
Multi-omics Study of Planobispora rosea, Producer of the
Thiopeptide Antibiotic GE2270A

Francesco Del Carratore,a Marianna Iorio,b Mercedes Pérez-Bonilla,c Kamila Schmidt,a Rosario Pérez-Redondo,d

Margherita Sosio,b Sandy J. Macdonald,e Ivan S. Gyulev,e Areti Tsigkinopoulou,a,f Gavin H. Thomas,e Olga Genilloud,c

Antonio Rodríguez-García,d Stefano Donadio,b Rainer Breitling,a Eriko Takanoa

aManchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
bNAICONS Srl, Milan, Italy
cFundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
dINBIOTEC Instituto de Biotecnología de León, León, Spain
eDepartment of Biology, University of York, Heslington, York, United Kingdom
fDTU Biosustain, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark

ABSTRACT Planobispora rosea is the natural producer of the potent thiopeptide an-
tibiotic GE2270A. Here, we present the results of a metabolomics and transcriptomics
analysis of P. rosea during production of GE2270A. The data generated provides use-
ful insights into the biology of this genetically intractable bacterium. We characterize
the details of the shutdown of protein biosynthesis and the respiratory chain associ-
ated with the end of the exponential growth phase. We also provide the first
description of the phosphate regulon in P. rosea. Based on the transcriptomics data,
we show that both phosphate and iron are limiting P. rosea growth in our experi-
mental conditions. Additionally, we identified and validated a new biosynthetic gene
cluster associated with the production of the siderophores benarthin and dibenar-
thin in P. rosea. Together, the metabolomics and transcriptomics data are used to
inform and refine the very first genome-scale metabolic model for P. rosea, which
will be a valuable framework for the interpretation of future studies of the biology
of this interesting but poorly characterized species.

IMPORTANCE Planobispora rosea is a genetically intractable bacterium used for the
production of GE2270A on an industrial scale. GE2270A is a potent thiopeptide anti-
biotic currently used as a precursor for the synthesis of two compounds under clini-
cal studies for the treatment of Clostridium difficile infection and acne. Here, we pres-
ent the very first systematic multi-omics investigation of this important bacterium,
which provides a much-needed detailed picture of the dynamics of metabolism of P.
rosea while producing GE2270A.

KEYWORDS thiopeptide, metabolomics, transcriptomics, genome-scale metabolic
modelling, secondary metabolism, GE2270A

P lanobispora rosea is a soil-dwelling, genetically intractable bacterium classified in the
family Streptosporangiaceae. P. rosea is the first described producer of the antibiotic

GE2270A (1), a molecule later detected in another member of the Streptosporangiaceae,
Nonomuraea sp. strain WU8817 (2). This compound is a thiopeptide having potent activity
against Gram-positive pathogens by targeting the elongation factor Tu (EF-Tu) (1).
GE2270A is a member of the ribosomally synthesized and posttranslationally modified
peptide (RiPP) class of natural products. The biosynthesis of RiPPs starts from the synthesis
of a longer precursor peptide encoded by a structural gene (pbtA in the case of GE2270A).
The precursor peptide consists of a leader peptide followed by the core peptide. During
the biosynthesis, the precursor peptide undergoes a series of biochemical modifications
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before undergoing a specific cleavage, where the leader peptide is removed and the mature
RiPP (i.e., modified core peptide) is exported (3). The experimental characterization of the
pbt cluster has been attempted through the heterologous expression in Streptomyces coeli-
color (4) and in Nonomuraea ATCC 39727 (5). GE2270A is considered to be a very promising
natural product, mostly due to the fact that it has been successfully employed as a precursor
for the semisynthesis of two compounds, LFF-571 and CB-06-01, currently under clinical
studies. The most advanced LFF-571 has been investigated for the treatment of Clostridium
difficile infections (6), although its development has been discontinued (7). CB-06-01 is
currently considered a topical treatment for acne (8–10). P. rosea is currently used for the
production of GE2270A on an industrial scale, and a deeper understanding of the metab-
olism of this strain in the context of GE2270A production is particularly important when
trying to optimize the production of the target compounds. Multi-omics approaches are
one of the most powerful tools currently available for the study of industrial microorgan-
isms (11), and they have been very successful in the analysis of secondary metabolite
production (12). Members of the order Streptosporangiales, which includes Planobispora,
have provided valuable antibiotics that are either on the market or in clinical trials (6, 13),
as well as a number of first-in-class discoveries (14). Yet, only rudimentary or inefficient gene
transfer systems are available for a few of those strains (15). To our knowledge, no systematic
multi-omics investigation has been performed for any member of this order, and it is currently
not known to what extent models developed for well-studied Actinobacteria (e.g., few species
of the genus Streptomyces [16]) can be used for distantly related actinobacteria. The genus
Planobispora is poorly explored, with just four species formally described (17) and a single
genome sequence available (18). Recent investigations have also suggested the need for
a taxonomic reinvestigation of the Planobispora and Planomonospora genera (19). With
these challenges in mind, here we use transcriptomics and metabolomics data to obtain
a more detailed picture of the metabolism of this industrially important actinomycete
while producing GE2270A.

RESULTS
Growth and antibiotic production during batch fermentation. Planobispora rosea

ATCC 53733 was grown in medium C (see Materials and Methods). This medium pro-
vides good performance in terms of GE2270A production on a lab scale, and it is simi-
lar to the medium used for industrial production. Samples were collected in three repli-
cates at 15, 24, 39, 48, and 63 h after inoculation for metabolomics and transcriptomics
analysis. After 24h, the culture entered stationary phase, following which GE2270A was
found to accumulate to about 50 mg/ml at 63h (Fig. 1). Throughout the fermentation, the
amount of free glucose, both present in the starting medium and released from starch during
microbial growth, remained high enough to sustain growth, suggesting that the culture was
not carbon limited.

Transcriptomics. The P. rosea genome was uploaded to the online tool MORF (https://
morf-db.org/projects/TOPCAPI/P-rosea/genome/GCF_001696485.1/view) (20). This tool allows

FIG 1 P. rosea fermentation data. Measured glucose, biomass, and GE2270A during fermentation of P. rosea
in medium C. Biomass is shown on a logarithmic scale, while GE2270A and glucose concentrations are
shown on a linear scale. The error bars represent the standard deviations calculated from three replicates.
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visualizing and exploring the transcriptomics data described in this section in the context of
the genome sequence. The transcriptome profiles during the time course show that most of
the P. rosea genome is transcribed during fermentation. Almost 73% of the 7,794 annotated
genes found in the P. rosea genome showed an expression level higher than 5 transcripts
per million (TPM), well above the limit of detection (see Fig. S1 and Supplementary file 1
at https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea). All the genes
with an average TPM value lower than 5 TPM at any time point are reported in Suppleme-
ntary file 2 at https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea.
The largest region not transcribed spans from EV45_RS25620 to EV45_RS25970 and consists
mostly of genes with unknown function. Apart from rRNA genes that were discarded from
the analysis, the three most abundant transcripts are those of the ssrA, ffs, and pbtA genes
(Fig. 2b). In a recent study, transcriptome sequencing (RNAseq) data were collected for the S.
coelicolor M1146 strain cultivated using phosphate-limited fully defined medium (21). After
excluding the rRNA genes from the analysis, the homologue of ssrA (SCOs02) was always the
most expressed gene, and the homologue of ffs (SCOs03) was found in the top 30 most
highly expressed genes in all experimental conditions considered. Both ssrA and ffs RNAs
form extensive secondary structures, which are expected to provide increased cellular
half-life and hence high levels in RNAseq data. The products of the ssrA and ffs genes are
small RNAs that carry out housekeeping functions. Transfer messenger SsrA (locus tag
EV45_RS05980), which is involved in releasing stalled ribosomes (22), displayed a constitu-
tive expression with TPM values always higher than 1e5. The product of ffs (locus tag

FIG 2 Transcriptome analysis: gene expression changes during fermentation. (a) Heatmap showing normalized TPM
values associated with the genes identified as differentially expressed. The genes are clustered into eight groups
with the k-means approach. (b) TPM values (on a linear scale) of the three most expressed genes during
fermentation. (c) TPM values (on logarithmic scale) of the differentially expressed ribosomal genes. Most of them are
part of the cluster A (green), with the exception of EV45_RS15600, which is part of cluster C (purple). (d) TPM values
(on log scale) associated with all the differentially expressed genes annotated as ATP synthases. (e) TPM values
(on log scale) associated with all the differentially expressed genes annotated as NADH dehydrogenase. (f) TPM
values (on log scale) associated with all the differentially expressed genes involved in phosphate transport. (g) TPM
values (on log scale) associated with all the differentially expressed genes involved in iron transport. The error bars
represent the standard deviations calculated from three replicates.
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EV45_RS37010) is the RNA component of “the signal recognition particle” (the protein
component corresponds to locus tag EV45_RS07710); similarly to what was observed for
ssrA, its transcript level was always high and stayed roughly constant during fermentation.
The signal recognition particle targets the nascent signal peptides of secreted or mem-
brane proteins at translating ribosomes and deliver them to the plasma membrane (23).
Remarkably, pbtA, the gene encoding the precursor peptide of GE2270A, is one of the
three genes with the highest expression level. Its expression level peaked at 48h when it
was the most abundantly expressed gene (see further analyses below). Most of the loci
annotated as tRNA showed a high expression level throughout fermentation. In fact when
ranking the genes according to the maximum average gene expression level during fer-
mentation, 53 out of the 63 tRNAs are found in the top 119 (probability of change [PC-
value] = 7.83e292 using the iterative Group Analysis [24]). However, the tRNA showing
the highest gene expression level (EV45_RS35060, annotated as tRNA-Asp) is 3.4 times
lower than that observed for ssrA at 63h. Differentially expressed genes were identified
with an analysis of variance (ANOVA) test, controlling the false discovery rate at 5%; 75.7%
of the annotated genes found in the P. rosea genome showed a statistically significant
change in expression during fermentation. To reveal trends in the gene expression, the
selected genes were subjected to k-means clustering. The genes were clustered into eight
groups (clusters A through H), each showing a specific trend, as shown in Fig. 2a. The com-
position of the clusters identified in this analysis is reported in Supplementary file 3
(https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea). The clusters
represent genes involved in the following major physiological switches occurring during
transition to stationary phase and active antibiotic production.

Shutdown of protein biosynthesis. In the P. rosea genome, there are 64 genes
encoding ribosomal proteins. The majority of them (56) showed a statistically signifi-
cant change in expression level during fermentation. Interestingly, almost all of them
followed a very similar trend (Fig. 2c): their expression peaked at 15 h and reached the
lowest level at 39 h, which suggests a strong reduction in protein biosynthesis after
24 h. The only exception is a gene annotated as “30S ribosomal protein S4” (locus tag
EV45_RS15600), which showed an opposite trend, peaking at 39 h. This protein shares
only 45% identity with the “core” ribosomal protein S4; we suggest that it is not
actually involved in forming the active ribosome but is a neofunctionalized ancient
gene duplicate. BLAST searches detected close homologues only in members of the
Streptosporangiales, suggesting an important and conserved role of this duplicate
gene specifically within this order. It should be noted that the P. rosea genome does
include a gene encoding a genuine ribosomal protein S4 (locus tag EV45_RS04055).

Overexpression and subsequent downregulation of the respiratory chain. Most
genes involved in the respiratory chain followed the same pattern as the ribosomal
proteins described in the previous section. With the sole exception of EV45_RS15870
(one of the two genes annotated as “F0F1 ATP synthase subunit gamma”), all the genes
annotated as ATP synthases followed the trend of cluster A (Fig. 2d). Their expression
peaked at 15 h and subsequently dropped reaching the minimum at 39 h. Then it slightly
increased in the next two time points. A similar behavior is observed for the genes anno-
tated as NADH dehydrogenases. The levels of expression of all the genes annotated as
NADH dehydrogenases are shown in Fig. 2e. The data suggest that vigorous growth mostly
stopped at 39h, possibly due to depletion of some of the nutrients in the medium.

Iron and phosphate transporters. There are 658 genes involved in transport/secretion
in the P. rosea genome, most of which (504) have been selected as differentially expressed
during the fermentation. The complete transporter list can be found in Supplementary file 4
at https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea. Interestingly,
most of the genes involved in phosphate (Fig. 2f) and iron (Fig. 2g) transport showed very
similar patterns, and they were grouped in cluster C. The same pattern is also observed for
three of the four genes annotated as alkaline phosphatases (EV45_RS14425, EV45_RS14855,
and EV45_RS22905) in the P. rosea genome and for one supposed molybdate transporter
system (EV45_RS35765, EV45_RS35770, and EV45_RS35775), as shown in Fig. S2 (https://
github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea). In fact, their expression
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was relatively low in the first two time points and peaked at 39h. This very similar expression
pattern suggests a shared regulation system. For the alkaline phosphatases, this is not sur-
prising, as they are part of the phosphate regulon (Table 1). It is thus possible that both phos-
phate and iron become the nutrients limiting growth at 39h. This hypothesis has been
tested with a supplementation experiment, and the results are discussed in the section
“Supplementation of phosphate and iron.”

Phosphate regulon. The phosphate (Pho) regulon is a highly conserved regulatory
system used by bacteria for the management of inorganic phosphate, first discovered
in Escherichia coli (25). PhoP, part of the two-component system PhoR-PhoP, is the
response regulator protein that activates or represses the genes of the regulon. The
members of the Pho regulon in Streptomyces coelicolor are well-known (26–31). These
S. coelicolor genes were used to identify the Pho regulon members in P. rosea, as
reported in Table 1. Some orthologues were identified by sequence similarity (e.g.,
phoP); others were identified by synteny (e.g., pstS) or regulation pattern (e.g., pitH2).
The genes that appeared to be activated by PhoP in P. rosea are all members of cluster
C. Conversely, all the genes apparently repressed by PhoP are members of cluster B.
Additional details about the members of the Pho regulon are found in Supplementary
file 5 at https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea.
Similarly to what was observed in Streptomyces sp., the two-component system phoR-
phoP and the modulatory regulator gene phoU are clustered in P. rosea. In S. coelicolor,
the intergenic region between phoU and phoR contains the PhoP binding sites. When
S. coelicolor is starved of phosphate, PhoR phosphorylates PhoP, and then PhoP binds
to the target gene binding sites. Upon DNA binding, PhoP can function as an activator,
including the activation of its gene via the phoU-phoR intergenic region and the activa-
tion of phosphate transport genes of the Pst system among the most upregulated

TABLE 1 List of members of the phosphate regulon identified in Planobispora rosea

Clustera P. rosea locus tag Product Symbol
S. coelicolor
locus tag

Pho
regulationb

C EV45_RS03455 Phosphate transport system regulatory protein phoU SCO4228 Activation
C EV45_RS03460 Two-component sensor histidine kinase phoR SCO4229 Activation
C EV45_RS03465 DNA-binding response regulator phoP SCO4230 Activation
C EV45_RS31875 Phosphate ABC transporter substrate-binding protein pstS SCO4142 Activation
C EV45_RS31880 Phosphate ABC transporter permease PstC pstC SCO4141 Activation
C EV45_RS31885 Phosphate ABC transporter permease PstA pstA SCO4140 Activation
C EV45_RS31890 Phosphate ABC transporter ATP-binding protein pstB SCO4139 Activation
B EV45_RS28300 Inorganic phosphate transporter pitH2 SCO1845 Repression
A EV45_RS03190 Inorganic phosphate transporter pitH1 SCO4138 ND
A EV45_RS03185 Pit accessory protein (DUF47) SCO4137 ND
C EV45_RS30455 Glycerophosphodiester phosphodiesterase glpQ1 SCO1565 Activation
C EV45_RS19780 Glycerophosphodiester phosphodiesterase glpQ2 SCO1968 Activation
C EV45_RS14425 Phospholipase D phoD SCO2068 Activation
C EV45_RS22905 Alkaline phosphatase phoA SCO2286 Activation
C EV45_RS14855 Alkaline phosphatase Activation
C EV45_RS34915 TAT-secreted putative phosphatase (DUF839) SCO3790 Activation
C EV45_RS33230 RNA degradosome polyphosphate kinase ppk SCO4145 Activation
C EV45_RS33235 NUDIX hydrolase SCO4143 Activation
C EV45_RS15230 Hypothetical protein SCO4877 Activation
C EV45_RS15235 Glycosyltransferase family 2 protein SCO4878 Activation
C EV45_RS15225 Hypothetical protein SCO4879 Activation
C EV45_RS38880 Sialic acid synthase SCO4880 Activation
C EV45_RS15220 Hypothetical protein SCO4882 Activation
B EV45_RS12315 Type I glutamate-ammonia ligase glnA SCO2198 Repression
B EV45_RS08445 Glutamine synthetase glnII SCO2210 Repression
B EV45_RS07490 Ammonium transporter amtB SCO5583 Repression
B EV45_RS07495 P-II family nitrogen regulator glnK SCO5584 Repression
B EV45_RS07500 [Protein-PII] uridylyltransferase glnD SCO5585 Repression
C EV45_RS04365 Glycerol-3-phosphate dehydrogenase/oxidase Activation?
aThe membership of each gene to the clusters identified by the k-means analysis and summarized in Fig. 2a.
bND, not defined.
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genes in the regulon. As indicated by the respective TPM plots (see Supplementary file
5 at https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea), it is
very likely that the same occurs in P. rosea. Both S. coelicolor and P. rosea have two pit
transporter genes (pitH1 and pitH2). In both organisms, these genes seem to have a dif-
ferent regulation mechanism. In fact, pitH2, but not pitH1, appears to be repressed by
PhoP. Other Pho regulon members activated in S. coelicolor and other bacteria are the
phosphate scavengers and the polyphosphate kinase genes. As shown in Table 1, ortho-
logues of these genes are found in P. rosea. The transcription profiles of the putative biosyn-
thesis genes of teichuronic acids (EV45_RS15230 to EV45_RS15220 [Table 1]) resemble those
of PhoP-activated genes. The replacement of cell wall teichoic acids by phosphate-free
teichuronic acids serves as a source of phosphate in Bacillus subtilis (32). This mechanism
is likely conserved in S. coelicolor (27) as well as in P. rosea. In S. coelicolor, the response
to phosphate limitation is coordinated with the regulation of nitrogen assimilation. PhoP
represses the transcription of nitrogen genes by its binding to the glnR promoter, encoding
the major nitrogen regulator, to the promoters of glnA and glnII, encoding two glutamine
synthetases, and to the promoter of the amtB-glnK-glnD operon, encoding an ammonium
transporter and nitrogen sensing/regulatory proteins (29). A similar mechanism of
PhoP-mediated repression appears to be conserved in P. rosea. Other members of
cluster C may be activated by the Pho regulon, some of them involved in central metabolism
(e.g., EV45_RS04365).

Nitrogen metabolism. The RNAseq data suggest that despite plentiful nitrogen
sources being available in the complex medium, the free ammonium concentration is
low enough to induce ammonium scavenging genes during the fermentation, reflected in
orthologues of many genes under the positive control of GlnR in S. coelicolor being strongly
induced (see Fig. S3a at https://github.com/francescodc87/Multi-omics-study-of-Planobispora
-rosea) (33, 34). At 24h, a strong increase in the expression levels of the amtB ammonium
transporter gene (see Fig. S3b at https://github.com/francescodc87/Multi-omics-study-of
-Planobispora-rosea) was detected, along with genes for high-affinity ammonium assimilation
enzymes, namely, glutamine synthetase encoded by glnA and glnII (see Fig. S3c at https://
github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea), as well as genes encod-
ing enzymes for release of ammonia from urea (see Fig. S3d at https://github.com/
francescodc87/Multi-omics-study-of-Planobispora-rosea) and nitrite (see Fig. S3e at
https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea). As expected, the
expression of the gene encoding glutamate dehydrogenase was reduced (see Fig. S3f at
https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea), consistent with
low concentrations of free ammonia being insufficient to supply this enzyme. To protect
against an ammonium surge, the glnK and glnD genes were also highly expressed (see Fig.
S3b at https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea), which
likely are present to rapidly shut off AmtB activity (35). At later time points, the expression of
these genes decreased, which is completely consistent with the induction of the PhoP
phosphate limitation response (described above), which competes with GlnR for many of
the same promoters (31). Interestingly, however, some of the genes which are not cross-
regulated by PhoP remained increased in expression, including the nitrite reductase (see
Fig. S3e at https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea). The
induction of the GlnR response, which our data suggest, behaves very similarly to that
known in S. coelicolor. This is also consistent with its primary assimilated form, glutamine,
showing an initial low extracellular concentration (see Fig. 6d). Consistent with the expres-
sion levels of glutamine synthetase genes decreasing after 24h (see Fig. S3c at https://
github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea) as the culture transi-
tions to phosphate limitation, the intracellular glutamate concentration increased signifi-
cantly between 24 and 39h and stayed roughly constant afterwards (see Fig. 6e).

Expression of GE2270A biosynthetic gene cluster. The RNAseq data collected in
this study provide additional insights on the temporal expression levels observed for
the genes involved in the biosynthesis of GE2270A. The pbt biosynthetic gene cluster
(BGC) lies in the core region of the P. rosea genome. Interestingly, the genes found in
the flanking region of this BGC include two ribosomal proteins (rpsL and rpsG) and two
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elongation factors (fusA and tuf). The expression of the pbt genes together with a selec-
tion of flanking genes is shown in Fig. 3a. The four genes in the flanking region
included in the figure, followed the same pattern observed for most ribosomal proteins
(cluster A), while most pbt genes followed the pattern observed in cluster F, and their
expression peaked between 24 and 39 h. As already mentioned, pbtA is one of the
three most highly expressed genes in the P. rosea genome (Fig. 2b), and it followed a
different trend compared to the rest of the cluster. The expression pattern followed
the general trend that would be expected for a just-in-time production process. The
biosynthetic assembly line is put together first (early expression of the biosynthetic
genes), and only when a substantial amount of all enzymes is available, the precursor
peptide is made available at high levels. This avoids the accumulation of partly proc-
essed intermediates, which might be toxic or prone to be subjected to unwanted side
reactions. Moreover, a just-in-time transcription strategy would reach the production
goal while minimizing the total enzyme production (36–39).

From the RNAseq data, one can use the coverage information to identify the transcription
start site for the pbtA gene (Fig. 3b). Transcription likely starts with the sequence CTTCG, 100
nucleotides upstream of the pbtA start codon and ends by a stem-loop situated soon after
the pbtA stop codon. The translation start site automatically annotated for the pbtA gene is
found in position 800343. However, identification of the leader peptide component of the
PbtA peptide by mass spectrometry suggested that the correct translation start site is found
in position 800352 (unpublished data). This is also supported by the presence of a strong
Shine-Dalgarno sequence located 8bp upstream to the start codon (AGGAGA). Using the
RNAfold web server (40), it is possible to predict the optimal secondary structure of the pbtA
mRNA with minimum free energy (Fig. 3c). Such structure includes four predicted hairpins,
two of which occur right after the translation start and end sites. This secondary structure
may explain the high TPMs observed for pbtA, which might be due to a combination of effec-
tive transcription and, especially, high RNA stability. We are currently investigating whether
the observed high levels and possible secondary structures of pbtA mRNA have any impact
on its translation into the precursor peptide.

Expression of other predicted biosynthetic gene clusters. The P. rosea genome
was processed with the latest version of the antiSMASH platform (41) using default pa-
rameters. This led to the identification of 27 potential BGCs, one more than previously
reported (18). A summary of the detected BGCs is reported in Table S1 at https://github
.com/francescodc87/Multi-omics-study-of-Planobispora-rosea. The complete output of the
antiSMASH analysis of the P. rosea genome can be found in Supplementary file 6 at https://
github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea. The gene expression
associated with these clusters has been captured by the RNAseq data obtained in this
study. Interestingly, there are three BGCs (those associated with regions 20, 21, and 27 in
Table S1 [https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea]), in
addition to the pbt cluster, that seem to be expressed at substantial levels. The expression
levels of regions 20 and 27 peaked at 39h, while the expression levels for region 21 were
constantly high during fermentation. The gene expression profiles of two of these clusters
are shown in Fig. S4 (https://github.com/francescodc87/Multi-omics-study-of-Planobispora
-rosea). The expression levels of the genes associated with the cluster found in the region
21 were relatively high and constant after the 24-h time point. Conversely, the expression
of the genes found in region 20 and region 27 (not shown) peaked at 39h, when protein
biosynthesis largely stopped, a downregulation of the respiratory chain is observed, and
the phosphate regulon seemed active. As mentioned before, at the same time an upregula-
tion of iron transporters is also observed. It is possible that the upregulation of these bio-
synthetic clusters is observed as a response to phosphate or iron depletion. This hypothesis
becomes very intriguing when considering that the BGCs in region 20 and in region 27
show a significant similarity with two known BGCs responsible for the biosynthesis of two
siderophores (streptobactin and erythrochelin, respectively). An analysis of region 27 and
the corresponding metabolite will be reported elsewhere. The product of region 20 will be
discussed below.
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Supplementation of phosphate and iron. As mentioned in the previous section,
the transcriptomics data suggest that, under these specific growth conditions, phos-
phate and iron could be growth-limiting factors. In order to test this hypothesis, P.
rosea was cultivated at 100-ml scale in duplicates containing medium C supplemented

FIG 3 Gene expression of the pbt biosynthetic gene cluster. (a) Heatmap showing normalized TPM values associated with the GE2270A BGC.
The gene names are color coded according to their pattern (green for cluster A, orange for cluster F, and gray for cluster H). (b) Coverage
graph for pbtA obtained from the RNAseq. Gray dotted lines indicate predicted transcription start and end sites, and orange lines indicate the
borders of the pbtA open reading frame. (c) Predicted secondary structure of the pbtA mRNA. Colors indicate base pair probabilities. Orange
arrows indicate the translation start and end sites. 59 and 39 ends are indicated in the figure.
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with either 1 or 5mM phosphate or with 0.25 or 1.2mM FeCl3, monitoring GE2270A,
glucose, phosphate, and wet biomass levels every 24 h up to 7 days. Supplementation
of either phosphate or iron had a clear effect on biomass production (Fig. 4a): at 48 h,
the biomass observed in each experimental condition was significantly higher than in
the control experiment, with no significant difference between the two phosphate or
iron concentrations. This observation confirms the hypothesis generated from the tran-
scriptomics data. Interestingly, phosphate supplementation at either 5 or 1mM led to
a slightly earlier GE2270A production and higher levels at 48 and 72 h in comparison
with the control or the iron-supplemented conditions (Fig. 4d). However, this effect dis-
appeared at 96 h. Glucose consumption appears to be very similar across experimental
conditions, with the possible exception of 5mM phosphate supplementation. In this
condition, glucose uptake is significantly higher until 72 h and stops afterwards.
Interestingly, this increased glucose uptake is associated with a significantly lower final
biomass of the culture. Recently, the regulation of some genes encoding glycolytic
enzymes by PhoP has been suggested for S. coelicolor and Streptomyces lividans, some
genes being positively regulated, others negatively (42). An analogous influence of
PhoP regulation on aspects of glycolysis might also be present in P. rosea, and the
details of this interaction will be an interesting subject for future study.

Metabolomics.With the aim of having a clearer understanding of the physiological
rearrangements resulting from the transcriptome dynamics of P. rosea during fermen-
tation, different metabolomics analyses were performed. Using high-resolution mass
spectrometry quadrupole time of flight (HRMS-QTOF) mass spectrometry, a targeted
metabolomics analysis on the whole-broth acetonitrile extracts was performed.
Moreover, untargeted metabolomics experiments using a QExactive plus were per-
formed for the analysis of the exometabolome (metabolites found in the extracellular
environment) and the endometabolome (metabolites found inside the cells). All sam-
ples for all metabolomics experiments were collected at the same time as the samples
for transcriptomics analysis (15, 24, 39, 48, and 63 h after inoculation). More details are
given in Materials and Methods.

Whole-broth analysis. The quantification of GE2270A in the whole-broth acetoni-
trile extracts was performed by liquid chromatography, UV detection, and mass spec-
trometry (LC-UV-MS) analysis. The quantification at 310 nm revealed that the extraction
of this thiazolyl peptide was efficient when using acetonitrile as the extraction solvent.

FIG 4 Effect of phosphate and iron supplementation. For all five experimental conditions, wet biomass (a), glucose (b),
phosphate (c), and GE2270A (d) levels were measured every 24 h. The error bars represent the standard deviations
calculated from two replicates.
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The concentration of GE2270A in the acetonitrile extract was 54mg/liter at 48 h. This
justified the use of the acetonitrile extraction for the analysis of the whole-broth samples.
The acetonitrile extracts were analyzed using HRMS-QTOF instrumentation. In a targeted
experiment, all the congeners reported to be produced together with GE2270A by P. rosea
(1) were monitored and summarized in Fig. 5b. The intensity over time for all the congeners
detected in the samples is shown in Fig. 5d. As expected, GE2270A is the main one, followed
by the peak annotated as congener C1. The peaks associated with congeners C2a, D1, and
C2b, D2 and/or B1 were detected at significantly lower levels, whereas congener B2 was
detected only at trace levels. As shown in Fig. 5b, congeners C2b, D2, and B1 have the same
chemical formula, and it is not possible to discriminate between them with mass spectrome-
try. The untargeted metabolomics experiment performed on the acetonitrile extracts detected
several mass-to-charge ratios associated with a total of 67 metabolites for most of which no
putative annotation is available. These results are reported in Supplementary material and Fig.
S5 at https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea.

Exometabolome analysis. When analyzing the untargeted metabolomics data
obtained for the extracellular fraction, we detected 2,174 main peaks in positive mode
and 1,213 in negative mode. A GE2270A standard sample was analyzed together with
the biological samples. As shown in Fig. S6a at https://github.com/francescodc87/Multi
-omics-study-of-Planobispora-rosea, the standard allowed the certain identification of
the peak associated with GE2270A. In order to identify the metabolites showing a stat-
istically significant change in abundance during fermentation, an ANOVA test on the
normalized values was performed. The obtained P values were corrected for multiple

FIG 5 Targeted metabolomics analysis of whole-broth acetonitrile extracts. (a) General structure of the GE2270A
congeners. (b) List of GE2270A congeners detected in the extracts of Planobispora rosea. (c) General structure of the linear/
hydrated congeners. (d) Intensities over time associated with peaks of the GE2270A congeners in the acetonitrile extract of
the whole broth. Intensities are shown on a logarithmic scale. The error bars represent the standard deviations calculated
from three replicates.
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testing using the Benjamini-Hochberg method (43) to control the false discovery rate
at 5%. Using the additional requirement of a maximum average log2 fold change
greater than 1, we could see 64% of the detected peaks in positive mode showing a
statistically significant change during fermentation (68% in negative mode). To reveal
trends in the abundance of the metabolites detected in positive mode, the peaks were
clustered into eight groups using the k-means clustering approach (Fig. 6a and
Supplementary file 7 at https://github.com/francescodc87/Multi-omics-study-of-Planobispora
-rosea). Each group shows a specific trend: cluster A and cluster B contain all the metabolites
that accumulated in the extracellular environment throughout fermentation. As shown in
Fig. 6c, some of these compounds were produced by P. rosea, such as the GE2270A conge-
ners described in Fig. 5a to c, which were also detected in the whole-broth acetonitrile
extracts (see Supplementary material at https://github.com/francescodc87/Multi-omics-study
-of-Planobispora-rosea). Clusters C to F all include metabolites which peaked between 15 and
48h. In particular, cluster E contains two features (identifier [ID] 582 withm/z 412.1822 and ID
272 with m/z 403.1774) corresponding to benarthin and dibenarthin. While the dibenarthin
feature is only putatively annotated, the identification of the benarthin feature has been con-
firmed through tandem mass spectrometry (MS2) fragmentation pattern and UV spectrum,
as shown in Fig. S7 (https://github.com/francescodc87/Multi-omics-study-of-Planobispora
-rosea). The possible association of these metabolites with the BGC identified in region 20
is discussed below. The last two clusters (G and H) include the metabolites decreasing in
abundance during fermentation. These metabolites are most likely to be nutrients con-
sumed by P. rosea during growth. All the metabolites putatively annotated as amino acids
with high probability are shown in Fig. 6d. Almost all of them are members of cluster G,
with the exception of glutamine (cluster D). Their concentration was more or less constant
until 24h and rapidly dropped between 24 and 39h. According to the transcriptomics
data, this happened at the same time when biomass accumulation and protein biosyn-
thesis largely stopped, and a downregulation of the respiratory chain was observed. The
same approach described here was also applied for the statistical analysis of the untar-
geted metabolomics data acquired in negative mode. As shown in Fig. S8 (https://github
.com/francescodc87/Multi-omics-study-of-Planobispora-rosea), the clusters identified by
the k-means approach in the data acquired in negative mode are very similar to the ones
found in positive mode. Expectedly, a significant lower number of metabolites were measured
in negative mode, and the results are reported in Supplementary file 8 (https://github.com/
francescodc87/Multi-omics-study-of-Planobispora-rosea).

Endometabolome analysis. While the exometabolome profiles identified changes in
the uptake and secretion fluxes of key metabolites, observing the changes in concentration
in the intracellular fraction provides a better understanding of the metabolic changes under-
lying these dynamics. From the untargeted metabolomics data, we obtained 1,813 main
peaks in positive mode and 593 in negative mode. Figure S6b at https://github.com/
francescodc87/Multi-omics-study-of-Planobispora-rosea shows that the main congener
GE2270A was detected in the intracellular environment at increasing levels throughout fer-
mentation. The metabolites showing a statistically significant change in abundance during
fermentation were identified using the same approach used for the exometabolome. To
reveal trends in the levels of the metabolites selected in positive mode, the peaks were again
clustered into eight groups using the k-means clustering approach (see Supplementary file
9 and Supplementary file 10 at https://github.com/francescodc87/Multi-omics-study-of
-Planobispora-rosea). The trends found in the metabolomics data acquired in positive mode
are shown in Fig. 6b. Cluster A and cluster B contain all the metabolites that accumulated
inside the cells during fermentation. These two groups include all the detected congeners
produced by the pbt cluster (see Fig. S6c at https://github.com/francescodc87/Multi-omics
-study-of-Planobispora-rosea). Also in the case of the endometabolome, benarthin and dibe-
narthin are detected (ID 1084 and 818, respectively), and they follow the trend associated
with cluster D. Similarly to what was observed in the exometabolome, most of the metabo-
lites putatively annotated as amino acids with high probability are members of cluster G,
and their concentration decreases between 24 and 39h (Fig. 6e). Glutamate is the only
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exception. In fact, it follows the opposite trends of the other amino acids, and its levels
sharply increase between 24 and 39h. The corresponding, very similar results for data
acquired in negative mode are shown in Fig. S9 (https://github.com/francescodc87/Multi
-omics-study-of-Planobispora-rosea). Also in this case, the main findings observed in pos-
itive mode are confirmed by the data acquired in the negative mode. Almost all the
detected amino acids follow the same trends in both the exometabolome and endome-
tabolome. The only exceptions are glutamine (in the exometabolome) and glutamate (in the
endometabolome). This behavior could be related with the repression of the rearrangement
of the nitrogen metabolism described above.

Analysis of the BGC found in region 20. As mentioned in the previous section, we
were able to identify the presence of two metabolites: benarthin and dibenarthin. The
dibenarthin feature has been putatively annotated with a high degree of certainty using
the Integrated Probabilistic Annotation (IPA) approach (44). On the other hand, we were
able to confirm the identification of benarthin through MS2 fragmentation pattern and

FIG 6 Untargeted metabolomics data for exo- and endometabolome. (a) Heatmap showing normalized intensity values associated
with the peaks, detected in the extracellular environment in the positive mode, whose levels show a statistically significant change
during fermentation. The peaks are clustered into eight groups with the k-means approach. (b) Heatmap showing normalized
intensity values associated with the peaks, detected in the intracellular environment in the positive mode, whose levels show a
statistically significant change during fermentation. The peaks are clustered into eight groups with the k-means approach. (c)
Intensities over time associated with the peaks for which the most likely annotation is one of the GE2270A congeners. The hydrated
GE2270A is not a real metabolite, but an artifact of the LC-MS analysis. Data are shown on a logarithmic scale. (d) Intensities over
time associated with the peaks for which the most likely annotation is an amino acid (AA) in the extracellular environment. The error
bars represent the standards deviation calculated from three replicates. Data are shown on a logarithmic scale. (e) Intensities over
time associated with the peaks for which the most likely annotation is an amino acid in the intracellular environment. Data are
shown on a logarithmic scale. The error bars represent the standard deviations calculated from three replicates.
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UV spectrum as shown in Fig. S7 at https://github.com/francescodc87/Multi-omics-study
-of-Planobispora-rosea. The concentration of these compounds peaked at 39h and cor-
relates with the gene expression observed for the BGC identified in region 20 (see Fig.
S4a at https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea). Both
metabolites have been reported to be strictly associated with streptobactin (45), which is
the trimeric form of benarthin, and according to the antiSMASH analysis (see Table S1 at
https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea), the biosyn-
thetic cluster in region 20 shows a significant similarity with the streptobactin BGC found
in Streptomyces sp. strain ATCC 700974. In Fig. 7, we show a direct comparison between
the streptobactin BGC found in Streptomyces sp. ATCC 700974 and the BGC found in
region 20. The borders of the latter BGC were identified using the transcriptomics data.
All the data summarized here suggest that the cluster identified in region 20 is associ-
ated with the production of benarthin and dibenarthin in P. rosea.

Genome-scale metabolic model. A genome-scale metabolic model is not currently
available for P. rosea. To facilitate the integration of transcriptome and metabolome
data, we constructed a genome-scale metabolic model for P. rosea using comparative
modeling, based on the related actinomycete S. coelicolor, for which we had previously
developed a manually curated model (iAA1259 [46]), and refined this draft using the
data collected here. Additional details on the building of this model can be found in
Materials and Methods, and the model can be found as Supplementary file 11 at
https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea and on the
MORFlux FBA Tool (https://morf-db.org/projects/TOPCAPI/P-rosea/metabolome/fba
[20]). As previously mentioned, the replacement of cell wall teichoic acids with teichur-
onic acids during phosphate starvation is likely to be occurring in P. rosea. In order to
represent this process in the genome-scale metabolic model, an alternative biomass
reaction has been included in the model. The biosynthesis of teichuronic acid is miss-
ing in iAA1259, and it was manually added in the P. rosea model. The teichuronic acid
considered is as a polymer containing N-acetylgalactosamine and D-glucuronic acid in
equal proportions, initially isolated from Bacillus licheniformis 6346 (47). The metabolite
defined in the model consists of 25 repeating units of the monomer. In order to explain
its production, the model required the addition of the reaction for the biosynthesis of

FIG 7 Region 20 versus streptobactin BGC. Comparison of the BGC found in P. rosea believed to be responsible for the production of benarthin and
dibenarthin and the streptobactin biosynthetic gene cluster found in Streptomyces sp. ATCC 700974. Orthologue genes are represented by the same color.
If orthologues show a different annotation in the two genomes, both annotations are reported in the legend.
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teichuronic acid from UDP-N-acetylglucosamine and UDP-D-glucuronate. The produc-
tion of UDP-N-acetylglucosamine was obtained by the addition of the UDP-N-acetylglu-
cosamine 4-epimerase reaction. In B. subtilis, this reaction is catalyzed by galE (48). An
orthologue of this gene is present in the P. rosea genome (locus tag EV45_RS04840). In
order to describe the phosphate starvation with the resulting genome-scale model, we
devised an in silico experiment where we simulated the dynamic growth of P. rosea using
dynamic flux balance analysis (dFBA). This method assumes that bacterial metabolism
reaches an internal steady state almost immediately after a change in the extracellular
environment. This allows the update of the extracellular concentrations based on the
exchanges predicted by the model, which in turn update the uptake rates of the sub-
strates needed for growth (49, 50). In this experiment, we considered a minimal medium
where glucose is the only source of carbon (initial concentration, 222.2mmol/liter), the ini-
tial concentration of inorganic phosphate is relatively low (4.6mmol/liter), and the initial
biomass concentration is 0.5 gDW/liter where gDW stands for grams in dry weight. No
limit on the uptake of all the other necessary nutrients (e.g., minerals and ammonium) was
considered. Based on the concentration of the extracellular inorganic phosphate ([pi]), two
different conditions were considered. When [pi] was .0.1mmol/liter, normal growth is
considered: the maximum glucose and phosphate uptake is constrained based on the
external concentration following Michaelis-Menten equations:

vglucose ¼ Vmax½glucose�
Km 1 ½glucose� (1)

vpi ¼ Vmax½pi�
Km 1 ½pi� (2)

where vglucose and vpi are the maximum uptake rates allowed at any time. During normal
growth, teichoic acids are produced as per biomass composition, and the availability of this
phosphate reserve is considered in this simulation. The phosphate threshold has been
selected to be 0.1mmol/liter, since this is the threshold experimentally observed for the acti-
vation of the Pho regulon in S. coelicolor (51). When [pi] goes below the threshold, the cells
enter phosphate starvation: in the model, the alternative biomass reaction is considered, the
biosynthesis of teichoic acids is blocked, the biosynthesis of teichuronic acids is allowed, the
uptake of inorganic phosphate is blocked. Additionally, the maximum conversion rate for
teichoic acids is constrained following a Michaelis-Menten equation:

vteichoic acid ¼ Vmax½teichoic acid�
Km 1 ½teichoic acid� (3)

The maximum uptake of oxygen (vO2 ) is also constrained throughout growth. Very
little is known about the kinetics of the substitution of teichoic acids, during their degradation
use as a phosphate reserve. We model this whole process with a simple reaction. In order to
free up the phosphate present in one molecule of wall teichoic acid, this reaction forces the
cell to substitute a molecule of teichoic acid with one molecule of teichuronic acid. The kinetic
parameters used in equation 1, equation 2, and equation 3 and the maximum O2 uptake rate
in P. rosea are not known. Nevertheless, we were able to define informative prior distributions
for each of the parameters considered based on experimental values measured for related
organisms following the protocol described by Tsigkinopoulou et al. (52). The definition of
these distributions is described in the Materials and Methods. This allowed us to implement
an ensemble modeling approach where a set of parameters was sampled from the distri-
bution 1,000 times. Each parameter set was used to simulate the growth of P. rosea for
30h in the medium previously defined with the dFBA, resulting in a rigorous assessment
of the confidence interval of the flux predictions, despite the uncertainty about the exact
kinetic parameter values. The results are shown in Fig. 8.

During the initial phase of growth, biomass accumulation appears to be exponen-
tial (Fig. 8a), and both phosphate and glucose are rapidly consumed (Fig. 8b and c). At
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the same time, the teichoic acids are accumulated as part of the biomass. This initial
phase stops after 15 h (95% confidence interval, 13.3 to 17.8). This happens when the
concentration of phosphate goes below the defined threshold. At this point, the tei-
choic acids begin to be consumed as a phosphate source (Fig. 8d), growth dramatically
slows down, and consequently, the consumption of glucose slows down too. Given
the highly similar overall enzyme content of a number of Planobispora species, includ-
ing P. longispora, P. siamensis, and P. takensis (see Supplementary file 12 at https://
github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea), we can conclude
that our P. rosea model will also serve as a strong starting point for similar models for
other species within this genus.

DISCUSSION

In this study, we present a comprehensive multi-omics study of the fermentation of
Planobispora rosea while producing the thiopeptide antibiotic GE2270A. The data col-
lected in this study greatly improved our understanding of the biology of this geneti-
cally intractable bacterium while providing insights into the expression of GE2270A
biosynthesis genes. The transcriptomics data allowed the characterization of the shut-
down of protein biosynthesis and the respiratory chain associated with the end of the
exponential growth phase. For the first time, we reported a detailed description of the
phosphate regulon in P. rosea. Analysis of the transcriptomics data showed that both
iron and phosphate are growth limiting in the experimental condition used. This obser-
vation has been confirmed experimentally. Additionally, a new biosynthetic gene clus-
ter has been identified and associated with the production of the siderophores, benar-
thin and dibenarthin. The predicted secondary structure of the pbtA mRNA suggests a
possible strategy for achieving high levels of precursor peptides during RiPP

FIG 8 dFBA simulation during phosphate starvation. The graphs show the changes over time predicted with
the dFBA approach for biomass (a), glucose (b), phosphate (c), and teichoic acids (d). Gray lines represent the
results obtained for each of the 1,000 ensemble modeling simulations. Thick lines represent the medoid
simulation, and the dashed lines represent the 95% confidence interval.
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biosynthesis. Once the processing enzymes are available, a stable and translatable
mRNA is expected to ensure sufficient precursor peptide for further processing. To our
knowledge, no equivalent studies have been performed in other RiPP producers,
although our unpublished observations indicate that many precursor peptide mRNAs
appear to have the potential to form secondary structures likely to confer stability. The
data collected from the metabolomics experiments provided a clearer picture of the
changes in the metabolism of P. rosea during fermentation and GE2270A production.
Through the metabolomics experiments it was possible to observe the production
dynamic of GE2270A with its congeners and the concentration dynamic of the main
amino acids both in the extracellular and intracellular environment. The production of
two siderophores (benarthin and dibenarthin) was detected by untargeted metabolo-
mics from P. rosea for the first time. The BGC associated with their production was also
identified in this study. Finally, both the transcriptomics and metabolomics data col-
lected here were used in the refinement of the very first genome-scale metabolic
model built for P. rosea. The model was also able to simulate the replacement of cell
wall teichoic acids with teichuronic acids during phosphate starvation and its exploita-
tion as phosphate storage by the bacterium. In conclusion, we show that even for a ge-
netically intractable strain, multi-omics data can provide important insights into the
biology of a microorganism of interest, using the most related model strains to high-
light similarities and differences. In fact, the omics data as well as the comparison with
the related organism S. coelicolor allowed the identification of the phosphate regulon
and the genes responsible for the replacement of cell wall teichoic acids with phos-
phate-free teichuronic acids.

MATERIALS ANDMETHODS
Strain cultivation and measurements. Frozen cell stocks of P. rosea ATCC 53733 were routinely

precultivated in 10ml D-Seed (20 g/liter soluble starch, 5 g/liter peptone, 3 g/liter yeast extract, 2 g/liter
meat extract, 2 g/liter soybean meal, 1 g/liter CaCO3 [pH 7.0]) at 30°C for 2 days at 200 rpm in 50-ml
baffled flasks. Ten milliliters of preculture was transferred in 100ml of medium C (35 g/liter soluble
starch, 10 g/liter dextrose, 5 g/liter hydrolyzed casein, 3.5 g/liter meat extract, 8 g/liter yeast extract, 3.5
g/liter soybean meal, 2 g/liter CaCO3, 3.5mg/ml CoCl2, 0.05% polyethylene glycol [PEG] [pH 7.2]) using
500-ml baffled flasks. In the case of phosphate and iron supplementation experiments, medium C was
added with either 1 or 5mM phosphate or with 0.25 or 1.2mM FeCl3. Flasks were incubated at 30°C at
200 rpm. At the selected time points (15, 24, 39, 48, and 63 h), 1ml was withdrawn from each flask and
analyzed for cell weight, pH, and glucose concentration, while 0.5ml was used for GE2270A production
as described below. In supplementation experiments, phosphate amount was also measured. Wet cell
weight at different time points was used to determine biomass accumulation. Accordingly, 1ml was col-
lected in a preweighed Eppendorf tube and centrifuged at 13,200 rpm for 2min. The supernatant was
discarded, and the remaining pellet was weighed. Glucose concentration was measured using a GM8
Micro-State (Analox Instruments) according to the manufacturer’s instructions, using 20 g/liter glucose
as the standard. At the same time, samples for the transcriptome and metabolome extraction were col-
lected (see below). GE2270A levels were measured by mixing 500-ml culture with an equal volume of
acetonitrile in an Eppendorf tube and keeping the tube in a thermomixer at 1,400 rpm for 10min at
40°C. Then the tube was centrifuged at 13,200 rpm for 2min, and 20ml of the resulting supernatant was
analyzed by liquid chromatography-mass spectrometry (LC-MS) on a Dionex UltiMate 3000 coupled with
an LCQ Fleet mass spectrometer equipped with an electrospray interface (ESI) and a tridimensional ion
trap. The column was an Atlantis T3 C18 column (5mm � 4.6mm � 50mm) maintained at 40°C at a flow
rate of 0.8ml/min. The aqueous phase (phase A) was 0.1% HCOOH, and the organic phase (phase B) was
acetonitrile. The gradient was a 11-min multistep program that consisted of 10, 10, 95, 95, 10, and 10%
phase B at 0, 1, 7, 9, 10, and 11min, respectively. The UV detector was a diode array acquiring between
190 and 600 nm. GE2270A quantification was done at 310 nm. The m/z range was 110 to 2,000, and the
ESI conditions were as follows: spray voltage of 3,500 V, capillary temperature of 275°C, sheath gas flow
rate at 35 units, and auxiliary gas flow rate at 15 units. Phosphate concentration was measured using
Merck Spectroquant phosphate test (o-phosphate), following the manufacturer’s instructions.

Sample collection and extraction for metabolomics. Three biological replicates of exometabo-
lome and endometabolome samples were collected at five different time points (see above). In addition,
an extra sample of medium before inoculation was collected as a control for the exometabolome analy-
sis. For the whole-broth extraction, 1ml of the culture was extracted by adding the same volume of ace-
tonitrile (ACN) (ACN-H2O, 1:1) and mixed by vortexing. Aliquots of 200ml were centrifuged for 10min
(4°C, at 4,500 rpm) and dried in Speedvac. The dried cell extracts were stored at 280°C until LC-MS anal-
ysis. For exometabolome 1ml of culture medium was collected, centrifuged at 5,000 � g for 10min and
then subjected to a flash freezing in liquid nitrogen for 1min. After thawing (on ice), aliquots of 200ml
of the sample were dried in Speedvac at room temperature. The dried samples were stored at 280°C
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until LC-MS analysis. For the endometabolome, 10ml of a cold (248°C) quenching solution (60% metha-
nol) was added to 5ml of bacterial culture, and the solution was centrifuged at 5,000 � g for 10min
(24°C). Next, the supernatant was discarded, and 1ml of a cold (248°C) extraction solution (80% metha-
nol) was added to the cell pellet which was then transferred to an Eppendorf tube. Metabolites were
extracted by three freeze-thaw cycles in liquid N2 (i.e., flash frozen in liquid N2 for 1min, thawed on ice,
and vortexed). Then the samples were centrifuged at maximum speed for 5min (29°C), and 200-ml ali-
quots of supernatant dried in Speedvac at room temperature. The dried cell extracts were stored at
280°C until LC-MS analysis. On the day of the analysis, the samples were thawed and reconstituted in
200ml of 20% methanol solution. The samples were vortexed and sonicated for 15 min and analyzed.

Analyses of the acetonitrile extracts from the whole broth by LC-MS. LC-UV-MS analysis was per-
formed on an Agilent 1100 single quadrupole LC-MS system, using an Atlantis T3 column (5mm,
4.6� 100mm), maintained at 40°C and with a flow rate of 1 ml/min. Solvent A consisted of 0.1% HCOOH
in water, and solvent B was 0.1% HCOOH in acetonitrile. The elution of solvent B started at 5% for 2min,
and then it was increased to 100% within 11min. This composition was maintained for 3min, after
which the elution of solvent B was decreased to 5% within 1min. To reequilibrate the system, the elu-
tion of solvent B was held at 5% for 3min. Full diode array UV scans from 100 to 900 nm were collected
in 4-nm steps at 0.25 s/scan. Ionization of the eluting solvent was obtained using the standard Agilent
1100 ESI source adjusted to a drying gas flow of 11 liters/min at 325°C and a nebulizer pressure of 40 lb/
in2 gauge (psig). The capillary voltage was set at 3,500 V. Mass spectra were collected as full scans from
110 m/z to 1,500 m/z, with one scan every 0.77 s, in both positive and negative modes. LC-LRMS (low-re-
solution mass spectrometry) was employed for quantification of the targeted compound GE2270A at
310 nm. High-resolution electrospray ionization mass spectrometry (HRESIMS) spectra were acquired
using a Bruker maXis QTOF mass spectrometer coupled to the same high-pressure liquid chromatogra-
phy (HPLC) system as described above. The mass spectrometer was operated in positive ESI mode. The
instrumental parameters were 4 kV capillary voltage, drying gas flow of 11 liters/min at 200°C, and nebu-
lizer pressure of 2.8 bar.

LC-MS data acquisition. The cell extracts were analyzed by Q Exactive Plus coupled to an Ultimate
3000 ultrahigh-performance liquid chromatography (UHPLC) (ThermoFisher, UK) equipped with a
Hypersil Gold C18 reversed-phase HPLC column (3mm, 2.1mm, 100mm; catalog no. 25003-102130;
ThermoFisher, UK). The mobile phase consisted of solvent A (water plus 0.1% formic acid) and solvent B
(methanol plus 0.1% formic acid). The flow gradient was programmed to equilibrate at 95% solvent A for
2min, followed by a linear gradient to 95% solvent B over 8min, held at 95% solvent B for 2min, then
followed by a return to 95% solvent A in 0.25min and held at 95% solvent A for a further 2 min. The col-
umn was maintained at 40°C, and samples were chilled in the autosampler at 4°C. The flow rate was set
at 0.4ml/min. The sample injection volume was 5ml. Blank injections were analyzed at the start and end
of the analytical batch to assess the carryover. In addition, pooled quality control (QC) samples were ana-
lyzed at every sixth injection to assess for analytical drift over time. The sample sequence was random-
ized. Data were acquired in full MS mode in the scan range of 90 to 1,350 m/z, with a resolution of
70,000, an AGC target of 3e6, and a maximum integration time of 200ms. The samples were analyzed in
positive and negative mode in separate acquisitions.

Metabolomics data analysis. Raw data files from the Q Exactive were converted into the mzML for-
mat by the ProteoWizard MS converter. Data analysis was performed with the use of mzMatch, a modu-
lar, open-source, and platform-independent data processing pipeline for metabolomics LC-MS data writ-
ten in the Java language implemented in R (53). Noise removal, signal filtering, and peak matching steps
were performed. The detected features were grouped according to their likelihood to be associated
with one single molecule, and only the most intense peak is considered for the subsequent statistical
analysis. Putative annotation for the detected features was performed with the Integrated Probabilistic
Annotation (IPA) (44), using an ad hoc database, including the KEGG database and the known GE2270A
congeners (5). GE2270A was identified against the molecular weight and retention time of a standard.

RNA purification, quality control, and sequencing. Culture samples were collected at 15, 24, 39,
48, and 63 h from three P. rosea independent cultures grown in medium C and stabilized with 2 volumes
of RNAProtect Bacteria reagent (Qiagen, DE) according to the manufacturer’s instructions. For RNA
extraction, cell pellets were suspended in 0.17ml of lysozyme (15mg/ml) and incubated at 30°C for
10min. Then, each suspension was transferred to a tube of lysing matrix B beads (MP Biomedicals, UK)
containing 0.6ml of RLT buffer (Qiagen, DE) supplemented with b-mercaptoethanol (100:1). Total cell
lysis was achieved by two pulses at 6.5 m/s, 30 s in a FastPrep instrument (MP Biomedicals, UK); samples
were placed on ice between pulses. RNA was extracted with a mixture of acid phenol, chloroform, and
isoamyl alcohol (25:24:1). Total RNA was purified according to the manufacturer’s instructions with
Direct-zol RNA MiniPrep Plus columns (Zymo Research, USA). The purity and concentration of RNA prep-
arations were estimated using a NanoDrop 1000 (Thermo Scientific, USA). The integrity of RNA mole-
cules was assessed through capillary electrophoresis with RNA Nano chips and a Bioanalyzer 2100 sys-
tem (Agilent Technologies, USA). RNA preparations were of high purity, concentration (.1mg/ml) and
integrity (RNA integrity number [RIN] of .9.0). rRNA depletion, TruSeq library preparation, and RNA
sequencing were conducted by vertis Biotechnologie AG (Freising, DE). Briefly, rRNA molecules were
depleted using the Ribo-Zero rRNA removal kit for bacteria (Illumina). Then, RNA samples were frag-
mented using ultrasound (4 pulses of 30 s each at 4°C). After adapter ligation to the 39 ends, first-strand
cDNA synthesis was performed using Moloney murine leukemia virus (M-MLV) reverse transcriptase and
the 39 adapter as a primer. After cDNA purification, the 59 adapter was ligated to the 39 end of the anti-
sense cDNA. The resulting cDNA was amplified to about 10 to 20 ng/ml using a high-fidelity DNA poly-
merase and 13 PCR cycles. The cDNA was purified using the Agencourt AMPure XP kit (Beckman Coulter
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Genomics). Samples were pooled in approximately equimolar amounts and fractionated in a preparative
agarose gel to recover molecules in the range of 180 to 550 bp. Single-end sequencing was conducted
on an Illumina NextSeq 500 system of 75-bp read length.

RNAseq bioinformatics analysis. Fastq files containing the raw reads were processed with BBDuk
and BBMap programs (B. Bushnell, sourceforge.net/projects/bbmap/). BBDuk served to remove adapter
sequences (parameters: 9ktrim=r k=23 mink=11 hdist=19) and, in a second run, to filter reads by length and
quality (9minlen=20 maq=109). BBMap, run in local mode (9slow=t ambiguous=random maxindel=1 strict-
maxindel=t local=t minid=0.89), served to map the filtered reads to the P. rosea genome (GenBank acces-
sion no. NZ_JPMW00000000 [18]). Reads mapped on rRNA genes (coordinates, NZ_JPMW01000001.1,
1778004 to 1783349, both strands) were remove with program split_bam.py of RSeQC package (54). Final
library sizes were in the range 7.6� 106 to 10.6� 106 reads. Alignment and genome data were processed
in the R environment (version 3.6) using Bioconductor packages Rsamtools (2.2.3), GenomicFeatures
(1.38.2), and GenomicAlignments (1.22.1) (55). The summarizeOverlaps function of GenomicAlignments
with mode “Union” was used to count reads mapped to annotated genes (7,457 protein-coding genes, 269
pseudogenes, 63 tRNA, 3 rRNA, 1 transfer messenger RNA [tmRNA], 2 noncoding RNA [ncRNA]). The
transcript per million (TPM) values (56) were calculated from read counts using in-house spreadsheets.
Bioconductor package DESeq2 (version 1.26.0) (57) was used to normalize the read counts with respect to
library size and to transform the normalized count data in the log2 scale with the regularized logarithm
method, rlog function. The rlog values were used for the differential expression analysis with an ANOVA
test, and the obtained P values were corrected for multiple testing with the Benjamini-Hochberg method
(43).

Construction of the genome-scale metabolic model. The genome-scale metabolic model here
introduced was built using the COBRApy toolbox (58). Here, we constructed the first draft genome-scale
metabolic model using a comparative approach. The recently published genome-scale model for
Streptomyces coelicolor (iAA1259 [46]) was used as starting point for the model. In fact, S. coelicolor is the
closest phylogenetically related organism to P. rosea for which a well-curated and validated genome-
scale model exists. By using this model as a template, all the genes that did not show any homologue or
orthologue in P. rosea were removed from the model, together with the related reactions and metabo-
lites. The exact biosynthetic pathway for the biosynthesis of GE2270A is not yet known. Consequently,
this pathway is modeled as a single global reaction. Similarly, to B. subtilis and S. coelicolor, the transcrip-
tomics data suggest that during phosphate starvation P. rosea replaces the cell wall teichoic acids with
teichuronic acids. Hence, an alternative biomass reaction has been included in the model, together with
the reactions needed for the biosynthesis of teichuronic acid. The teichuronic acid considered is the one
first isolated from the walls of Bacillus licheniformis 6346 and characterized as a polymer containing N-
acetylgalactosamine and D-glucuronic acid in equal proportions (47). The metabolite defined in the
model consists of 25 repeating units of such polymer. In order to allow its production, the model
required the addition of the reaction for the biosynthesis of teichuronic acid from UDP-N-acetylglucos-
amine and UDP-D-glucuronate. The production of UDP-N-acetylglucosamine was obtained by the addi-
tion of the UDP-N-acetylglucosamine 4-epimerase reaction. In B. subtilis, this reaction is catalyzed by
galE (48). An orthologue of this gene is present in the P. rosea genome (locus tag EV45_RS04840).

Definition of the parameter distribution. The ensemble modeling approach described in the
“Genome-scale metabolic model” section considers seven parameters: maximum O2 uptake rate, Vmax and Km
for glucose uptake, Vmax and Km for phosphate uptake, and Vmax and Km for teichoic acid consumption. To the
best of our knowledge, no measurement of the maximum O2 uptake rate was reported for P. rosea. Varma
and Palsson (59) reported the maximum oxygen utilization rate for E. coli W3110 to be 15mmol/gDW/h.
Given this reference point, we defined the distribution for this parameter as a log-normal distribution where
the mode is equal to 12mmol/gDW/h and 95% of the values lie between 6.7 and 15mmol/gDW/h. In the
same paper, Varma and Palsson (59) also measured the maximum glucose utilization rate under aerobic con-
ditions (10.5mmol/gDW/h) and under anaerobic conditions (18.5mmol/gDW/h) for E. coli W3110. Since we
are assuming that in our in silico experiment P. rosea grows under aerobic conditions, we defined the distri-
bution for the glucose Vmax parameter as a log-normal distribution where the mode is equal to 10mmol/
gDW/h and 95% of the values lie between 9.6 and 15mmol/gDW/h. Boles and Hollenberg (60) measured
the glucose Km values for several sugar transporters found in Saccharomyces cerevisiae, Kluyveromyces lactis,
Schizosaccharomyces pombe, and Pichia stipitis. All the transporters with high affinity with glucose have a Km
value between 1.5 and 6mmol/liter. Therefore, we defined the distribution for the glucose Km parameter as a
log-normal distribution where the mode is equal to 3mmol/liter and 95% of the values lie between 1.5 and
6mmol/liter. Nieselt et al. (61) monitored the growth of S. coelicolor in a medium designed to be phosphate
limited. They also monitored the phosphate extracellular concentration, which allowed to have a reasonable
estimate for the Vmax and Km parameters associated with phosphate. Hence, we defined the distribution for
the phosphate Vmax parameter as a log-normal distribution where the mode is equal to 0.13mmol/gDW/h
and 95% of the values lie between 0.156 and 0.108mmol/gDW/h. We defined the distribution for the phos-
phate Km parameter as a log-normal distribution where the mode is equal to 0.065mmol/liter and 95% of
the values lie between 0.054 and 0.078mmol/liter. Regarding the usage of teichoic acid as a reserve of phos-
phate, very little is reported in the literature. Grant (32) reported that during phosphate starvation, B. subtilis
lost 66% of the phosphate in the cell wall within 5h. Therefore, we estimated the Vmax and Km parameters
associated with teichoic acid to be consistent with this observation. We defined the distribution for the tei-
choic acid Vmax parameters as a log-normal distribution where the mode is equal to 10mmol/gDW/h and
95% of the values lie between 1 and 100mmol/gDW/h. We defined the distribution for the phosphate Km pa-
rameter as a log-normal distribution where the mode is equal to 0.015mmol/liter and 95% of the values lie
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between 0.0015 and 0.15mmol/liter. The obtained parameter distributions are reported in Fig. S10 at
https://github.com/francescodc87/Multi-omics-study-of-Planobispora-rosea.

Data availability. All supplemental data can be found at https://github.com/francescodc87/Multi
-omics-study-of-Planobispora-rosea. Metabolomics processed data can be found in Supplementary files
7, 8, 9, and 10. The original data from the project are accessible for analysis on MORF (https://morf-db
.org/projects/TOPCAPI/P-rosea), an entirely browser-based multi-omics tools (20). This enables full analy-
sis of the transcriptomics data and tools for analysis of the published genome. Also, the genome-scale
metabolic model, which can also be found in Supplementary file 11, is hosted in the MORFlux FBA Tool
for direct access, download, and analysis.
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