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Abstract

Motivation: Relief is a family of machine learning algorithms that uses nearest-neighbors to select

features whose association with an outcome may be due to epistasis or statistical interactions with

other features in high-dimensional data. Relief-based estimators are non-parametric in the statistic-

al sense that they do not have a parameterized model with an underlying probability distribution

for the estimator, making it difficult to determine the statistical significance of Relief-based attribute

estimates. Thus, a statistical inferential formalism is needed to avoid imposing arbitrary thresholds

to select the most important features. We reconceptualize the Relief-based feature selection algo-

rithm to create a new family of STatistical Inference Relief (STIR) estimators that retains the ability

to identify interactions while incorporating sample variance of the nearest neighbor distances into

the attribute importance estimation. This variance permits the calculation of statistical significance

of features and adjustment for multiple testing of Relief-based scores. Specifically, we develop a

pseudo t-test version of Relief-based algorithms for case-control data.

Results: We demonstrate the statistical power and control of type I error of the STIR family of fea-

ture selection methods on a panel of simulated data that exhibits properties reflected in real gene

expression data, including main effects and network interaction effects. We compare the perform-

ance of STIR when the adaptive radius method is used as the nearest neighbor constructor with

STIR when the fixed-k nearest neighbor constructor is used. We apply STIR to real RNA-Seq data

from a study of major depressive disorder and discuss STIR’s straightforward extension to

genome-wide association studies.

Availability and implementation: Code and data available at http://insilico.utulsa.edu/software/STIR.

Contact: brett.mckinney@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Epistasis is a well known concept in genetics that can be statistically

modeled as a deviation from the additive effect of DNA variants on a

phenotype or trait. A similar effect can be observed at the gene ex-

pression level, where the phenotypic effect of one gene is modified de-

pending on the expression of another gene (Park and Lehner, 2013).

A manifestation of this “expression-epistasis” effect is differential

co-expression (Lareau et al., 2015). The embedding of these interac-

tions in a regulatory network may lead to, not only pairwise interac-

tions, but also higher-order epistasis network effects. Thus, feature

selection methods are needed for high-dimensional data—such as

genome-wide association and gene expression studies—that are able

to identify relevant features when their effect on a phenotype may be

obscured by a complex interaction architecture.
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Relief-based feature selection methods are known for their ability

to identify interactions with computational efficiency based on near-

est neighbor calculations in the high-dimensional feature space (Kira

and Rendell, 1992; Kononenko et al., 1997; McKinney et al., 2009;

Urbanowicz et al., 2018b). The early Relief-based algorithms used ar-

bitrary parameter choices for the number of nearest neighbors and

heuristic Relief-score thresholds for selecting the most important fea-

tures. Recent work has been done to address the selection of the num-

ber of nearest neighbors, such as the constant neighborhood radius in

spatially uniform ReliefF (SURF) (Greene et al., 2009), adaptive radii

in multiSURF (Urbanowicz et al., 2018a) and feature-specific optimal

k in ReliefSeq (McKinney et al., 2013). However, until the current

study, the threshold for selecting the top predictors has remained arbi-

trary because Relief scores have not had a null distribution.

Methods like ANOVA and the generalized linear model have

parametric probability distribution assumptions that easily and effi-

ciently permit the calculation of P-values. However, these methods

are not able to detect interactions unless each interaction term is ex-

plicitly included in the model. Explicit interaction modeling

becomes computationally intractable for high-dimensional data and/

or higher-order interactions due to the combinatorial explosion of

hypothesis tests. Meanwhile, Relief ranks the importance of each at-

tribute separately, like a univariate method, but its ranking accounts

for dependencies between all other attributes, making it

“omnivariate.” Next, we discuss the mechanism that Relief-based

methods use to incorporate interaction effects in importance scores

while circumventing the combinatorial explosion.

When updating a target attribute’s importance score for an in-

stance in the data, Relief accounts for variation between all other

attributes by using nearest neighbors of the instance, as computed in

the space of all attributes. For the target attribute, a hyper-

dimensional decision boundary (i.e. in the space of all attributes) is

computed for each instance, and the attribute’s score is updated from

the neighbors near this boundary. In effect, Relief creates a high-

dimensional non-linear decision boundary localized at each instance

to discriminate between its nearest hits (same class) and misses (differ-

ent class). Pairwise attribute interactions are not explicitly calculated

in Relief, but pairs of attributes that interact conditionally on the out-

come variable will both have similarly high Relief importance scores.

Relief also has the ability to identify higher order interactions, again

without explicit calculation of n-way interactions.

Relief-based methods are, thus, an excellent tool for detecting inter-

actions, but, as noted, there remains the challenge of determining stat-

istical thresholds or statistical significance. With the aim of addressing

this challenge, we recently developed a mixture model and a permuta-

tion approach to estimate statistical thresholds for ReliefF and network

centrality scores (Lareau et al., 2015). However, permutation testing

can be computationally prohibitive. To address this issue, in the current

study we introduce a new family of Relief-based algorithms that allows

for statistical inference and false discovery rate adjustment.

The new STatistical Inference Relief (STIR) formalism represents

a new type of Relief-based score that follows a pseudo t-distribution.

In a precursor of STIR, we recently demonstrated that scores from the

standard Relief algorithm are equivalent to a difference of mean attri-

bute value differences between nearest hit and miss groups

(McKinney et al., 2013). This equivalence suggests a reformulation of

Relief scores that accounts for the variance within and between

groups. STIR in the current study is able to detect attributes whose as-

sociation with the phenotype may be due to higher-order interactions

while simultaneously assigning statistical significance to the attribute

scores. The STIR formalism applies to the broad family of Relief-

based algorithms, including Relief with fixed k and multiSURF.

The paper is organized as follows. In Section 2, we develop the new

formalism of STIR that enables the calculation of the STIR pseudo

t-statistics (STIR scores) and statistical significance of these scores. We

discuss our simulation strategy involving main effects and realistic net-

work interaction effects of varying strengths, sample sizes and number

of attributes. In Section 3, we apply the STIR method to the panel of

simulated data to assess power and false discovery rates. We use STIR

to obtain FDR-adjusted statistical significance levels and compare with

permutation testing. We compare STIR using k neighbors (constant for

each instance) with multiSURF (variable for each instance) as the

Relief-based nearest-neighbor algorithms. We apply STIR to a real

RNA-Seq dataset from a study of major depressive disorder, and we

note that STIR also applies to GWAS data. In the Section 4, we discuss

challenges and opportunities for further development of the new STIR

family of feature selection algorithms.

2 Materials and methods

In this section, we develop the mathematical formalism for comput-

ing the statistical significance of Relief-based scores for feature selec-

tion for binary-class (case-control) data. We generalize the STIR

formalism to all current nearest-neighbor methods, discuss the rela-

tionship between multiSURF and fixed-k methods, and demonstrate

how the reformulation of Relief-based algorithms can be used to im-

prove the computational performance of the algorithms.

2.1 Reformulation of Relief-based estimators
2.1.1 Diff function and nearest neighbors

Before importance scores can be computed for each attribute,

Relief-based algorithms identify the nearest neighbors in the space

all attributes. The distance between instances Ri and Rj is calculated

in the space of all attributes a 2 A, typically using a Manhattan

(q¼1) metric but may also use a Euclidean (q¼2) metric:

Dij ¼
X
a2A

jdiffða; ðRi;RjÞÞjq
� �1=q

; (1)

where the standard “diff” function between two instances Ri and Rj

for a real-valued attribute a is:

diffða; ðRi;RjÞÞ ¼
jvalueða;RiÞ � valueða;RjÞj

maxðaÞ �minðaÞ : (2)

This diff is appropriate for gene expression and other real-valued

predictors. For genome-wide association study (GWAS) data, where

attributes are categorical, one simply modifies the diff, but the algo-

rithm is otherwise unchanged. The diff function is part of the metric

used by Relief methods to compute the distance matrix for finding

nearest hit and miss neighbors, but the diff is also essential for com-

puting the Relief importance scores, as will be seen in Section 2.1.3.

2.1.2 Hit and miss nearest-neighbor ordered pairs

For a given instance Ri (i ¼ 1; . . . ;m), a hit is defined as a neighbor

instance that has the same class label as that of Ri, and a miss is a

neighbor instance with a different class label from Ri. In general

Relief-based algorithms, one may represent the set of ordered pairs

ðRi;MijðRiÞÞ, or simply ðRi;MijÞ, of m instances Ri with their nearest

kMi
misses, Mij, as nested sets:

M ¼ ffðRi;MijÞg
kMi

j¼1g
m
i¼1; (3)

where the index j for the inner set ranges from 1 to kMi
, which is the

number of nearest miss neighbors for subject Ri. The outer set

STIR 1359



ranges over all m instances. Similarly for hits, the set of ordered

pairs ðRi;HijðRiÞÞ of m instances Ri (i ¼ 1; . . . ;m) with their kHi

nearest hits, Hij, may be written as

H ¼ ffðRi;HijÞg
kHi

j¼1g
m
i¼1: (4)

Note that in both miss and hit sets, the inner index j depends on

the outer index i. This is important for multiSURF, where each in-

stance Ri will, in general, have a different number of misses and hits

(kMi
and kHi

) and these values may differ between instances. Thus,

for multiSURF, the sets M and H can be thought of as irregular or

ragged matrices of ordered pairs. For ReliefF algorithms, where the

number of neighbors is constant across subjects, the hit and miss

matrices are proper (non-ragged) matrices of ordered pairs.

2.1.3 Reformulation of Relief-based estimators as difference of hit

and miss means

Once the hit and miss groups, H (Eq. 4) and M (Eq. 3), are deter-

mined by the distance matrix Dij (Eq. 1) coupled with a neighbor-

hood definition (e.g. ReliefF fixed number of neighbors k or

multiSURF instance-dependent radius), we can compute average hit

and miss diff means and attribute importance weights. We showed

in McKinney et al., (2013) that the ReliefF importance weight for an

attribute, a, can be expressed as a difference of mean diffs between

hit and miss groups. Here we extend this difference to any Relief-

based neighborhood scheme.

The mean diff for attribute a averaged over of all pairs of

nearest-neighbor misses M (Eq. 3) can be expressed as

�Ma ¼
1

m

Xm
i¼1

1

kMi

XkMi

j¼1

diffða; ðRi;MijÞÞ; (5)

where Mij is the jth nearest neighbor from different classes of the ith

instance, Ri, and kMi
is the number of nearest miss neighbors of in-

stance Ri. This scaling by 1=kMi inside the sum makes the

neighborhood average weighting consistent with multiSURF and

with uniform neighborhood methods like SURF and ReliefF. For

nearest neighbor hits, the mean is

�Ha ¼
1

m

Xm
i¼1

1

kHi

XkHi

j¼1

diffða; ðRi;HijÞÞ; (6)

where, similarly, kHi
is the number of nearest hit neighbors of in-

stance Ri. The Relief-based importance score can then be expressed

simply as

WR½a;M;H� ¼ �Ma � �Ha: (7)

The formulation as a difference applies to any Relief-based algo-

rithm. We will use Eq. (7) as the basis for computing permutation

P-values for comparison purposes. However, as noted, permutation

can have prohibitive computational times. Thus, in Section 2.2, we

extend Eq. (7) to develop a Relief-based pseudo t-test and a more

computationally efficient means of computing statistical significance

of attributes.

2.1.4 Performance optimization with the reformulation and ReliefF

limits of general formalism

In our implementation of STIR on R ver. 3.4.4, we reshape all jMj
and jHj ordered miss and hit pairs, M (Eq. 3) and H (Eq. 4), into

jMj � 2 and jHj � 2 matrices to take advantage of R’s fast vectoriza-

tion capability (Fig. 1). The reformulated algorithm may be opti-

mized by pre-computing the neighborhood matrices H and M

(Algorithm 2, line 7) and vectorizing the diff function so that we can

simply perform vector subtraction (Algorithm 2, lines 11-13) and

bypass the two nested for loops in the original algorithm

(Algorithm 1, lines 8-11) in the calculation of the weight for each at-

tribute. The description of the reformulated algorithm is simplified

and allows for vectorization, which has a performance advantage

over for loops in R.

Fig. 1. Comparison of the pseudo-code of the original ReliefF algorithm as implemented in ReBATE (Urbanowicz et al., 2018a) (Algorithm 1, left) versus the refor-

mulated version of ReliefF (Algorithm 2, right, based on Eq. 7 – line 13). The reformulated version allows for algorithm optimization by precomputing miss and hit

matrices (Algorithm 2, line 7 – Section 2.1.4) and using a vectorized diff function (Algorithm 2, lines 11 and 12). The sums in line 13 are over all elements of Ha and

Ma (all pairs of neighbors for all instances). The pseudo-code for STIR (Eq. 10) works similarly

1360 T.T.Le et al.



In the case of Relief-based methods with constant k (ReliefF), we

have kMi
¼ kHi

¼ k 8i, and Eqs. (5) and (6) become

�Ma ¼
1

mk

Xm
i¼1

Xk

j¼1

diffða; ðRi;MijÞÞ; (8)

and

�Ha ¼
1

mk

Xm
i¼1

Xk

j¼1

diffða; ðRi;HijÞÞ: (9)

The ReliefF version of the reformulated score WR (Eq. 7) then

follows directly.

2.2 Beyond Relief-based estimators: STatistical

Inference for Relief (STIR)
We now introduce a new type of Relief-based score that incorpo-

rates the pooled standard deviations about the mean hit and miss

diffs to transform the Relief-based score (WR) into a pseudo t-statistic,

WSTIR. For attribute a, we construct the following STIR weight

(or STIR score) from the Relief difference of means (WR in Eq. 7) in

the numerator and the standard error in the denominator:

WSTIR½a;M;H� ¼
�Ma � �Ha

Sp½M;H�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=jMj þ 1=jHj

p ; (10)

where jMj ¼
Pm

i¼1 kMi
and jHj ¼

Pm
i¼1 kHi

are the total number of

miss and hit neighbors across all instances. The pooled standard de-

viation is

Sp½M;H� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjMj � 1ÞS2

�Ma
þ ðjHj � 1ÞS2

�Ha

jMj þ jHj � 2

s
; (11)

and the group variances are

S2
�Ma
¼ 1

m

Xm
i¼1

1

kMi

XkMi

j¼1

�
diffða; ðRi;MijÞÞ � �Ma

�2

; (12)

and

S2
�Ha
¼ 1

m

Xm
i¼1

1

kHi

XkHi

j¼1

�
diffða; ðRi;HijÞÞ � �Ha

�2

: (13)

The pooled standard deviation above allows for unequal varian-

ces in the hit and miss nearest neighbor diffs and allows for a differ-

ent number of diffs in the hit and miss groups, which is common for

multiSURF. For Relief with fixed neighbors k, the above equations

can be simplified by letting kMi
¼ kHi

¼ k and jMj ¼ jHj ¼ mk. The

WSTIR score (Eq. 10) approximately follows a t-distribution from

which we compute P-values. We use df ¼ jMj þ jHj � 2 as the

degrees of freedom for calculating the P-value.

We highlight that STIR applies to any Relief-based algorithm. In this

work, we focus on two different approaches for the neighbor finding al-

gorithm (ReliefF and multiSURF) for use in STIR. ReliefF requires the

user to specify a fixed k while multiSURF uses a neighborhood radius

that varies for each instance (Urbanowicz et al., 2018a). In multiSURF,

the radius for each instance is the average of all distances of the instance

to all other instances subtracted by half of their standard deviation. The

multiSURF method counts another instance as a neighbor if it is within

this radius. We show empirically for balanced datasets that a good con-

stant-k approximation to the expected number of neighbors within the

multiSURF radii is k ¼ m=6. We show that the performance of STIR-

k ¼ m=6 closely follows that of STIR-multiSURF.

2.3 Datasets and performance metrics
2.3.1 Simulation methods

To address power and false positive performance of STIR, we use the

simulation tool from our private Evaporative Cooling (pEC) software

(Le et al., 2017). This tool was designed to simulate realistic main

effects, correlations and interactions that one would expect in gene ex-

pression or resting-state fMRI data. In the current study, we first simu-

late main effect data with m¼100 subjects (50 cases and 50 controls)

and p¼1000 real-valued attributes with 10% functional (true positive

association with outcome). We chose a sample size consistent with real

gene expression data but on the smaller end to demonstrate a more

challenging scenario. Similarly, an effect size bias of b¼0.8 was

selected to be sufficiently challenging with power approximately 40%

(Le et al., 2017). More details on the theoretical relationship between

power and the simulation parameters is provided in Le et al., (2017).

One of the main advantages of Relief-based methods is the abil-

ity to detect statistical interactions. Thus, our second type of simula-

tion uses the differential co-expression network-based simulation

tool in pEC to simulate interactions. Full details of the simulation

approach can be found in Le et al., (2017) and Lareau et al., (2015).

Briefly, we simulate m¼100 samples and p¼1000 attributes with

10% targeted for interaction. Starting with a dataset of random nor-

mal expression levels, we induce a co-expression network with

Erd}os-Rényi connectivity by making connected genes (e.g. gi and gj)

have a linear dependence (gj ¼ gi þ sint) with average correlation

noise sint. A lower value of sint yields higher average co-expression

and thus higher average interaction effect size.

The interaction is enforced by randomly targeting 10% of the

attributes and permuting their values within the group of instances

designated as cases. By permuting the values of the gene in cases,

no main effect is created but the co-expression between the gene’s

connections is destroyed in the case group, creating differential

co-expression or interaction effects with that gene’s connections.

We chose the 10% of targets randomly, which means that a few

attributes may not have correlation with other attributes and hence

may not actually be functional. On the other hand, other target attrib-

utes may be highly interconnected and, hence, may be involved in

high-order interactions. This complexity of interactions and correla-

tions makes assessing true/false positives/negatives challenging; how-

ever, our goal is to simulate realistic data and the 10% of targets is a

reasonable surrogate for true associations. We use a relatively chal-

lenging interaction effect size sint ¼ 0:4. See Le et al., 2017 for further

discussion of main effect and interaction effect sizes.

2.3.2 Performance metrics

We compare the performance of STIR across Relief-based methods,

with Relief permutation test, and with univariate t-test for both

main and interaction effect simulations. We choose a univariate

t-test as a comparison method for main effect simulations because it

gauges the effect size and the t-test is an effective standard approach

for detecting differential expression without multiple conditions

or covariates. Specifically, a simulated main effect attribute is con-

sidered functional if its mean expression is significantly different

between the two outcome groups. Moreover, the STIR P-values are

analogous to a t-test. STIR P-values are computed from a t-test dis-

tribution from each attribute’s STIR score (Eq. 10). Relief-based

permutation P-values are computed based on the reformulated

Relief-based score (Eq. 7). For permutation, we first compute the

observed score for each attribute. We then permute the class label

10 000 times, recomputing attribute scores for each permuted data-

set. The fraction of permutations for which the observed score

exceeds the permuted score is the attribute’s P-value.
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All resulting P-values (STIR, permutation, and univariate t-test)

are adjusted for multiple testing using the Benjamini-Hochberg pro-

cedure (Benjamini et al., 2001). Attributes with adjusted P-values

less than 0.05 are counted as a positive test (null hypothesis

rejected), else the test is negative. We assess the performance of

each method by averaging the following performance metrics across

100 replicates of each simulation scenario: True Negative Rate

(TNR), Precision, and Recall of the statistical tests. We remind the

reader of the following definitions applied for the detected attributes

TNR ¼ # true negatives

# true negativesþ false positives
; (14)

Precision ¼ # true positives

# true positivesþ false positives
; (15)

Recall ¼ # true positives

# true positivesþ false negatives
: (16)

2.3.3 Real-world dataset

To assess the performance of STIR on real data, we analyzed

78 major depressive disorder (MDD) subjects and 79 healthy con-

trols (HC) from the RNA-Seq gene network module analysis in

Le et al., (2018). This dataset consists of whole blood RNA-Seq

measurements of 5912 genes for each subject. Sequencing yielded an

average of 30 million reads per individual, and gene expression lev-

els were quantified from reads of 19 968 annotated protein-coding

genes, followed by low read-count and outlier removal as well as

technical and batch effect adjustment. Coefficient of variation filter-

ing resulted in the final set of 5912 genes that we use in the current

study to test for association with MDD status (Le et al., 2018).

3 Results

3.1 Comparison of the performance of STIR with

Relief-based permutation
Our first aim is to determine whether the more computationally effi-

cient pseudo t-test approach of STIR is a reliable alternative to a

model-free permutation test. We use multiSURF as the neighborhood

algorithm in STIR, but constant k algorithms are expected to perform

similarly (see following subsection). We also use the multiSURF

neighborhood for permutation-Relief. Using an FDR adjusted P-value

threshold a ¼ 0:05, we observe that STIR (mauve) and permutation-

Relief (blue) indeed perform nearly the same in both main effect and

interaction effect simulations in terms of True Negatives, Precision,

and Recall (Fig. 2). For completeness and to provide an indicator of

power, we also compare STIR with the performance of a univariate

t-test (green). For main effect simulations (Fig. 2A), all methods have

a similarly low Recall because the simulated main effect size and sam-

ple size were chosen to be relatively low and challenging.

As we discuss more in Section 3.2 (Fig. 3), for main effects, it is

possible to further increase the Recall of STIR beyond a univariate

t-test if one uses STIR with ReliefF and a larger k (up to the maximum

kmax ¼ bðm� 1Þ=2c); however, this k would cause a decrease in per-

formance for interactions relative to STIR with lower values of k. The

multiSURF neighborhood constitutes a compromise between main ef-

fect and interaction effect performance, as we explore more below.

For interaction simulations (Fig. 2B), the t-test still has a similar-

ly high True Negative Rate to STIR. However, this high rate is

because no t-tests are true positive: there are no main effects and the

t-test has zero Precision and Recall. STIR on the other hand still has

high Precision and Recall (Fig. 2B) because Relief-based methods

are sensitive to interactions among attributes (provided the number

of neighbors is not too large).

For a dataset of the size simulated in our study (m¼100 samples

and p¼1000 attributes) STIR has a 2.1-second runtime on a desk-

top with an Intel Xeon W-2104 CPU and 32GB of RAM.

As expected, a permutation test with 10 000 replicates takes ap-

proximately 10 000 times longer: over 5 hours on the same desktop.

Thus, STIR provides a significant time savings over permutation for

computing P-values.

3.2 The effect of k in detecting functional attributes
Our next aim is to gain insight into the performance of STIR with a

ReliefF neighborhood (fixed k neighbors) and how its performance

relates to STIR with a multiSURF neighborhood (adaptive radius).

In the main effect simulations (Fig. 3A), as k increases, STIR gains

more power to detect the functional attributes (increasing Recall)

and with an expected increase in false positive attributes (decreasing

Precision). The increasing Recall with k is expected for main effects

because ReliefF becomes more myopic (more like a univariate t-test)

as k increases (McKinney et al., 2013; Robnik-�Sikonja and

Kononenko, 2003). The increase in Recall is limited in part by the

maximum number of neighbors being kmax ¼ bðm� 1Þ=2c ¼ 49.

In contrast, for interaction simulations (Fig. 3B), the relationship

between k and Recall is no longer monotonic. Rather, the Recall

Fig. 2. STIR versus permutation-test multiSURF and univariate t-test.

Comparison of the performance (True Negative Rate, Precision, and Recall) of

STIR (with multiSURF neighborhood, mauve), permutation test of multiSURF

(blue), and univariate t-test (green) to detect functional attributes. Each method

determines positives by 0.05 FDR adjusted P-value threshold. Each simulation

is replicated 100 times with m¼100 samples and p¼1000 attributes with 100

functional (A) main effects (bias¼0.8) and (B) interaction network effects

(sint ¼ 0:4) (Color version of this figure is available at Bioinformatics online.)
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reaches a maximum at approximately k ¼ m=6 and this performance

is similar to using the adaptive radius in multiSURF. As k increases

beyond k ¼ m=6 to the maximum kmax, ReliefF becomes more my-

opic and has nearly zero Precision and Recall. This result corrobo-

rates the findings in Urbanowicz et al. (2018a) that multiSURF is

sensitive to two or three-way interactions. However, we also note

that the STIR-ReliefF with k ¼ bm=6c ¼ 16 results are similar to

STIR-multiSURF for main effect and interaction effect simulations (be-

cause the average k in multiSURF is close to m=6). These versions of

STIR will yield similar results for balanced data that are optimal for

detecting interactions while being reasonably powerful for main effects.

STIR-k ¼ m=6 has a computational speed advantage over STIR-

multiSURF, but STIR-multiSURF may have an advantage when there

is class imbalance (Urbanowicz et al., 2018a). If one wanted to opti-

mize the sensitivity of STIR for main effects and neglect interactions,

one would use STIR-k ¼ kmax. Furthermore, in all simulation scen-

arios, the correlation between STIR scores (pseudo t-statistic) and the

original Relief-based scores (diff function) are above 0.98 (see

Supplementary Fig. S1 for more detail).

3.3 Real-world data
We apply STIR to the RNA-Seq study of 78 major depressive disorder

(MDD) subjects and 79 healthy controls described in Le et al., (2018).

The dataset contains 5912 genes after preprocessing and filtering

(see Section 2 for more detail). Using an FDR threshold of 0.05,

STIR with the multiSURF neighbor-finding method detects 32 statis-

tically significant associations (mauve and gray genes above the

dashed horizontal line in Fig. 4). These 32 significant STIR genes in-

clude all eight of the genes that passed the 0.05 FDR threshold from

the standard t-test method (gray genes to the right of the vertical

dashed line in Fig. 4). Thus, in addition to its documented ability to

identify interactions, STIR also has high power to detect main

effects among its FDR-adjusted significant genes.

The STIR-multiSURF genes that are outside of the intersection

with the t-test (mauve) such as TCF7L1, a component of the Wnt

signaling pathway, may be good candidates for interaction effects.

An extended Venn diagram of the gene-significance overlap of these

two methods is provided in Supplementary Figure S2. Although be-

yond the scope of the current study, characterization of interactions

could be performed to create an expression-epistasis network from

the STIR MDD genes (Lareau et al., 2015; McKinney et al., 2009)

and help identify underlying mechanisms of MDD susceptibility.

Using STIR with fixed k ¼ m=6, we identified 41 FDR-adjusted

significant genes (not plotted). These 41 STIR k ¼ m=6 genes

Fig. 3. The effect of k on the performance of STIR to detect functional attrib-

utes with main effects (A) and interaction effects (B). Comparison of the per-

formance (True Negative Rate, Precision, and Recall) of STIR-ReliefF for

multiple values of nearest neighbors k (k ¼ 5; 16; 33; 49, gray scale) and STIR-

multiSURF (adaptive radius, mauve). All methods determine positives using

a 0.05 FDR adjusted P-value threshold. Each simulation is replicated 100

times with m¼ 100 samples and p¼ 1000 attributes with 100 functional (Color

version of this figure is available at Bioinformatics online.)

Fig. 4. Major depressive disorder gene scatter plot of � log 10 adjusted signifi-

cance for STIR-multiSURF and standard t-test for RNA-Seq differential ex-

pression. STIR-multiSURF finds 32 genes that are significant at the FDR-

adjusted 0.05 level (above horizontal dashed line). Standard t-test finds eight

genes that are significant at the FDR-adjusted 0.05 level (to right of vertical

dashed line). STIR identifies all eight significant main effects from the t-test

(gray) and additional candidate genes (mauve) that may involve interactions.

Due to overlap of plot points, not all significant genes are labeled. See

Supplementary Figure S2 for detailed labels (Color version of this figure is

available at Bioinformatics online.)
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include 31 of the 32 STIR-multiSURF genes. Thus, as we found in

the simulation studies, these two versions of STIR perform similarly,

with multiSURF being more conservative. Future studies will ad-

dress the replication of the statistically significant STIR effects, the

characterization of STIR interactions and the mathematical connec-

tion between neighbor-finding methods in STIR. The STIR runtime

for the RNA-Seq data was approximately 19 seconds on a desktop

with an Intel Xeon W-2104 CPU and 32GB of RAM.

4 Discussion

To our knowledge, STIR is the first method to use a theoretical dis-

tribution to calculate the statistical significance of Relief attribute

scores without the computational expense of permutation.

Previously, it was difficult to assess the false discovery rate of Relief-

based attribute lists because arbitrary thresholds were used. STIR is

able to report statistical significance of Relief-based scores by a

pseudo t-test that accounts for variance in the mean difference of

miss and hit nearest neighbor diffs. We assessed STIR’s power and

ability to control false positives using realistic simulations with main

effects and network interactions. We applied STIR to real data to

demonstrate the identification of biologically relevant genes.

We showed that the statistical performance using STIR P-values is

the same as using permutation P-values. This validates the STIR

pseudo t-test and means one can use it instead of costly permutation

testing. We chose the number of permutation to be 10 000 to minimize

the computational expense while obtaining accurate permutation

P-values. Specifically, if only 1000 permutations were performed, the

P-values would be bounded below by 0.001, which would lead to an

inflation of insignificant tests after FDR correction (padj > 0.05) in

simulated datasets with 1000 attributes. Nevertheless, 10 000 permuta-

tions requires considerable computation time, especially in large data-

sets such as the analyzed gene expression data. Hence, by showing very

similar performance to permutation, STIR shows an efficient imple-

mentation to compute the P-value for each attribute while producing

scores that are highly correlated with the standard Relief-based scores.

We showed the STIR formalism generalizes to all Relief-based

neighbor finding algorithms, including MultiSURF. We showed that

STIR-MultiSURF and STIR-k ¼ m=6 perform similarly for main ef-

fect and interaction simulations. This suggests that one may prefer

to use constant-k STIR-k ¼ m=6 for the computational speed advan-

tage; however, we have not tested the statistical performance for

imbalanced data. Our results suggest that power for detecting inter-

actions is maximized near k ¼ m=6 (higher or lower k decreases the

power). Power for detecting main effects is highest with the myopic

maximum k ¼ kmax ¼ bðm� 1Þ=2c. Real biological data will likely

contain a mixture of main effects and epistasis network effects

(McKinney and Pajewski, 2011). The value k ¼ m=6 is a good com-

promise because it maximizes the radius for detecting interactions

while still giving reasonable power for detecting main effects.

However, the STIR formalism may help tune the elements of an

attribute-specific k vector, where each attribute, a, is allowed to use

a different ka to preferentially detect a main effect or interaction ef-

fect as informed by the data (McKinney et al., 2013). For those

using a constant-k (ReliefF) approach, our results suggest that using

k ¼ m=6 may offer a better default than the pervasive use of k¼10,

which was an arbitrary choice in the early literature.

Our simulation study focused on obtaining a quality assessment

of statistically significant STIR associations between an attribute

and the outcome while taking into account the complex underlying

architecture of interactions among attributes. Therefore, the

simulation is designed to generate realistic and challenging datasets

leading to relatively low Recall. In datasets with larger sample size

(m¼200), we observe higher Recall values but otherwise similar

findings as presented in the Results section (results for m¼200 not

shown). Furthermore, from a machine learning point of view, if the

researcher wishes to include more attributes in their subsequent ana-

lysis, they may increase the FDR threshold to allow for more false

positives and improve the Recall value. A future study that analyzes

this Recall/Precision trade-off would prove valuable in understand-

ing statistical characteristics of selected features from Relief-based

methods.

The STIR score improves the standard Relief-based scores because,

rather than simply being a difference of means, STIR incorporates

within and between group variances. Moreover, this pseudo t-test

score can be transformed into a P-value. The advancement of STIR

over Relief-based scores is similar to going from a fold change to

describe differential expression to a t-test. The assumptions of a t-test –

independent observations and normality of the population distribu-

tions – are not satisfied for the STIR test in general, which is why we

refer to it as a pseudo t-test. When the average number of neighbors

k is sufficiently large, duplicate pairs will occur in the estimate of the

average hit and miss diffs. The dependence induced by duplicate neigh-

bors may increase the false positive rate because the variance estimates

are narrowed, the STIR statistics inflated, and the P-values deflated.

One could simply remove duplicates; however, the duplicates are bene-

ficial with respect to power because they add weight to pairs of instan-

ces that are very similar to each other. The effect of duplicates has a

similar effect as a distance-based weighting scheme such as the expo-

nential decaying influence of neighboring instances used in some

Relief-based algorithms (Robnik-�Sikonja and Kononenko, 2003).

A related approach to reduce the dependence-induced false posi-

tive rate is to perform sub-sampling of the neighbor pairs, which

reduces duplicates but maintains some distance-based weighting. An

alternative approach would be to incorporate variance regulariza-

tion into the STIR statistic to inflate the variance to a level consistent

with independent neighbors. Despite the dependence of neighbors,

our empirical results show that, even when unmodified, the STIR

pseudo t-test shows comparable performance with permutation test

in both simulation scenarios with main and interaction effects.

Transformations such as the square root help increase the nor-

mality of the distribution of distances. However, to stay close to the

original Relief score formula, we did not transform the distance val-

ues in the results shown here, but the transformation is provided as

an option via the transform parameter of the STIR function in our

software. Preliminary analysis indicates little difference when trans-

formation is applied (results not shown).

It has been shown that Relief-based algorithms benefit from the

iterative removal of the worst attributes and then repeating the esti-

mation of the remaining attributes. Thus, another future direction is

to develop a strategy for STIR that incorporates iterative attribute

removal in a way that minimizes the false positives due to iteration-

induced multiple testing. STIR feature selection could be embedded

in the backwards elimination of pEC for feature selection and classi-

fication (Le et al., 2017) or embedded in a nested cross-validation

approach. Effective strategies also must be developed for testing for

replication of significant STIR effects because typical replications do

not have dependence among other features, whereas Relief scores

depend on the context of other variables in the data.

Extensions of STIR will involve multi-class data, quantitative

trait data (regression) and correction for covariates. Just as an

ANOVA extends the t-test to multiple conditions, we anticipate the

extension of STIR to multi-state will involve an ANOVA formalism
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and F-test. Similarly, we envision regression-STIR to follow a linear

model formalism. The current implementation of STIR does not

deal with missing data. In a future implementation, to handle miss-

ing data we will modify the diff to estimate the probability that two

instances (one or both possibly missing) have different values condi-

tioned on their class. Application to GWAS data requires no add-

itional modifications other than specification of a different diff

function for categorical variables. Future studies will apply STIR to

GWAS as well as eQTL and other high dimensional data to identify

interaction effects.
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