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Abstract

We describe a mathematical model for the aggregation of starved first-stage C elegans lar-

vae (L1s). We propose that starved L1s produce and respond chemotactically to two labile

diffusible chemical signals, a short-range attractant and a longer range repellent. This

model takes the mathematical form of three coupled partial differential equations, one that

describes the movement of the worms and one for each of the chemical signals. Numerical

solution of these equations produced a pattern of aggregates that resembled that of worm

aggregates observed in experiments. We also describe the identification of a sensory recep-

tor gene, srh–2, whose expression is induced under conditions that promote L1 aggregation.

Worms whose srh–2 gene has been knocked out form irregularly shaped aggregates. Our

model suggests this phenotype may be explained by the mutant worms slowing their move-

ment more quickly than the wild type.

Author summary

Among the most complex of animal behaviors are collective behaviors, in which animals

interact with each other so as to produce large-scale organization. Starved first-stage larvae

of the nematode Caenorhabditis elegans exhibit such a behavior: they come together to

form aggregates of several hundred worms. How and why they do this are unknown. To

address these questions, we developed a mathematical model of starved L1 aggregation.

This model reproduced the main features of the behavior.

Introduction

Among the most complex behaviors exhibited by the nematode C elegans are social behaviors

such as mating [1] and aggregation. We recently described a new aggregation behavior in

starved C elegans first-stage larvae (L1s) [2]. This new behavior raises two broad questions

whose answers we lack: (1) How do starved L1s aggregate? I.e., what are the behavioral mecha-

nisms by which they come together? (2) Why do starved L1s aggregate? What selective advan-

tage (if any) do these mechanisms or aggregation itself provide? To aid in answering these
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questions, we describe here a simple mathematical model for L1 aggregation. In our first report

of L1 aggregation behavior [2], we speculated on the answers to both questions. This paper

directly addresses only question (1).

L1 aggregation is not the only known C elegans aggregation behavior, and ours is not the

first mathematical model of C elegans aggregation. It has been known for many years that in

the presence of food (bacteria), most true wild isolates of C elegans aggregate, a behavior

known as social feeding [3, 4]. Wild strains of C elegans prefer low concentrations of oxygen.

The usual C elegans laboratory strain, N2, does not display social feeding at normal atmo-

spheric oxygen pressure because of a gain-of-function mutation in the neuropeptide receptor

gene npr–1 [3]. We and others have speculated that the consumption of oxygen in an aggregate

of worms lowers oxygen concentration and thereby attracts more worms [5], although this

explanation is disputed [6]. Mathematical models of social feeding have recently been pub-

lished [6, 7].

A third type of aggregation is mediated by indole-containing ascarosides [8]. L1s of daf–22
mutants, which are unable to make ascarosides [9, 10, 11]) aggregated similarly to wild type

[12]. Thus L1 aggregation is different from ascaroside-mediated aggregation. Observations of

yet another type of aggregation have recently been published, together with a model [13]. This

form occurs in the long-term survival form of the worm—the dauer larva—and is probably

mediated largely by a simple physical mechanism, surface tension.

The model we present here is simpler than previous C elegans aggregation models in the

following sense: it does not describe aggregation behavior in completely realistic detail. We

attempt only to reproduce the essential aspects of the behavior. Accordingly, we simply assume

the existence, which has been experimentally demonstrated [14, 15], of taxis mechanisms that

allow worms to move in the direction they want to go. Although taxis mechanisms have been

investigated for years, and much is known about them [e.g. 16–20], the model presented here

is based on the idea that the end result of taxis (movement towards favored places) is sufficient

to understand aggregation, and that mechanistic details are not essential.

A further simplification is to describe worms not as individuals, but via population density:

a continuous function of space and time, ρ(t, x). We also propose a simple mechanism for

interactions among worms via diffusible chemical signals. The resulting model takes the form

of a system of partial differential equations (PDEs), a variation on the classic Keller-Segel [21]

model, developed to explain the aggregation of cellular slime mold amoebae. Since its original

publication, the Keller-Segel model has been the subject of much mathematical analysis [sec-

tions 11.1–11.3 of 22, 23, 24, 25]. Indeed, the Keller-Segel model, in its many variations, has

become one of the classic models of pattern formation in mathematical biology. This model

has the advantage of high mathematical tractability, both analytical [26] and numerical, the lat-

ter of which is the focus of this paper.

Results

Strategy

As described in the Introduction, our model is a deliberately simplified description of behavior

that assumes the existence of taxis mechanisms that allow worms to move in the direction they

want to go. Further, worms are modeled not as individuals, but as a continuous function of

space and time, population density ρ(t, x). This simplification allows us to describe worm

movement with a mathematically tractable partial differential equation (PDE) model similar to

the well-studied Keller-Segel [21] model. Also, because worm density is a component of the

model, it is straightforward to implement worm movement that explicitly depends on density.

A disadvantage is that individual worms are not accurately represented by a continuous
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density function. Moreover, we ignore the fact that worms are worm-shaped: i.e., a worm is

long and thin, with a head at one end and a tail at the other. Worm geometry is central to

some other published models of C elegans aggregation [5, 6, 13].

We present two versions of the model: the precursor attractant-only model and the final

attractant+repellent model. We begin with the simpler attractant-only model, which is closest

in form to the original Keller-Segel model. This model was a partial success—it reproduced

certain aspects of L1 aggregation seen in experiments, while failing in others. The more com-

plicated attractant+repellent model better reproduced L1 aggregation behavior.

Design of the PDEs

The attractant–only model for L1 aggregation consists of two coupled PDEs, a reaction-diffu-

sion equation that describes the time evolution of the concentration of a diffusible chemical

attractant, and a Fokker-Planck equation that describes the movement of the worms. The

attractant PDE is:

_U ¼ Ut ¼ � gU þ D

Δ2U þ sr ð1Þ

The worm PDE is:

_r ¼ rt ¼

Δ

� ðr

Δ

ðVUðUÞ þ VrðrÞ þ s log rÞÞ ð2Þ

¼

Δ

r �

Δ

V þ r

Δ2V þ s

Δ2r ð3Þ

Functions and parameters appearing in (1)–(3) are listed in Table 1.

Intuitively, the terms of (3) can be understood as follows. The first two terms describe how

density changes when worms move towards lower potential. The first term,
Δρ � ΔV arises

from the movement of worms when the density is nonuniform. E.g., if density is low on the

left and high on the right (

Δρ> 0) and and worms in bulk are moving leftward (

ΔV> 0) the

density of worms at any fixed point will increase. The second term ρ Δ2 V describes increases

in worm density when the worms converge towards a minimum of potential—

Δ2V is positive

at and near minima. The final term, σ Δ2 ρ describes changes in density caused by random

movement of the worms. Random movement tends to flatten out inequalities, so that density

increases near minima of density (

Δ2 ρ> 0) and decreases near maxima (

Δ2 ρ< 0).

These equations are similar to those developed by Keller and Segel [21] to model the aggre-

gation of Dictyostelium discoideum amoebae. Attractant PDE (1) is identical to the reaction-

diffusion equation with which they model acrasin. Worm PDE (2) is a generalization of the

equation they use to model the movement of amoebae, which, with specific choices of the

potential functions VU and Vρ, reduces to theirs.

Table 1. Functions and parameters appearing in the PDEs.

ρ(t, x) >0 local density of worms

U(t, x) > 0 local concentration of chemical attractant

σ> 0 quantifies the random movement of the worms

γ> 0 spontaneous decay rate of attractant

D> 0 diffusion constant of attractant

s> 0 is the rate of secretion of attractant per worm

VU(U) potential function that describes the worm’s response to attractant

Vρ(ρ) potential function that describes the worms’ direct response to other worms

V shorthand notation for V(ρ, U) = VU(U) + Vρ(ρ)

https://doi.org/10.1371/journal.pcbi.1009231.t001
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In designing this model for L1 aggregation, we sought to reproduce certain general charac-

teristics that were obvious in recordings of worm aggregation. First, the worms aggregate. This

suggests that they are somehow attracted to each other. Given what we know about C elegans
biology, it was an obvious guess that this attraction could be mediated by a diffusible chemical

signal with limited range [15]. PDE (1) is essentially the simplest physically plausible that

meets these criteria.

The design of the PDE describing the movement of the worms was more complicated. On

the time scale of the experiments, neither birth nor death of new worms occurs. This suggested

that it should be possible to express the rate of change of worm density as the divergence of

some flow field. Since flux occurs by movement of worms, the net flux vector at any point is

the density times the mean velocity of worms at that point. These considerations lead to a gen-

eral equation of the form

rt ¼ �

Δ

� ðrvÞ ð4Þ

in which velocity v = v(ρ, U,

Δρ,

ΔU) is a vector field depending on density and attractant

concentration and their gradients. We chose to assume that the velocity field is conservative.

“In general, vector fields that can be written as the gradient of a scalar are called conservative;
the scalar, V, is called a potential” [27]. (There is no simple relationship between the velocity

field and physical forces to which the worms are subject. In particular, our assumption that the

velocity field is conservative is not to be taken to imply that the worms move under the influ-

ence of a conservative force field.) There is no compelling biological necessity for the assump-

tion that the velocity field is conservative. We made it for two reasons: First it makes the PDE

system more tractable analytically. Second, in recordings of worm behavior, we see that the

worms eventually approach an equilibrium in which there is little net flow of animals, and no

cyclic flows are obvious.

If the velocity field v is conservative, then it can be expressed as the negative of the gradient

of some scalar potential field V. We chose a potential function that is a sum of a signal-depen-

dent potential VU and a density-dependent potential Vρ, for convenience in separately engi-

neering signal and density dependence. This led to the final form (2).

For an attractant, VU must be a decreasing function of signal. In early simulations with a

linear VU we encountered problems with numerical instability. Steep signal gradients fre-

quently occur in the course of simulation. With a linear VU, these led to large velocities, which

meant that worm density at one location was rapidly affected by density at distant locations.

As a result it was impractical to satisfy the Courant–Friedrichs–Lewy (CFL) stability condition.

We therefore sought a potential function whose dependence on U was convex.

A modification of Weber’s Law that closely corresponds to empirical data is

D�

�þ a
¼ b; ð5Þ

where Δϕ is the smallest detectable change in a stimulus ϕ and α and β are constants,. (This is

Eq (1.2) of reference [28].) If we assume that just noticeable differences in stimulus represent

equal changes in sensation ψ, we can integrate (5) to obtain the following psychophysical mag-

nitude function,

cð�Þ / b logðaþ �Þ ð6Þ
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If attractant U is the stimulus and potential VU the sensation, we get the following potential

VUðUÞ≔ � b logðaþ UÞ ð7Þ

We negate β because worms move down a potential, and the potential for an attractant

should thus be a decreasing function of its concentration. Parameter β determines the strength

of attraction. The same potential with negative β describes a repellent.

We speculated that the circular shape of the aggregates [2] results from the worms packing

together as tightly as possible. To reproduce this effect in simulations, we designed a density-

dependent Vρ potential that would reflect worms taking up space. The ideal would have been a

hard sphere potential

VrðrÞ ¼

(
0 if r < rmax

1 if r � rmax

ð8Þ

This potential function implies discontinuous time or spatial derivatives of density, and there-

fore functions poorly with numerical methods for solving the PDE system. We therefore

approximated the discontinuity with a hyperbolic tangent function.

VrðrÞ ¼ s
scale

2
1þ tanh

r � rmax

cushion

� �� �
ð9Þ

Four parameters determine the exact shape of Vρ: σ, ρmax, scale, and cushion. (We refer

to the latter two by the symbols used to represent them in software code, since they will play lit-

tle role in the mathematics.) Two parameters, σ and scale, determine the vertical scale. σ is

the parameter that measures random worm movement (see (2)). Vρ rises from near 0 for small

values of ρ to σ × scale for large ρ. Parameter ρmax is the density at which Vρ reaches half its

maximum possible value. It is the point at which the Vρ curve is steepest, and therefore the

closest approximation to ρmax of (8). Parameter cushion determines how abrupt the rise of

Vρ is. These functions are plotted in Fig 1. The Keller-Segel literature describes other, less-flexi-

ble, models in which organisms take up space [25], which we elected not to use.

Parameter estimates

We required numerical estimates of parameters γ, D, and s that appear in (1) and σ of (2). In

addition, we required values for ρmax, scale, cushion and α and β which determine the

shapes of the potential functions Vρ and VU.

A C elegans L1 is approximately a cylinder of diameter 15 μm and length 240 μm [29]. Since

worms lie on their sides, a worm occupies approximate area 15 × 240� 3600 μm2. We chose

the inverse of this area, 28 000 cm−d as the parameter ρmax. (Here d = 1 or 2 is the spatial

dimension. The same number, 28 000, was used for one and two-dimensional simulations to

facilitate comparison.) Parameters cushion and scale have no real biological significance.

Parameter cushion makes the ideal hard-sphere potential (8) continuous and differentiable,

so that the PDEs can be solved numerically with differentiable functions. The value 2000 cm−d

worked. The scale parameter need only be chosen large enough to constrain the maximum

density—we chose 2.

In small-scale simulations, we chose a mean density �r ¼ 9000 cm� d so that aggregates

would occupy about 1/3 (i.e. 9000/28000) of the area.

Small molecules in water typically have diffusion constants in the range 1 × 10−6 cm2 s−1 to

1 × 10−5 cm2 s−1. (We assumed that the signals diffuse through the agar-solidified water under

the worms. Worms also respond chemotactically to volatile chemicals diffusing through the

PLOS COMPUTATIONAL BIOLOGY A Keller-Segel model for C elegans L1 aggregation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009231 July 29, 2021 5 / 25

https://doi.org/10.1371/journal.pcbi.1009231


air above them [15]—diffusion constants for such volatile signals would be much larger than

for water-soluble signals.) We chose the diffusion constant of attractant, Da = 1 × 10−6 cm2 s−1,

at the lower end of the range of diffusion constants in water. The aggregates that form have

diameters of hundreds of micrometers. The mean distance a molecule of attractant diffuses

before decaying is
ffiffiffiffiffiffiffiffiffiffiffiffi
Da=ga

p
. We therefore chose γa, the decay rate of attractant, to give it a

range
ffiffiffiffiffiffiffiffiffiffiffiffi
Da=ga

p
¼ 100mm. To fulfil its role in the model, the repellent, introduced below, needs

to have a longer range, so we chose a large diffusion constant of Dr = 1 × 10−5 cm2 s−1 and a

smaller decay rate, giving it a range of 1 mm.

Fig 1. Potential function plots. Potential functions that appear in the ρ PDE (2). Both potentials are made

dimensionless by dividing them by σ. Parameter values are as in Table 2.

https://doi.org/10.1371/journal.pcbi.1009231.g001
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Parameters sa and sr, the rates at which a worm secretes attractant and repellent, effectively

set the units of concentration. We chose units of concentration such that si and γi (for i = a or

r) were numerically equal. (That is, if concentration is measured in “number of units of stuff”/

cmd, we chose the units in which “stuff” is measured to be the amount secreted by one worm

in one mean lifetime of the stuff, i.e. g� 1
i . This has the effect that if γi = hnumberi s−1, then

si = hnumberi “stuff units” cm−ds−1, with the number being the same in the two cases.) This

ensures that concentrations Ui and worm density ρ are in the same range numerically.

Artyukhin et al found that the minimum worm density for aggregation is 1500 cm−2 [2].

We identified this with the density threshold for instability. We chose αa = αr = 1500 cm−2, to

make VU linear near the threshold, and to be obviously convex near ρmax. We then chose βa =

2σ to reproduce the 1500 cm−2 density threshold for instability in the attractant-only model.

For the attractant+repellent model described below, we kept this value for βa and chose βr =

−2σ for the repellent. Adding repellent to the model increased the calculated instability thresh-

old to 2357 cm−d.

Parameter σ determines how rapidly the worms spread. Artyukhin et al [2] found that

worms placed at the center of a 6 cm diameter petri plate spread to occupy much of the area of

the plate in 12 h, but at this time they still remain mostly concentrated near the center. To esti-

mate σ, we asked what value of σ would reproduce the observed behavior of worms in circular

petri plates.

We began by choosing values of σ that would approximately reproduce this distribution if

the worms’ motions were purely diffusional, i.e., if their motions were governed by

rt ¼ _r ¼ s

Δ2r; ð10Þ

with Neumann boundary condition

dr
dr

�
�
�
�
r¼R

¼ 0 ð11Þ

Here R = 3 cm is the radius of the petri plate. Eqs (10) and (11) can be solved by separation of

variables. Any solution ρ(t, r, θ) can be represented as a sum of exponentially decaying eigen-

functions of the Laplacian. The circularly symmetric eigenfunctions on the disk with Neu-

mann boundary condition (11) are

rðt; rÞ ¼ e� sk2tJ0ðkrÞ; ð12Þ

where J0 is a Bessel function of the first kind. The wavenumber k must be chosen to satisfy

boundary condition (11), i.e. k = j1,n/R, where j1,n is the nth nontrivial zero of J1. The smallest

wavenumber, corresponding to the circularly symmetric eigenfunction that decays most

slowly, is thus k = j1,1/R� 3.8317/3 cm� 1.28 cm−1. We began by choosing σ so that the corre-

sponding time constant s� 1j� 2
1;1
R2 was approximately 12 h. Of course, the motion of the worms

is not purely diffusional. We therefore refined our estimate of σ by numerical solution of the

attractant+repellent system described below, from an initial condition in which the worms

began near the center of the petri plate. From these simulations we chose σ = 5.555 × 10−6

cm2s−1 as producing results that resembled experimental results.

Table 2 summarizes parameter values.

Simulation results, attractant-only model

Fig 2 shows results of numerical simulations of the attractant-only model.

This model successfully reproduced the experimental results in certain ways, but failed in

others. It was successful in that circular aggregates of maximum density rapidly formed. The
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aggregates had sharp boundaries, and outside of aggregates worm density was low and uni-

form. This is most easily seen in the one-dimensional results (Fig 2A), but is also true in two

dimensions. These are also characteristics of the experimental results. (See S1 Video.)

The model failed to reproduce the patterning of aggregates. In experiments (S1 Video),

aggregation appears to reach an equilibrium after 12 h. Although individual worms continue

to move actively, the aggregates themselves show little change after the first several hours.

Those aggregates that form after the worms disperse from where they are initially placed are

never larger than ca. 700 μm in diameter. Most of the worms, in fact, end up in aggregates

close to this maximum size. These aggregates are also fairly uniformly spaced—the distance

from one aggregate to its nearest neighbors varies little.

In numerical solutions of the attractant-only model, however, aggregates had no maximum

size (aside from that imposed by the fixed finite number of worms), and their spacing was not

uniform. Furthermore, even after 200 000 s, they were not at equilibrium. This can be seen by

computing the magnitude of the velocity v = ||

ΔV||, which at equilibrium would be zero every-

where, but remained well above zero throughout the simulation. More obviously, it is seen by

continuing the solution past t = 200 000 s. S1 Fig shows that aggregates increased in size and

decreased in number between t = 200 000 s and t = 1 × 107 s. In fact, we believe the only true

equilibria of the attractant-only model are those in which there is a single large aggregate con-

taining almost all the worms. This state was reached at t = 1 × 107 s in one of the ten simula-

tions in S1 Fig.

In fact, this observation is consistent with linear stability analysis of the attractant-only

model (see S1 Text). PDE system (1, 2) shares with the original Keller-Segel system the prop-

erty of density-dependent instability. The condition for a sinusoidal variation of wavenumber

k to be unstable is (S1–9) in S1 Text. The condition for instability (S1–9) in S1 Text has no

minimum wavenumber other than zero. Wavenumber is inversely proportional to wavelength,

so that there is no nonzero minimum wavenumber means there is no natural maximum size

for the aggregates that form when the density exceeds threshold. (This is a well-known prop-

erty of the classical Keller-Segel model as well—see, for instance, section 11.3 of reference

[22].) It is true that the attractant has a natural range,
ffiffiffiffiffiffiffiffi
D=g

p
—the distance an average mole-

cule diffuses before it decays. However, worms attract each other, albeit weakly, even when

Table 2. Parameter values.

�r mean worm density 9000 cm−d

σ random worm movement 5.555 × 10−6 cm2s−1

ρmax midpoint of Vρ potential rise 28 000 cm−d

cushion breadth of Vρ rise 2000 cm−d

scale height of Vρ rise 2

βa strength of attraction 1.111 × 10−5 cm2s−1

αa attractant concentration scale 1500 cm−d

γa attractant decay rate 0.01 s−1

Da attractant diffusion constant 1 × 10−6 cm2s−1

sa attractant secretion rate 0.01 cm−ds−1

βr strength of repulsion −1.111 × 10−5 cm2s−1

αr repellent concentration scale 1500 cm−d

γr repellent decay rate 0.001 s−1

Dr repellent diffusion constant 1 × 10−5 cm2s−1

sa repellent secretion rate 0.001 cm−ds−1

https://doi.org/10.1371/journal.pcbi.1009231.t002
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Fig 2. Simulation of the attractant-only model. This figure shows the state of a numerical simulation of the attractant-only model after

20 0000 s (2 days and 7 hours). The initial condition was a uniform worm density of �r ¼ 9000 cm� d, perturbed by normally distributed

random noise of standard deviation 1% (i.e. 90 cm−d). (The entire time courses can be seen in S2 and S3 Videos in the Supporting

Information.) S1 Fig shows results at t = 200 000 s and t = 1 × 107 s (116 days) of ten independent runs of the same simulation with

different pseudorandom noise in the initial condition. Panels A, B show the results of simulations in one-dimensional space; C, D show

results in two-dimensional space. A, C show density ρ; B, D show attractant concentration U. The two numbers below each plot are the

minimum and maximum values of the plotted function over the entire 1 cm × 1 cm domain. The spatial units are centimeters.

https://doi.org/10.1371/journal.pcbi.1009231.g002
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they are further apart than this. There is thus no mechanism in the model (1, 2) that would

prevent the merging of aggregates to unlimited size. This is true for any attractant-only Keller-

Segel model.

A repulsive interaction is necessary

We could not reproduce the experimental observed uniformity of aggregate size in numerical

experiments with attractant-only models. We suspected that the addition of a negative signal

to oppose the attractant, a repellent, would solve the scale problem. Linear stability analysis

supports this intuition. (See S2 Text.)

Intuitively, what one requires is a short-range attractant and a long-range repellent. We

therefore added to the attractant-only model a repellent with diffusion constant Dr = 10Da and

decay rate γr = 0.1γa. The range of this repellent kr ¼
ffiffiffiffiffiffiffiffiffiffiffi
Dr=gr

p
¼ 1 mm is ten times that of

attractant, and is approximately equal to the observed spacing between aggregates. Thus, in

the attractant+repellent model, attractant PDE (1) is replaced with two PDEs, one (13) for

attractant and the other (14) for repellent.

_Ua ¼ � gaUa þ Da

Δ2Ua þ sar ð13Þ

_Ur ¼ � grUr þ Dr

Δ2Ur þ srr ð14Þ

As shown in Fig 3, addition of a repellent to the model produced the predicted effect.

Aggregates formed with characteristic size and spacing approximately matching those seen in

experiments on worms. These solutions are close to equilibrium at t = 200 000 s, as seen by

comparison with the results at t = 1 × 107 s. (Compare S2(A) and S2(B) Fig.) There is even a

hint of pattern formation, with the aggregates in an approximate hexagonal array at t = 200

000 s. The hexagonal patterning is near perfect at t = 1 × 107 s, with the exception of lattice

defects, most easily recognized as slightly smaller aggregates surrounded by five rather than six

neighbors. (Fourier analysis confirms the regularity of these patterns [26].) If there is a prob-

lem with the result, it is that the array is too perfect. More irregularity is seen in experiments

with real animals.

srh–2 encodes a G–protein coupled receptor expressed in starving L1s

Attempting to understand molecular mechanisms of L1 aggregation, we measured gene

expression in starved L1s in the presence and absence of ethanol or acetate, either of which is

required for aggregation [2]. We identified an ethanol-induced gene, srh–2, whose expression

increases at the time that starved L1s become capable of aggregation (S1 Data). Gene srh–2 is

predicted to encode a sensory receptor, i.e., a protein expressed on the surface of a sensory

neuron, capable of detecting chemicals in the environment. To find out whether srh–2 plays a

role in L1 aggregation, we knocked the gene out. (That is, we genetically engineered a mutant

strain that lacks a functional srh–2 gene.) We then tested the srh–2 knockout worms for aggre-

gation. As shown in Fig 4, these mutant worms still aggregate, but the aggregates are irregular

in shape. Furthermore, the number of worms outside large aggregates is larger in srh–2 than

in wild-type. In Fig 4B and 4C one can see that the frequencies of isolated individuals and of

small aggregates are both elevated.

The Srh–2 phenotype may be modeled by rapid decay of worm movement

Two observations suggested a partial explanation of the srh–2 phenotype. First, in the movies

of the attractant+repellent simulation, one sees formation of irregularly shaped aggregates at
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early times. With time, these aggregates become circular. Second, in movies of aggregating

L1s, there is a lot of rapid movement at early times, but as time goes on, fewer worms are seen

moving. This suggested that worm movement might slow with time, perhaps because the

worms run low on energy. (They are, after all, starving.)

Together, these observations suggested an explanation for the Srh–2 phenotype–—perhaps

the movement of srh–2 knockout worms slows down faster. In the model, such a movement

slowdown would be reflected in the decrease of the parameters σ (representing random worm

movement) and βa, βr (representing signal–responsive movement) with time. We modeled

slowdown with the attractant+repellent PDEs (2, 13, 14), but with parameters σ, βa, βr time-

dependent:

s ¼ sðtÞ ¼ s0e
� t=t ð15Þ

ba ¼ baðtÞ ¼ ba;0e
� t=t ð16Þ

br ¼ brðtÞ ¼ br;0e
� t=t ð17Þ

Fig 3. Attractant+repellent simulation. Panels A, D show density ρ, B, E show attractant concentration Ua, and C, F show repellent

concentration Ur. The spatial units are centimeters. The two numbers below each plot are the minimum and maximum values of the

plotted function over the entire 1 cm × 1 cm domain. Note the different scale of the attractant and repellent plots. The means are the

same, but because repellent is a longer-range signal, it is smoothed much more by diffusion and varies less than attractant. (S4 and S5

Videos show the full time courses for these simulations. S2 Fig shows ten independent solutions of the two-dimensional system with

different pseudorandom noise at time 0.)

https://doi.org/10.1371/journal.pcbi.1009231.g003
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(Note that this is not the same as simply stretching the time axis of the attractant+repellent

model, because the time–scales of Eqs (13) and (14) remain unchanged.) The t = 0 values σ(0),

βa(0), βr(0) were the same as those of σ, βa, βr in Table 2. Fig 5 shows results at t = 200 000 s of

simulations of the slowdownmodel with four different values of τ. When τ is very small (e.g. 30

min, Fig 5A) aggregation is arrested before dense aggregates form. Larger values of τ permit

the formation and persistence of irregular aggregates. For small enough values of τ (Fig 5A

and 5B), we also see an elevated background worm density.

Individual-based simulations

To check our PDE model, we also simulated a cellular Potts individual-based model in the

Morpheus [30] modeling environment (details in Methods section). S3 Fig shows results that

can be compared to Figs 2C, 2D, 3D, 3E and 3F. The results are similar. It has not yet been

computationally feasible to reproduce S1 and S2 Figs, and Fig 6.

Full-scale simulations

Our experimental studies of aggregation usually begin by placing a large number of worms

in the center of a 6 cm petri plate [12]. (See Supporting S1 Video which records the behavior

over 12 h of 500 000 worms that were placed on the center of a plate at time 0.) These experi-

ments begin with the dispersal of the worms, so that the density is high near the center of the

plate and lower towards the edges. To more closely mimic such experiments, we solved the

attractant+repellent model on a 6 cm × 6 cm square, from an initial condition in which most

of the worms began near the center of the plate. Fig 6 shows the distribution of worms at

t = 200 000 s.

We do not believe that the attractant+repellent model accurately represents the physics and

biology of worm motions in the region near the center of the plate. For instance, in the

Fig 4. srh–2 knockout L1 aggregation. Starved L1s of mutant worms lacking a functional srh–2 gene aggregate, but the aggregates they form are

irregularly shaped (the animal crackers phenotype). srh–2 encodes a G–protein coupled receptor expressed in starving L1s.

https://doi.org/10.1371/journal.pcbi.1009231.g004
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preparation of eggs from which the L1s used for the experiment hatch, some non-living debris

is inevitably generated. This debris, which is transferred to the center of the plate along with

the worms, may influence behavior.

Outside this central region, the behavior of the full-scale simulation resembled the behavior

of worms on a 6 cm diameter petri plate.

Fig 5. Attractant+repellent simulation with slowdown. Worm density ρ(t, x) of a slowdown model simulation at t = 200 000 s for four different

values of τ.

https://doi.org/10.1371/journal.pcbi.1009231.g005
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Spectral comparison of experimental and simulation results

As a first approach to quantitative evaluation of the similarity of simulation results to experi-

mental, we compared Fourier Power spectra of the final image of experimental video S1 Video

to the 200 000 s density function from full-scale simulation (Fig 7). (See the Methods section

below for details.) Two-dimensional spectra (Fig 7D and 7E) show prominent rings at wave-

number k = ||k||� 10 cm−1, showing the existence of periodic structure with wavelength

approximately 1 mm. The approximate circular symmetry of the power spectra result from the

approximate circular symmetry of the images.

To obtain higher resolution spectra, we computed radial power spectra by summing power

pk for spectral components with equal or approximately equal k = ||k||. These radial spectra

(Fig 7F) show additional substructure within the k� 10 cm−1 ring. The radial spectrum of the

Fig 6. Full-scale attractant+repellent simulation. Simulation of the attractant+repellent model on a 6 × 6 cm

domain. The simulation began with 68 400 worms in a 2 cm diameter circle at the center of the plate (inner red circle).

(S6 Video shows the entire time course.) The spatial units are centimeters. The two numbers below the plot are the

minimum and maximum values of the plotted function over the entire 6 cm × 6 cm domain. Density is muted in a

central 2 cm diameter circle, corresponding to where the worms were initially placed, to suggest the region in which

we think influences not included in our model might be important.

https://doi.org/10.1371/journal.pcbi.1009231.g006
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experimental image has about six peaks between 7 and 13 cm−1. The simulation spectrum has

peaks or shoulders at the locations of some but not all of the experimental spectrum peaks.

(Note that we adjusted the scaling of the simulation image to make the largest peaks near 9.5

cm−1 match, so the coincidence of this particular peak is not significant.)

In both Fig 7E and 7F a weak feature is visible in simulation results at about 18 cm−1. Rather

than suggesting structures with wavelength 0.5 mm, this may be a harmonic of the 1 mm peri-

odicity. No such feature is visible in experimental results. It may be that the experimental data

are too noisy for such small structures to survive in the power spectrum.

Fig 7. Spectral comparison of experimental and simulation results. A. Last frame of aggregation video S1 Video, cropped to a square to facilitate

Fourier analysis. This square is 1.93 cm in size. B. Final time point of the full-scale simulation Fig 6, cropped and scaled to match A as closely as

possible, with a corresponding central mass added. C. The central mass alone. D. Low-frequency region of the two-dimensional power spectrum of

the discrete Fourier transform of image A. The power scale is truncated at 10 AU (arbitrary units) E. Low-frequency region of the power spectrum of

image B. The power scale is truncated at 20 AU. F. Radially summed power spectra of images A,B, and C. Peaks of the experimental image spectrum

are picked out in blue.

https://doi.org/10.1371/journal.pcbi.1009231.g007
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Discussion

Summary

Our final model, the attractant+repellent model, appeared to reproduce the main features of

L1 aggregation. Spectral analysis suggests that the spatial patterning of aggregates in simula-

tions resembles experimental results, although further work along these lines will be necessary.

This model is minimal, we believe, in the sense that no simpler model of the Keller-Segel form

can adequately reproduce the experimentally observed behavior. In particular, the observed

patterning of aggregates—their roughly uniform spacing and sizes, required a short-range

attractive influence and a longer-range repulsive influence. Luca et. al. [31] similarly conclude

that a two-signal model is necessary to reproduce the patterning of senile plaques in their Kel-

ler-Segel model of Alzheimer disease.

In our model the attractive and repulsive influences took the form of labile diffusible small

molecules produced by the worms. Some other possibilities that can be imagined work equally

well. For instance, the attractant could be replaced by a ubiquitous repellent that is locally

destroyed by the worms. (In some explanations of social feeding, oxygen plays this role.) It is

even possible that the attractant and repellent are the same molecule, if it has the unusual

behavioral characteristic of being repulsive at long range (i.e., lower concentration) and attrac-

tive at short range (high concentration). Either the attractant or the repellent could be replaced

with a physical force, e.g. the physical attraction produced by surface tension (which, however,

has too short a range to work well in our current models).

We also report here new experimental results: the possible sensory receptor gene srh–2 is

expressed under conditions where L1 aggregation takes place. Mutant worms whose srh–2
gene has been knocked out aggregate, but their aggregates are irregularly shaped, unlike the

uniformly circular aggregates of wild-type worms. Our modeling suggests this phenotype

could be explained by a faster-than-normal decrease in worm movement in the mutant. This

observation is potentially testable by tracking the movement of individual fluorescently labeled

worms.

Validity of the continuum approximation

Two useful approaches to modeling the movements of populations are individual-based mod-

els and continuum approximations. In the individual-based model (also known as a Lagrang-

ian model by analogy to classical mechanics) the population is represented as a collection of

agents, each of which moves and changes state according to its own biological imperatives. In

the continuum approximation (also known as a Eulerian model) the population is instead rep-

resented as a continuous density function of state variables, such as position. As the population

is in fact composed of individuals, the individual-based model has greater prima facie validity.

Continuum models, however, are often more tractable numerically and analytically.

We used both approaches but relied most heavily on continuum models. How valid is the

continuum approximation in this case? To what extent does it distort our results? The clearest

way in which continuum results (Figs 2 and 3) differ from experimental results (Fig 7A) and

an individual-based model (S3 Fig) are the direct effect of the continuum approximation: the

density function ρ(x), which is constrained to be continuous and differentiable, is smooth,

while the actual distribution of worms is inevitably lumpy. This shows up in two obvious ways.

First, aggregates in continuum simulations have smooth edges. The edges of the aggregates in

experiments have worm-shaped irregularities. Similarly, the aggregates in individual-based

simulations show irregularities shaped like simulated worms.
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Second, regions of low density in individual-based simulation or experimental results are

mostly empty, but with entire worms dotted here and there. Continuum simulations, in con-

trast, show regions of uniform low ρ. In these regions, however, the continuum results are not

so much wrong as subject to a more subtle interpretation. That is ρ(x) is best understood as a

measure. That is, for a region R � Rd, let

hNðRÞi ¼
Z

R
rðxÞdx ð18Þ

Then hN(R)i is the expected number of worms in region R. Where hN(R)i � 1, it can be

understood as the probability of finding one worm in region R.

Mogilner et al [32], in studying an individual-based Keller-Segel model state the following

criterion, “A requirement for the validity of the Eulerian approximation is that many organ-

isms are located on a spatial scale on the order of the range of interactions.” I.e., for the

continuum approximation to be valid, no individual worm should matter very much. The con-

tinuum approximation is valid at most to the extent that, if we were to remove a single worm,

none of the other worms would notice.

In our models the range of attractant is ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Da=ga

p
¼ 0:01 cm = 100 μm. At density ρ, a

crude estimate of the sphere of influence of a worm—the number of worms in two-dimen-

sional space influenced by a single worm, as well as the number of worms that influence a sin-

gle worm—is the number within a circle of radius ra = 0.01 cm, rpr2
a . Since the mean density

in the full-scale simulation (Fig 6) is 2000 cm−2, this suggests that the sphere of influence of

one worm is 0.63 worms, which is certainly not “many organisms”. This calculation, however,

is obviously misleading. A glance at Fig 6 shows that the mean density is low because much of

the surface is empty space. Mean density �r ¼ 2000 cm� 2 is the density weighted by surface

area, i.e., it is an average in which every square millimeter of real estate counts equally. Since

we are interested in the worms rather than the agar surface, we should instead compute a

worm-weighted average,

�rw ≔
1

N

XN

i¼1

rðxiÞ; ð19Þ

where N is the total number of worms and xi is the location of worm i. The number of worms

within the sphere of influence of an average worm in Fig 6 is then �rwpr2
a ¼ 4:1.

Mogilner et al’s [32] analysis is not directly applicable to our model because they make

the analytically convenient but psychophysically implausible assumption that influences are

additive. This assumption doesn’t hold here because potential (7) is nonlinear. To apply their

criterion we have to linearize potential around the attractant concentration the worms experi-

ence. At the worm-weighted mean attractant concentration (defined analogously to (19))

Uaw � 11600 cm� 2, the elasticity of VUa
is

EVUa
≔

Ua

VUa
ðUawÞ � VUa

ð0Þ

dVUa

dUa
ðUawÞ � 0:41 ð20Þ

Thus, if you remove one worm, the worms in its vicinity feel a relative change in attractant

potential equivalent to about 0.41/4.1 = 10% of the total attractant effect. These calculations

suggest that the continuum approximation may not be drastically inaccurate.

The similarity of the results of PDE solutions (Figs 2 and 3) and individual-based simula-

tions (S3 Fig) supports this conclusion. This is the more remarkable as the parameters of the

PDE model and the cellular Potts model don’t correspond. As a result, cellular Potts model
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simulations are not expected to produce results that agree in quantitative detail to those of the

PDE model, not even statistically. In addition, the cellular Potts model is defective as a model

of C elegans chemotaxis. It would therefore be incorrect to regard the cellular Potts model as

a correct model to which the PDE model is a continuum approximation. Both models are

wrong, although wrong in different ways—i.e., the PDE model approximates a finite, discon-

tinuous worm population with a continuous function ρ(t, x) of space and time, while the cellu-

lar Potts model models the worm and its chemotaxis in a biological unrealistic way. To the

extent that the results nevertheless agree, we may be reassured that they are not the effects or

idiosyncratic characteristics such as being continuum or individual-based.

Methods

Numerical solution of partial differential equations (PDEs)

We simulated C elegans L1 aggregation by solving PDEs (1, 2) or (13, 14, 2) numerically in one

or two spatial dimensions. In models with repellent and attractant, there were three PDEs, one

for ρ (2) and one each for Ua (13), and Ur (14). The domain for one-dimensional simulations

was a simple interval O = [0, w]. Domains for two-dimensional simulations were rectangular

O = [0, w] × [0, h]. Width w and height h varied according to the problem. To avoid distortion

of the behavior by boundary effects, all simulations were carried out with periodic boundary

conditions. (For an explanation and examples of these boundary effects, see Avery [26]).

Continuous fields ρ, Ua and Ur were approximated by a grid of points equally spaced in

each dimension. The spatial derivatives in the PDEs were replaced with linear combinations of

the function values ρ, Ua, Ur, and V(ρ, Ua, Ur) (7, 9) to approximate the time derivative of each

field at each point to fourth order. Simulation of the attractant+repellent model at a resolution

of 384 cm−1 on a 6 cm × 6 cm domain requires 3 × (6 × 384)2 = 15 925 248 degrees of freedom.

We implemented the solution of this system of ODEs (ordinary differential equations) in

PETSc (the “Portable Extensible Toolkit for Scientific computation”) [33, 34, 35]. Among the

tools included in PETSc is the TS (time-stepper) package, a library of ODE/DAE (differential

algebraic equation) solvers [36]. All solutions shown were produced with the PETSc Rosen-

brock-W time stepper ra34pw2 [37], an implicit third-order method. We used PETSc’s basic

adaptive step size mechanism. This method uses error estimates from the embedded stepper to

adjust step size so as to maintain error below predetermined absolute and relative tolerances.

In addition, we imposed a step size limit inspired by the Courant-Friedrichs-Lewy (CFL) con-

dition. At each step we calculated the mean worm velocity v = − ΔV at each point. We limited

step size to min(|Δx/vx|, |Δy/vy|). (Here Δx and Δy are the point spacing in the x and y direc-

tions, and the minimum is taken over both dimensions and all spatial points.)

Linear equations were solved with the MUMPS parallel direct solver [38, 39] for one-

dimensional problems and with PETSc’s built-in gmres (generalized minimal residual) Kry-

lov solver for two-dimensional problems.

Cellular Potts model simulations

Individual-based model simulations were run in the Morpheus [30] modeling environment,

using a cellular Potts model [40, 41] to model worm movement. We sought to develop models

that corresponded as closely as possible to the PDE model. PDEs describing chemical fields (1,

13, 14) can be reproduced exactly in Morpheus.

Parameters of the cellular Potts model, unfortunately, do not correspond in any simple way

to those that determine worm velocity and dispersal in ρ PDE (2). Therefore, we calibrated the

cellular Potts model by running it with a wide range of parameter values. Perfect calibration is

not possible because, for instance, mean velocity varies nonlinearly with the strength of the
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chemotactic potential gradient. Although this problem can in principle be fixed by taking very

small time steps, that would exacerbate an already severe computational feasibility problem.

(The simulation shown in S3(C), S3(D) and S3(E) Fig required 9 days. While 9 days is not an

unreasonable time to wait for a result if one does everything right the first time, for such sublu-

nary beings as ourselves a 9 day run time is a serious inconvenience.)

Full-scale simulations

Full-scale simulations were carried out on a 6 cm × 6 cm square. The initial condition placed

72 000 worms on the square, for a final mean density �r ¼ 2000 cm� 2. (This mean density is

much lower than the mean density �r ¼ 9000 cm� 2 used for small-scale simulations with uni-

form density, because in the full-scale simulations worms are concentrated near the center of

the domain, where the density is higher than the mean.) These 72 000 worms were made up of

3600 distributed uniformly on the plate to avoid zero or negative densities, which would result

in (2) becoming undefined, plus 68 400 worms placed in a 2 cm diameter circle at the center of

the square, with the density in the square as if a 2 cm diameter sphere had been placed in the

center and the worms in it fell vertically onto the surface.

rð0; x; yÞ ¼ br þ ar

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max 0; 1 �
ðx � 3Þ

2
þ ðy � 3Þ

2

R2

� �
s

ð21Þ

ar ¼
3ð�r � brÞw2

2pR2
ð22Þ

br ¼ 100 cm� 2 ð23Þ

R ¼ 1 cm ð24Þ

�r ¼ 2000 cm� 2 ð25Þ

w ¼ 6 cm ð26Þ

To this initial condition was added normally distributed pseudorandom noise with stan-

dard deviation 0.01ρ(0, xi, yj) at each grid point (xi, yj). In addition, to simulate the continuous

production of noise that occurs in real experiments, pseudorandom noise was injected in the

course of the simulation. Noise generation was modeled as an independent geometric Brown-

ian motion attached to each grid point. Noise was injected at times tn = 10n/2 s for n from 0 to

10, i.e., at 1 s, 3.16 s, 10 s, 31.6 s, 100 s, 316 s, 1000 s, 3162 s, 10 000 s, 31 622 s and 100 000 s. To

inject noise, ρ(tn, xi, yj) was multiplied by a pseudorandom number exp{Pn(xi, yj)} where Pn(xi,
yj) are independent normal pseudorandom variates with variance 10−6Δt, Δt being the amount

of time passed since the last noise injection. After noise injection, ρ(tn, xi, yj) were normalized

so that the total number of worms remained unchanged. The timing of noise injection was a

pragmatic compromise. Computational efficiency precludes injecting noise continuously,

since time steps had to be small immediately after noise injection—high spatial frequency

noise resulted in rapid worm movement. Worms moved rapidly near the beginning of the sim-

ulation and more slowly near the end, as they approach a stable equilibrium. We thus chose a

schedule in which the frequency of noise injection decreased steadily with time.

Unfortunately, numerical solution of the cellular Potts model version of the full-scale simu-

lation was computationally infeasible.
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Spectral analysis

For spectral analysis, the final frame of S1 Video was cropped to a 960 × 960 pixel square—this

corresponds to a 1.93 cm × 1.93 cm area of the agar surface. The image was standardized so

that brightness b varied from 0 to 1, and the discrete Fourier transform calculated with Mathe-

matica [42] function Fourier. This produces a two-dimensional array of Fourier coefficients

~bk, with wavenumber vector k ¼ ðkx; kyÞ 2 ð2p=wÞZ
2. Power at wavenumber k was computed

as pk ¼ j~bkj
2
. kx and ky range from (−479) × 2π/w to 480 × 2π/w, where w = 1.93 cm is the

width of the square. Fig 7C plots power for coefficients with kx/(2π) ranging from 0 to 20 cm−1

and ky/(2π) from −20 to 20 cm−1. We don’t show the power for kx< 0 because the power spec-

trum is even in k, i.e. p−k = pk. k/(2π) is the inverse of the wavelength of the corresponding

sinusoid, so, for instance, kx/(2π) = 10 cm−1 corresponds to a sinusoid whose wavelength in

the x direction is 1 mm.

For comparison to experiment a 200 000 s image of the full-scale simulation was cropped

and scaled and standardized to a [0, 1] range. The cropping square was chosen so that the cen-

ter point of the simulation was located at the same place as the center of the central mass in

the cropped experimental image. The scale was chosen to make the major peaks in the radial

power spectrum (Fig 7F) near 2π × 9.5 cm−1 correspond precisely. Finally a black circle of the

same dimensions as the central mass in the video image was added.

The radially summed power spectrum was approximated by an array s of 1024 numbers

representing power at wavenumbers from 0 to 2π × 20 cm−1. Each wavenumber in the two-

dimensional power spectrum was mapped linearly to a point in s. Since most wavenumbers

mapped to noninteger locations, they were represented by a weighted sum of the two closest

elements of s. For instance, consider k = 2π × (1, 2)/1.93. This corresponds in the radial spec-

trum to wavenumber k ¼ 2p�
ffiffiffi
5
p

=1:93 ¼ 2p� 1:15 cm−1. This k maps to radial array s
location j = 1 + 1023(1.15/20) = 60.26. If pk is the power at k in the two-dimensional spectrum,

we add (61 − j)pk to s[60] and (j − 60)pk to s[61].

The radially summed spectrum thus computed is noisy and quasi-periodic with period

1023/(20 × 1.93)� 26.5, reflecting the discrete two-dimensional power spectrum. To produce

Fig 7F, we smoothed s using Mathematica function GaussianFilter with smoothing

radius 26:5=
ffiffiffi
2
p
� 18:7 which we determined by trial and error to be the smallest smoothing

radius that effectively eliminated the periodic structure.

Effect of ethanol and acetate on the transcriptome of starved L1s

To obtain L1s for transcriptomic profiling, we grew N2 worms in liquid culture. We inoculated

250 mL S-complete in a 2 L flask with 7 × 105 synchronized L1 larvae obtained from a small-

scale liquid culture and added 10mL 50% E. coli K-12 stock suspension. Worms were grown at

22˚C, 220 rpm (for details see Artyukhin et al [2]). We monitored the worm culture during the

next 2.5 days and added E. coli food as it became depleted. Bleaching of gravid adult worms

(8 mL water + 2 mL bleach + 0.3 mL 10 M NaOH for 6 min) after 68 h of growth yielded ca.

1 × 107 eggs. After 3 washes with M9 buffer, eggs were resuspended in 20mL M9 and allowed to

hatch. After 2 days of starvation (51 h to 53 h after bleaching, 20˚C), we collected L1 larvae,

washed them 6 times with M9, 10 mL each time, and resuspended in 10 mL M9 after the final

wash. 300 μL of the resulting L1 suspension (corresponding to ca. 20 μL L1 pellet) were added to

each of the following solutions in 15-ml plastic tubes: (1) 3mL M9; (2) 3 mL M9 + 3 μL ethanol;

(3) 3 mL M9 + 51 μL 1 M potassium acetate. Tubes were put on a rocker at room temperature

(ca. 21˚C). After 1.5 h, the tubes were cooled down on ice for 1 min, centrifuged, and ca. 2 mL

of supernatant was removed by aspiration. We resuspended L1s in the remaining ca. 1 mL of
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liquid, transferred the suspension to 1.5 mL tubes, centrifuged, removed supernatant, added

300 μL Trizol to each sample, and froze in liquid nitrogen. The above procedure was repeated

two more times with worms grown on different days to obtain biological triplicates for each con-

dition (control, ethanol, potassium acetate). All samples were stored at -80˚C before analysis.

Microarray methods

Microarray methods were as described by Hyun et al [43].

srh–2 knockout

Deletion mutants of srh–2 were generated by CRISPR and obtained from Knudra. Three dele-

tion strains were generated (COP-1274, 1275, 1276), all of the same genotype: unc–119(ed3)
III; srh–2(knu317::unc–119(+)) V.

Software

Software developed for this work is available from https://github.com/leonavery/KSFD. Mor-

pheus [30] implementations of the cellular Potts models are available from https://github.com/

leonavery/worm-CPM. The README file for worm-CPM discusses the suitability of the cellu-

lar Potts model for worms in some detail.

Supporting information

S1 Fig. Attractant-only simulation reruns. A. These ten images reproduce the numerical

experiment of Fig 2C and 2D—simulation of the attractant-only model in two dimensions—

but with different pseudorandom noise in the initial condition. Only worm density ρ(x, y) at

t = 200 000 s (2 days, 7:33:20) is shown. B. Like A, but at t = 1 × 107 s (115 days, 17:46:40).

These images correspond one-to-one to the images in A. The number of aggregates in these

panels ranges from one to three, although a single aggregate may appear in as many as four

pieces because of the periodic boundary conditions. To ease the identification of aggregates,

the aggregate to which each piece belongs is identified by a red number.

(TIF)

S2 Fig. Attractant+repellent simulation reruns. A. These ten images reproduce the numeri-

cal experiment of Fig 3D, 3E and 3F—simulation of the attractant+repellent model in two

dimensions—but with different pseudorandom noise in the initial condition. Only worm den-

sity ρ(x, y) at t = 200 000 s (2 days, 7:33:20) is shown. B. Like A, but at t = 1 × 107 s (115 days,

17:46:40). These images correspond one-to-one to the images in A.

(TIF)

S3 Fig. Cellular Potts model simulations. A, B These two images show the results of an indi-

vidual-based cellular Potts model simulation of the Attractant-only model in two dimensions,

and are meant to be compared to Fig 2C and 2D. D-F show the results of a cellular Potts

model simulation of the attractant+repellent model in two dimensions and can be compared

to Fig 3C, 3D and 3E. Because there is no simple relationship between the parameters of the

PDE model and the cellular Potts model, we do not expect precise quantitative agreement,

even on a statistical basis.

(TIF)

S1 Text. Linear stability analysis of the attractant-only model.

(PDF)
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S2 Text. Linear stability analysis of the attractant+repellent model.

(PDF)

S3 Text. Convergence tests.

(PDF)

S1 Data. C.elegans microarray results_020615_CID.xlsx. Microarray expression profiling

results.

(XLSX)

S1 Video. This video shows the time course of aggregation after 500 000 starved L1s were

pipetted onto the center of a petri plate. The recording covers 720 min. There is one frame

per minute of real time, and the playback rate is 7 s−1. This file, S1_Video.mp4, has been

downsampled to satisfy journal publication requirements. A full-resolution version can be

downloaded from https://data.mendeley.com/datasets/r5v772ftcs/3 under the name

N2_5e5_washed.mp4.

(MP4)

S2 Video. Numerical solution of attractant-only model in one dimension. This video corre-

sponds to Fig 2A and 2B. This and all following videos are 200s long at 15 s−1. Time is dis-

played as “days, H:MM::SS”. Time ranges from 0 s to 200 000 s (2 days, 7:33:20). The two

numbers below each panel are the minimum and maximum of the plotted field.

(MP4)

S3 Video. Numerical solution of attractant-only model in two dimensions. Corresponds to

Fig 2C and 2D.

(MP4)

S4 Video. Numerical solution of attractant+repellent model in one dimension. Corre-

sponds to Fig 3A, 3B and 3C.

(MP4)

S5 Video. Numerical solution of attractant+repellent model in two dimensions. Corre-

sponds to Fig 3D, 3E and 3F.

(MP4)

S6 Video. Numerical solution of attractant+repellent model in two dimensions on a 6

cm × 6 cm domain, with most worms initially placed in the center. Corresponds to Fig 6.

(MP4)

S7 Video. Numerical solution of attractant-only cellular Potts model in two dimensions.

Corresponds to S3(A) and S3(B) Fig.

(MP4)

S8 Video. Numerical solution of attractant+repellent cellular Potts model in two dimen-

sions. Corresponds to S3(C), S3(D) and S3(E) Fig.

(MP4)
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