

specific signaling pathways and to identify the effects of

compounds on the pathways. Our BLP approach can quickly

infer the best-fitting pathways from topological structures calcu-

lated from the perturbation-induced data. We believe the

proposed approach complements standard biochemical drug

profiling assays and sheds new light on the discovery of possible

mechanisms for drug effects.

Materials and Methods

Experimental data
In the LINCS project, L1000 gene expression profiles and P100

phosphoproteomics data have been generated by the Broad

Institute (http://lincscloud.org/exploring-the-data/data-api/).

The L1000 database is a catalog of gene-expression profiles

collected from human cells treated with compounds and genetic

reagents. These data are used to reveal connections between genes

and compounds and the related molecular pathways for under-

lining disease states. The L1000 database includes information on

5,178 small-molecule compounds; 3,712 genes perturbed using

lentivirally-delivered shRNAs; and the effects of overexpression of

those genes. All the data were collected from 15 cancer cell lines

on 1,000 carefully chosen landmark genes, which can reduce the

number of measurements and will not be biased for a particular

cellular model. The data from the 1,000 landmark genes will be

converted to expression data for about 22,000 genes (http://

lincscloud.org/the-data-set/the-landmark-genes/)

The P100 database contains measurements of phosphorylation

caused by 26 different compounds for three cell lines (MCF7, PC3,

and HL60). The treatments were each administered for 6 hours at

37uC and were repeated twice in complete biological replicates.

Details of the experimental design can be found at (http://

lincscloud.org/exploring-the-data/data-api/phosphoproteomics).

Treated cells were grown in SILAC medium [Arg-6, Lys-4] or

heavy [Arg-10, Lys-6] growth medium; control cells treated with

DMSO were grown in light [Arg-0, Lys-0] growth medium. All

raw values in P100 represent log2 ratios of the treatment vs.

DMSO.

Computational procedure: Binary linear programming
Here, we describe how the Boolean model can be reformulated

as a BLP to optimize the cell-specific pathways. Two reports in the

literature [4], [22] used a Boolean model to optimize the generic

pathway map under the stimulation of combined different

cytokines. However, their models are designed only for phospho-

proteomics data in the early stage of signal transduction. Although

the causal relationships for phosphorylation could be reflected

from the early response of signal transduction, they are hard to

capture after the mid-stage of the response. Therefore, these

models might be unsuitable to optimize pathway maps by using

mid- or late-stage phosphoproteomics data directly for some

phospho-signaling response that occurs only in the early stage. For

inferring a cell-specific pathway map using the P100 database with

only one time point (6 hours), we assume a virtual time point (t)
before 6 hours, which represents most of enzyme’s activities reach

to saturation conditions after phosphorylation at time t. The cell-

specific pathways inferred by our BLP approach corresponds to

the topological structure in the saturation condition in early

response. The observed time point (6 hours) could be represented

as tz1, indicating the mid-stage signaling response. In our BLP

approach, we employ binary variables to describe the phosphor-

ylation states of enzymes and the reactions (activated or inhibited).

We also use binary linear constraints to model the relationship

between the early response at t and mid-stage response at t +1.

According to the concept of Hill Function [39], there are three

scenarios for the state of enzyme x at time t and tz1 in our BLP

approach:

(A) Eq. (1) suggests that x is activated by its upstream enzyme in

the early stage, reaches a steady state at time t, and its activity is

unchanged until time tz1.

x(t)~x(tz1)~1 ð1Þ

(B) If the state of enzyme x at time t and tz1 can be present as

Eq. (2), x is activated in the early stage (its activity reaches steady

state), and then enzyme x is gradually degraded so that its activity

is very low at time tz1.

x(t)~1; x(tz1)~0 ð2Þ

(C) When treated with a compound, enzyme x is inhibited at

time t, and its activity will be sustained to time tz1 (Eq. (3)).

x(t)~x(tz1)~0 ð3Þ

Similar to two previous reports [4] and [22], the states of all

proteins at time t will completely satisfy the causal relationships in

our constraint set. The change of states for each measured

phosphoprotein is also considered between two time points.

A pathway is defined as a set of reactions f1,2,:::i,::: nrg and

species f1,2,:::j,::: nsg. Each reaction has three corresponding

index sets, signaling molecules Ri, inhibitors Ii, and products Pi.

These sets are subsets of the species index set

(Ri , Ii , Pi 5f1,2,:::, nsg). Compared to [4], our binary linear

constraint system can address four types of linking patterns to
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represent the relationships between species and reactions, since an

actual signaling pathway has many types of topological structures

(Text S2 in File S1). Due to the different mechanisms of

compounds, a reaction will take place after treatments with some

compounds but not others. The goal of the proposed formulation

is to remove the redundant and inconsistent reactions which do

not occur with any compounds.

For a generic pathway map, a set of experiments (indexed as

f1,:::, neg) can be performed. Each experiment indicates a

treatment condition of one compound on the pathway. In the k-

th experiment (1ƒkƒ ne), a subset of species is activated and

another subset is inhibited, summarized by the index sets Mk,1 and

Mk,0, respectively. In addition, a third subset of the species is

measured around the phosphorylation level (Mk,2). In our BLP

system, a binary variable xk
j (t)[f0,1g indicates if the species j is

activated (xk
j (t)~1) or not (xk

j (t)~0) at the time point t in the k-

th experiment. The variable zk
i indicates if the reaction i takes

place (zk
i ~1) or not (zk

i ~0) in the k-th experiment. The species

set TSk denotes the potential targets of k-th compound.

If the phosphorylation level of species j is measured at time tz1

in P100 data, the measurement of species j is defined as xk
j (tz1)

and its predicted value is named as x̂xk
j (tz1). For inferring the

cell-specific pathways, we use our BLP approach to optimize two

objective functions. The first is to minimize the difference between

predicted values and measurements (Eq. (4)):

min
X ,Z

Xne

k~1

X

j [Mk,2

Dx̂xk
j (tz1){ xk

j (tz1)D ð4Þ

The second objective min
Z

Pnr

i~1

zk
i is to minimize the number of

reactions, so that the scale of the inferred cell-specific pathways is

smaller. The Eq. (4) is equivalent to Eq. (5) (see Text S2 in File
S1).

min
X ,Z

Xne

k~1

X

j [Mk,2

(1{2 xk
j (tz1))| x̂xk

j (tz1); ð5Þ

Here, we use a linear solution to simultaneously optimize the

two objectives above:

min
X ,Z
½(
Xne

k~1

X

j [Mk,2

(1{2 xk
j (tz1))| x̂xk

j (tz1))zc � (
Xnr

i~1

zk
i )� ð6Þ

In Eq. (6), the parameter c indicates the weight between two

objective functions. The selection of values of c obviously affects

the fitting precision of our model on experimental data (Figure S3
in File S1).

The constraints in our BLP approach can be summarized as:

zk
i ƒ xk

j (t), i~1,:::, nr , k~1,:::, ne , j [Ri ð7Þ

zk
i ƒ1{ xk

j (t), i~1,:::, nr , k~1,:::, ne , j [ Ii ð8Þ

zk
i §1z

X

j [Ri

( xk
j (t){1){

X

j [ Ii

( xk
j (t)), i~1,:::, nr , k~1,:::, neð9Þ

xk
j (t)§ zk

i , i~1,:::, nr , k~1,:::, ne , j [Pi ð10Þ

xk
j (t)ƒ

X

i~1,:::, nr ;j [Pi

zk
i , i~1,:::, nr , k~1,:::, ne ð11Þ

xk
j (t)ƒ1{ zk

i , i~1,:::, nr , k~1,:::, ne , j [Pi ð12Þ

xk
j (t)z

X

i~1,:::, nr ,j [Pi

zk
i §1, i~1,:::, nr , k~1,:::, ne ð13Þ

xk
j (t)z xk

q (t)§2 zk
i , i~1,:::, nr , k~1,:::, ne , j [Pi , q [Ri ð14Þ

X

j [Pi

zk
i § xk

j (t), i~1,:::, nr , k~1,:::, ne ð15Þ

xk
j (q)~0, k~1,2,:::, ne , q [ft,tz1g, j [M

k,0 ð16Þ

xk
j (q)~1, k~1,2,:::, ne , q [ft,tz1g, j [M

k,1 ð17Þ

xk
j (t)§ xk

j (tz1), k~1,:::, ne , j [M
k,2 ð18Þ

xk
j (t)~ xk

j (tz1), k~1,:::, ne , j 6[M
k,2 ð19Þ

xk
j (t)~0, k~1,:::, ne , j [M

k,2 , xj [TSk ð20Þ

xk
j (t)~1, k~1,:::, ne ð21Þ

X[ f0,1gne | ns , Z [ f0,1gne | nr ð22Þ

According to these formulas, the constraints (7)–(15) in our BLP

system are used to infer the states of all the species and reactions

according to the pathway’s topological structure. These constraints

can handle four types of linking patterns between species in the

pathway map. The detailed explanations of constraints (7)–(15) are

described in the Text S2 in File S1. The states of all variables in
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X (all the proteins) should meet the constraints (16) and (17). The

constraints (18) and (19) simulate the change of a phosphoprotein’s

state from time point t to tz1. If the phosphorylation level of a

species is measured at time point t, we assume its activity may be

consistent or degraded (constraint (18)). If the species is not

measured, we keep its activity unchanged during two time points

because there is no available information about it (constraint (19)).

The constraint (20) set the states of some potential target proteins

which are validated in literature. The constraint (21) set the states

of some important activated proteins which are validated in

literature. The formula (22) restricts the values of two groups of

binary variable X and Z.

Computational procedure: fitting precision of data
For the fitting precision (FP), we calculated the percentage of fit

(prediction accuracy) as below:

FP~
Xns

j[Mk,2

Dx̂xk
j (tz1){ xk

j (tz1)D
DMk,2D

|100% ð23Þ

Eq. (23) indicates the fitting precision between the predicted

values inferred by our BLP approach and the measured values of

species under the treatment of k-th compound, where DMk,2D is the

number of species in the set Mk,2. The value of fitting precision

(FP) is in the range between 0 and 1.
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