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Mammalian brains respond to new concepts via a type of neural coding termed “concept coding.” During concept coding, the
dentate gyrus (DG) plays a vital role in pattern separation and pattern integration of concepts because it is a brain region with
substantial neurogenesis in adult mammals. Although concept coding properties of the brain have been extensively studied by
experimental work, modeling of the process to guide both further experimental studies and applications such as natural language
processing is scarce. To model brain-like concept coding, we built a spiking neural network inspired by adulthood neurogenesis in
the DG. Our model suggests that neurogenesis may facilitate integration of closely related concepts and separation of less relevant
concepts. Such pattern agrees with the previous experimental observations in classification tasks and place cells in the hip-
pocampus. +erefore, our simulation provides insight for future experimental studies on the neural coding difference between
perception and cognition. By presenting 14 contexts each containing 4 concepts to the network, we found that neural responses of
the DG changed dynamically as the context repetition time increased and were eventually consistent with the category orga-
nization of humans. +us, our work provides a new framework of word representation for the construction of brain-like
knowledge map.

1. Introduction

Concept coding is a type of neural coding that abstracts
perceptual information into cognitive concepts. +e hip-
pocampus is the core brain area responsible for concept
coding [1, 2]. Neurophysiological experiments have shown
that highly associated concepts share more hippocampal
neurons, while less relevant concepts share fewer [3].
Neural coding of the learned concepts also changes dy-
namically during the learning process of new concepts [4].
+e dentate gyrus (DG) is the first station for information
processing in the hippocampus, which is the only brain
region with adulthood neurogenesis besides the olfactory
bulb [5]. +e DG plays a vital role in regulating the neural
coding distance between concepts, termed pattern sepa-
ration and pattern integration [6]. Pattern separation is the
ability of the brain to distinguish the difference between

patterns to avoid confusion, while pattern integration
contributes to encoding associative memories by reducing
their neural coding distance. When the DG receives neural
signals, the entorhinal cortex (EC) has already completed
the abstraction and integration of multimodal perceptual
information [7]. To further establish the concept level
association between signals, the newborn neurons in the
adulthood DG are shared by closely related concepts to
decrease their coding distance, whereas it is more difficult
for less relevant and temporally distant concepts to share
newborn neurons, which increases their coding distance
[8]. +us, adulthood neurogenesis in the DG is a mecha-
nism for adjusting the relationship between concepts dy-
namically [9]. +erefore, modeling brain-like concept
coding by simulating the structure and function of the DG
is essential for the construction of brain-like knowledge
map.
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Several simulation studies on the structure and function
of the DG focused on pattern separation of the DG, but the
phenomenon of pattern integration was mostly ignored.
Myers and Scharfman [10] built a spiking neural network
(SNN) with four major types of neurons in the DG: granule
cell (GC), mossy cell (MC), hilar perforant path-associated
cell (HIPP cell, HC), and basket cell (BC). +ey found that
SNN can decrease the distance between concepts with
shared neurons to achieve pattern separation. However,
when HCs were lesioned, the activity of GCs increased and
pattern separation improved, which appears to be in-
consistent with the results of physiological experiments [11].
Faghihi and Moustafa [12] used the leaky integrate-and-fire
model to build SNN to simulate the DG, and neurogenesis
was added to both GCs and inhibitory neurons (including
BCs and HCs). +ey found that pattern separation would be
enhanced if the neurogenesis rate of GCs and inhibitory
neurons was balanced. However, no evidence supported
adulthood neurogenesis of inhibitory neurons. Chavlis et al.
[13] used themulticompartment model to simulate GCs, and
their network used signals from the EC as input to in-
vestigate the influence of neuronal morphology on pattern
separation. +ey found that the sparseness of GC activity is
crucial for pattern separation. Additionally, they found that
the strengths of inhibitory connections, the properties of
neurons such as leak conductance, size of soma, and number
of dendrites could affect the sparseness of GC activity and
thus pattern separation. From the perspective of pattern
separation, the aforementioned models use too few concept
categories (only two) and are difficult to generalize to guide
applications. Furthermore, adulthood neurogenesis in the
DG is the key biological process involved in both pattern
separation and pattern integration [14, 15], but it was not
incorporated in the aforementioned models except in
Faghihi and Moustafa [12]. +erefore, models incorporating
pattern integration and DG neurogenesis are needed to
improve the simulation of brain-like concept coding in the
DG. Aimone et al. [16] found that neurogenesis enhanced
pattern separation for distal concepts; meanwhile, the
coding similarity between concepts was increased when
concepts were closer in time, which was the embodiment of
pattern integration. However, when concept coding simi-
larity in the EC was at 80%, pattern separation was still
simulated; when the similarity of two visual stimuli is greater
than 50%, they are likely classified as a single concept
without pattern separation [17, 18].+erefore, when concept
coding similarity in the EC is at 80%, whether pattern
separation occurs or not is still unclear. In addition, neurons
in this network were simulated by the firing rate model with
step size of 25ms, but it is difficult to directly link such
assumption to physiological data. Moreover, realistic time
courses of synaptic interactions between neurons are ig-
nored in Aimone et al. [16]. For these reasons, a direct dialog
between models and cortical synaptic physiology is needed.

In this study, we propose a brain-like concept coding
model based on SNN, taking adulthood neurogenesis into
consideration, with subjectively generalized concept features
as the evaluation criteria, and analyze the impact of input
similarity, input time association, and neurogenesis rate on

concept coding.+is simulation of brain-like concept coding
is the basis for the construction of brain-like knowledge map
and enables a new level of artificial intelligence application.

2. Materials and Methods

2.1. Building the SNN

2.1.1. Modeling Mature Neurons. Among the four main
types of neurons (GC, MC, BC, and HC, refer to In-
troduction), GCs are the principle neurons, which are also
the neurons with adulthood neurogenesis. MC, BC, and HC
are three types of interneurons, among which MCs are
excitatory neurons, and BCs and HCs are inhibitory neu-
rons, which are used to regulate the neuronal activity of GCs.
We used the adaptive exponential integrate-and-fire (AdEx)
model, which reflects the behavior of four kinds of neurons
in the DG, as the neuron model [13]. +e AdEx model is

Cm

dVm

dt
� gl El − Vm(  + glΔT exp

Vm − VT

ΔT

  + 


Isyn − w,

τw

dw

dt
� α Vm − El(  − w ,

(1)

where Cm is the membrane capacitance, Vm is the membrane
voltage, gl is the “leak” conductance, El is the “leak” reversal
potential (i.e., the resting potential), Isyn is the synaptic current
flow onto the neuron, w is the adaptation variable, ΔT is the
slope factor, VT is the effective threshold potential, α is the
adaptive coupling parameter, and τw is the adaptation time
constant. When the membrane potential reaches the firing
threshold Vthr, the neuron fires a spike, and then the mem-
brane potential will be reset to a fixed value Vreset, as follows:

whenVm ≥Vthr, Vm⟵Vreset, w⟵w + b, (2)

where b is the spike-triggered adaptation parameter. +e
parameters of the neuron model [13] are shown in Table 1.

2.1.2. Modeling Synapses. +e DG network consists of both
glutamatergic cells (GCs and MCs) and GABAergic in-
terneurons (BCs and HCs); thus, both excitatory and in-
hibitory synapses are included in the network model. +e
excitatory and inhibitory postsynaptic currents are mediated
by AMPA and GABA receptors, respectively. Both AMPA
and GABA receptors are ligand-gated ion channels; the
synaptic current can be described by

Isyn(t) � gsyn(t) Vm(t) − Esyn , (3)

where gsyn and Esyn are the conductance and reversal po-
tential of receptor, respectively. +e reversal potential of
AMPA and GABA receptors was set as EAMPA � 0mV and
EGABA � − 80mV.

Once the receptor opens, the synaptic conductance first
increases and then decreases over time; the dynamic model
of receptor conductance is
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gsyn(t) � gmax exp
t − ts + tdelay

τdecay
 , (4)

where gmax is the maximum conductance, ts is the spike time
of preneuron, tdelay is the synaptic delay, and τdecay is time
decay constant. Simulations reported in this paper were all
performed with tdelay � 2ms and τdecay � 6ms.

2.1.3. Plasticity Model. Spike timing-dependent plasticity
(STDP) was observed in the perforant pathway between the
EC and GCs [19]. +us, we used STDP learning rule [20] as
the plasticity model in our simulations; STDP is modeled as

Δwi �

A+exp
Δti

τ+

 , if Δti < 0,

A− exp
− Δti

τ−

 , if Δti > 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A+ � w
max

− wi( η+,

A− � wiη− ,

(5)

where η+ and η− are learning rates for potentiation and
depression, wi is the current synaptic weight, wmax is the
maximum synaptic weight, Δti is the delay time from
presynaptic spike to postsynaptic spike, and τ+ and τ− are
delays which control the rates of exponential potentiation or
decrease. Parameters were set as wmax � 2, τ+ � 20ms,
τ− � 12ms, η+ � 0.1, and η− � 0.1.

2.1.4. Modeling Developing Neurons. We focused on brain-
like concept coding and assumed a simple form of newborn
neuron maturation process, which was divided into five
stages from birth to maturity. To encode more concepts in a
short period of time, we simulated the accelerated matu-
ration process of the newborn neurons within each stage for
a few seconds, and the properties of developing neurons
were modeled accordingly. Simulation of the accelerated

maturation is a reasonable simplification of the model as the
time scale of maturation and duration of concept stimuli
representation are matched. To investigate the effects of time
scales of neurogenesis on concept coding, we tested the
maturation period of 5 s, 10 s, and 20 s in the simulation.

Since the newborn neurons in the DG are distinct from
the mature ones, such as bearing stronger synaptic plasticity,
lower inhibitory input, lower action potential threshold,
higher resting state potential, and being easier to respond to
novel stimuli [21–23], these developing neurons were
simulated with the same model (Sections 2.1.1–2.1.3) but
different parameters from the mature neurons in the net-
work. To simulate stronger synaptic plasticity, lower action
potential threshold, and higher resting membrane potential,
we used extra current injection into the neurons under five
stages corresponding to 100, 50, 20, 0, and 0 pA. To simulate
lower inhibitory input, we multiplied the attenuation co-
efficient on the conductance of inhibitory synapses to GCs,
with five stages corresponding to the values of 0.2, 0.6, 0.8,
1.0, and 1.0. To simulate ease to respond to novel stimuli,
newborn neurons were modeled separately so that they are
more likely to establish connections with current firing EC
neurons. As the newborn neurons mature, the connection
ratio of developing neurons to the current firing EC neurons
gets smaller, which was set as 0.4, 0.3, 0.2, 0.1, and 0.1 in five
stages. +e parameters used in stage 4 and 5 are the same,
which simulates the sustained mature state.

2.1.5. Structure of SNN. +e network (Figure 1) used in this
study represents a local cortical circuit in the DG with input
from the lateral EC (LEC); the LEC has been suggested to
process the nonspatial contextual information needed to
form episodic memories in the hippocampus [24]. For the
sake of efficiency, the number of neurons in the network was
scaled down corresponding to the actual number of neurons
in the rat DG [25, 26]. Because neurons in the medial
temporal lobe show binary coding to concept stimuli [9], the
input neurons in the LEC were simulated as independent
Poisson spike trains, with the frequency of 40Hz. +e
simulated DG in our network included GC, MC, HC, and
BC, and the projection ratios between layers are shown in
Figure 1.

Because neural coding capacity is highly dependent on
the number of neurons in the network [27]. We built three
networks with an initial GC number of 200 (200 GCs), 400
(400 GCs), and 1,000 (1,000 GCs) to explore the perfor-
mance of networks with different sizes on concept coding.
+e number of neurons in each layer and the neurogenesis
rate of GCs are shown in Table 2. +e parameters of the
maximum synaptic conductance of networks with different
sizes are shown in Table 3.

2.2. Generating Concept Stimuli. +e LEC provides one of
the two major input pathways to the hippocampus and was
suggested to process the nonspatial contextual details of
episodic memory [28]. +erefore, the neural coding of each
concept in the LEC was used as the input of our model. +e
coding sparsity in the LEC was set to 0.1 [10, 13], i.e., each

Table 1: Model parameters for all neuron types.

Model
parameters GC MC BC HC

El (mV) resting potential − 87.0 − 64.0 − 52.0 − 59.0
gl (nS) “leak” conductance 0.030 4.530 18.054 1.930
Cm (nF) membrane
conductance 0.0067 0.6210 0.1793 0.0584

Vreset (mV) reset voltage − 74.0 − 49.0 − 45.0 − 56.0
VT � Vthr (mV)

threshold voltage − 56.0 − 42.0 − 39.0 − 50.0

ΔT (mV) slope voltage 0.0 2.0 2.0 2.0
α (nS) adaptation
coupling parameter 2.0 2.0 0.1 0.82

τw (ms) adaptation time
constant 45.0 180.0 100.0 93.0

b (pA) spike-triggered
adaptation 45.0 82.9 20.5 15.0

Computational Intelligence and Neuroscience 3



concept was represented with 10% active LEC neurons with
a firing rate of 40Hz, and the other LEC neurons fire
spontaneously at a rate of 0.1Hz.

+e normalized dot product [16] was used to calculate
the similarity between the cell layer outputs in response to
two concepts, as follows:

SimA,B �
A · B

A × B
, (6)

where A or B is a 1 byN vector representing the firing rate of
cell layer to concept A or B.

+en, we defined the pattern separation index (PSI) as

PSI �

SimEC − SimGC

SimEC
, if SimEC − SimGC > 0,

SimEC − SimGC

1 − SimEC
, if SimEC − SimGC < 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

where SimEC and SimGC indicate the similarity between
concept pairs in the EC and GC layers. If PSI> 0, pattern
separation occurs, and PSI is positively correlated with
pattern separation effect. Otherwise, pattern integration
occurs, and PSI is inversely correlated with pattern in-
tegration effect.+erefore, PSI can be used as a measurement
of strength of pattern separation and pattern integration.

2.3. Experimental Setup

2.3.1. Effects of Neurogenesis Rate, Input Temporal Associ-
ation, and Input Similarity on Concept Coding. We used
various neurogenesis rates, input temporal association, and
input similarity on the simulated network to test the impact of
these factors on concept coding. +e experiment was sepa-
rated into two phases: the training/growth phase and the test
phase. During the training/growth phase, a pair of concept
stimuli with coding similarity from 0% to 90%were presented
to the network with each concept stimulus lasting for 1 s and a
maturation period of 5 s. To investigate the effect of input
temporal association on concept coding, we tested time in-
tervals between two concepts ranging from 1 s to 5 s, where 1 s
stands for presenting the next stimulus immediately after the
previous one and 5 s stands for the next stimulus presented 5 s
after the first stimulus onset, so that the time interval between
two stimuli is inversely correlated with temporal association.
We also simulated the performance of the model with
maturation time of 10 s and 20 s, where the time interval
between two concepts was proportionally increased to two
and four folds to match the time scale of maturation time.

To explore the effects of neurogenesis rate on concept
coding, we considered two situations: with and without
neurogenesis. When a concept stimulus arrives, the GCs in
the network experience neurogenesis according to the set
neurogenesis rate. If there was no concept stimulus and thus
no neurogenesis, the responses of the EC and GC layers were
recorded after the training/growth phase, and the network

Table 2:+e number of neurons in each layer and the neurogenesis
rate of GCs in the SNN with different sizes.

LEC GC (initial) MC BC HC NG
(neurons/s)

200 GCs 100 200 50 25 50 0∼5
400 GCs 200 400 100 50 100 0∼10
1,000 GCs 500 1,000 250 125 250 0∼25
NG: neurogenesis rate.

LEC GC

BC

HC

MC

DGEC

20%

20%

20%

100%

20%

20%

100%

20%

Excitatory connection without plasticity
Excitatory connection with plasticity
Inhibitory connection

Figure 1: +e structure of our simulated SNN. +e LEC and DG
are shown in hollow green and orange dotted boxes, respectively,
the filled blue area represents excitatory neurons (LEC and MCs),
the filled green area represents excitatory neurons with neuro-
genesis (GCs), and the filled orange area represents inhibitory
neurons (BCs and HCs). +e blue arrow represents excitatory
connections without plasticity, the green arrow indicates excitatory
connections with plasticity, and the red arrow represents inhibitory
connections; the numbers near the arrows indicate the projection
ratio.

Table 3: +e maximum conductance of the SNN (unit: nS, each
value represents the maximum conductance from neuron type of
the column to neuron type of the row).

GC MC BC HC

200 GCs

LEC 10.0 12.0
GC 6.0 1.0
MC 1.0 0.2
BC 120.0
HC 20.0

400 GCs

LEC 6.0 8.0
GC 10.0 0.4
MC 1.0 0.1
BC 120.0
HC 30.0

1,000 GCs

LEC 3.1 5.0
GC 12.0 0.1
MC 1.0 0.1
BC 120.0
HC 20.0
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was tested in each of the concept stimulus with plasticity and
neurogenesis disabled.

For each neurogenesis rate, input temporal association,
and input similarity, we ran the model 10 times from
random seeds.+e similarities between responses of the GCs
to a pair of concept stimuli in these situations were then
compared to the similarities between the neural coding of
input EC neurons to two concept stimuli to get the PSI. We
used analysis of variance (ANOVA) to assess the effects of
neurogenesis rate, input temporal association, and input
similarity on PSI and Bonferroni correction for the post hoc
multiple comparison.

2.3.2. Simulation of Brain-Like Concept Coding under a
Variety of Contexts. +e concepts are distributed repre-
sentations consisting of semantic primitives or features. +e
overlap and differences in such feature-based representa-
tions can explain both the individuality of objects and their
relationship to one another. +erefore, simulation of brain-
like concept coding is the basis of brain-like knowledge map.
We used the human-provided features of concepts as the
evaluation criteria of brain-like concepts, which was ob-
tained from a concept database (CSLB database) [29].

To explore the ability of the model on multiconcept
coding, we showed 14 contexts each containing 4 concepts to
the network with 200 GCs and a maturation period of 5 s,
which is enough for coding the 56 concepts. +e contexts
and concepts can be found in Table S1. +e neural coding of
each concept was generated randomly with similarity be-
tween any two concepts less than 50%. During the growth/
training phase, the contexts were presented between 1 to 5
times to study the influences of repeated times on concept
coding. Each concept was presented once during each
context presentation, and the order of concept stimulus was
random. During the test phase, all 56 concepts were pre-
sented to the network without neurogenesis and plasticity.
For each context repetition time, we ran the model 10 times
from different random seeds. We used ANOVA to assess the
effects of context repetition time on the similarity between
concepts in the cell layer and CSLB database and Bonferroni
correction for the post hoc multiple comparison.

3. Results

3.1.Neurogenesis Rate, Input Temporal Association, and Input
Similarity Have Significant Main Effects on Concept Coding.
To study the impact of neurogenesis rate, input temporal
association, and input similarity on concept coding, we
tested these parameters on the 200 GC network with a
maturation period of 5 s. We found significant main effects
of neurogenesis rate (F(5,2700) � 127.960, p< 0.001), input
temporal association (F(4,2700) � 312.478, p< 0.001), and
input similarity (F(9,2700) � 225.34, p< 0.001) on concept
coding. +e interaction effects between any two of the three
factors were also significant (all p< 0.001).

Figure 2(a) shows the impact of input similarity and
input time interval on concept coding without neurogenesis
(neurogenesis rate of 0 neurons/s). As newborn neurons

could not be shared by the presented concepts, the temporal
association between the concepts did not affect PSI
(F(4,495) � 0.228, p � 0.923). When input similarity is below
20%, a low level of pattern integration occurs
(PSI� − 0.044± 0.194), which may be induced by random
connections between the EC layer and the GC layer; when
input similarity is above 20%, weak pattern separation
(PSI� 0.111± 0.175) occurs, which may be caused by sparse
coding of the GCs [30].

Taking neurogenesis into consideration (neurogenesis
rate above 0 neurons/s), time interval had a significant effect
on PSI (all p< 0.001). When the neurogenesis rate is
1 neuron/s and input similarity is below 50%, the immature
GCs shared between concepts induce pattern integration
effect (PSI� − 0.198± 0.228) if the two stimuli occurred
within a short time of one another (within 1-2 s), while for
events presented further apart in time, the influence of the
immature GCs is reversed and pattern separation dominates
(PSI� 0.033± 0.268). Nonetheless, if input similarity is
above 50%, pattern integration occurs (PSI� − 0.227± 0.222)
no matter what the temporal association is, which may be
induced by attractor effect [17, 18], as shown in Figure 2(b).

When the neurogenesis rate is between 2 neurons/s and
5 neurons/s and input similarity is below 50%, pattern in-
tegration dominates if the temporal association between two
concept stimuli is strong; otherwise, pattern separation
occurs. Meanwhile, if the input similarity is above 50%,
pattern integration occurs regardless of the temporal asso-
ciation, which is consistent with results using neurogenesis
rate of 1 neuron/s, as shown in Figures 2(c)–2(f).

In addition, we investigated the impact of neurogenesis
rate on PSI. Pattern separation or pattern integration effect is
the strongest at the neurogenesis rate of 3 neurons/s (LSD
correction, all p< 0.05). At this rate, the input time interval
affects PSI significantly (p< 0.001), except for the time in-
terval of 3 and 4 s (p � 0.332)—the shorter the input time
interval is, the easier it is to induce pattern integration.
Figures 3(a)–3(d) show the relationship between similarities
of the firing patterns of the EC and the firing patterns of GCs
with a neurogenesis rate of 3 neurons/s and an input time
interval of 1 to 4 s. Generally, the coding similarity in GCs is
higher than that in the EC (black dotted line), which means
that the shared developing neurons decreased the coding
distance between concepts. As input time interval increases,
pattern separation effect becomes stronger under low input
similarity. However, when the time interval between concept
stimuli is 5 s, no immature neuron could be shared by
concepts and pattern integration still occurs under high
input similarity. We fitted the relationship between simi-
larities of firing patterns in the EC and GC layers with a
neurogenesis rate of 3 neurons/s and an input time interval
of 5 s with a sigmoid curve. When input similarity is below
50%, pattern separation occurs, and when it exceeds 50%,
pattern integration dominates (Figure 3(e)).

3.2. IncreasedMaturationTimeDoesNotAffectConclusions of
theSimulations. We simulated thematuration process in the
time scale of seconds, but mammalian neurons take weeks to
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Figure 2: +e impact of input similarity and input time interval on concept coding with the neurogenesis rate of (a) 0 neurons/s,
(b) 1 neuron/s, (c) 2 neurons/s, (d) 3 neurons/s, (e) 4 neurons/s, and (f) 5 neurons/s in the 200 GCs network with a maturation period of 5 s
where PSI> 0 means pattern separation, PSI< 0 indicates pattern integration, and PSI� 0 (black dotted line) presents neither pattern
separation nor pattern integration. +e error bars show standard deviation. NG: neurogenesis rate; TI: time interval.
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Figure 3: +e scatter plots of the relationship between similarities of the firing patterns of the EC and the firing patterns of GCs with neurogenesis a
rate of 3neurons/s and an input time interval of (a) 1 s, (b) 2 s, (c) 3 s, (d) 4 s, and (e) 5 s in the 200 GCs network with amaturation period of 5 s. Each
dot represents one concept pair stimuli with similarity between the firing patterns of the EC shown along the horizontal axis and similarity between the
firing patterns of GCs shown along the vertical axis. Sigmoidal relationship can be found between similarities of the firing patterns of the EC and those
of GCs with input time interval of 5 s. Black dashed lines denote the limit above which pattern separation is performed in themodel. TI: time interval.
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mature [21]. +erefore, it is necessary to validate the ob-
servations in Section 3.1 with longer maturation period. We
used two-fold (10 s) and four-fold (20 s) maturation periods
of Section 3.1, and the duration of concept stimulus of 2 s
and 4 s accordingly. By assessing the effects of neurogenesis
rate, input temporal association, and input similarity on
concept coding, we found significant main effects of neu-
rogenesis rate (10 s maturation period: F(5,2700) � 164.630,
p< 0.001; 20 s maturation period: F(5,2700) � 180.820,
p< 0.001), input temporal association (10 s maturation
period: F(4,2700) � 432.971, p< 0.001; 20 s maturation period:
F(4,2700) � 458.248, p< 0.001), and input similarity (10 s
maturation period: F(9,2700) � 300.903, p< 0.001; 20 s mat-
uration period: F(9,2700) � 405.882, p< 0.001) on concept
coding. +e interaction effects between any two of the three
factors were also significant (all p< 0.001), which is con-
sistent with the conclusions of Section 3.1 using short
maturation period.

+e impact of input similarity and input time interval on
concept coding with a variety of neurogenesis rates is
demonstrated in Figure S1 (200 GC network with a mat-
uration period of 10 s) and Figure S2 (200 GC network with a
maturation period of 20 s), the result of which agrees with
the maturation period of 5 s. At the neurogenesis rate of
0 neurons/s, the temporal association between the concepts
had no effect on PSI (10 s maturation period: F(4,495) � 0.592,
p � 0.669; 20 s maturation period: F(4,495) � 0.753,
p � 0.556). At neurogenesis rates of above 0 neurons/s, the
input time interval had a significant effect on PSI (all
p< 0.001)—the weaker the temporal association is, the
easier it is to induce pattern separation. +e relationship
between similarities of the firing patterns of the EC and those
of GCs with the neurogenesis rate of 3 neurons/s is depicted
in Figure S3 (200 GC network with a maturation period of
10 s) and Figure S4 (200 GC network with a maturation
period of 20 s). +ese data suggest that neuron maturation
time unlikely affects outputs of our simulations, and thus
usage of 5 s neuron maturation time in the model is a
reasonable simplification.

3.3. Increased Neural Network Scale Does Not Affect Con-
clusions of the Simulations. Biologically, the number of
concepts that can be encoded is highly dependent on the
neural network size, so we tested the properties of our
simulated network with more neurons to find out whether
network size affects the simulation. We repeated our sim-
ulation in the 400 GC and 1,000 GC networks. +e highest
neurogenesis rate for those simulations was proportionally
increased to 10 neurons/s and 25 neurons/s, and the mat-
uration period was set as 5 s. By examining the effects of
neurogenesis rate, input temporal association, and input
similarity on concept coding, we found significant main
effects of neurogenesis rate (400 GCs: F(5,2700) � 671.009,
p< 0.001; 1,000 GCs: F(5,2700) � 4146.271, p< 0.001), input
temporal association (400 GCs: F(4,2700) � 1117.016,
p< 0.001; 1,000 GCs: F(4,2700) � 2304.726, p< 0.001), and
input similarity (400 GCs: F(9,2700) � 1065.290, p< 0.001;

1,000 GCs: F(9,2700) � 3086.902, p< 0.001) on concept cod-
ing. +e interaction effects between any two of the three
factors were also significant (all p< 0.001).

+e impact of input similarity and input time interval on
concept coding with a variety of neurogenesis rates is shown
in Figure S5 (400 GCs) and Figure S6 (1,000 GCs). At the
neurogenesis rate of 0 neurons/s, the temporal association
between the concepts had no effects on PSI (400 GCs:
F(4,495) � 0.269, p � 0.898; 1,000 GCs: F(5,495) � 0.096,
p � 0.984). At neurogenesis rates of above 0 neurons/s, the
input time interval had significant effect on PSI (all
p< 0.001)—the shorter the input time interval is, the easier it
is to induce pattern integration. +e relationship between
similarities of the firing patterns of the EC and those of GCs
with a neurogenesis rate of 6 neurons/s in the 400 GC
network and 10 neurons/s in the 1,000 GC network is
depicted in Figure S7 (400 GCs) and Figure S8 (1,000 GCs).
+ese data suggest that neural network scale unlikely affects
conclusions drawn from our simulations.

3.4.Modeling of Brain-LikeConceptCoding under aVariety of
Contexts. To investigate the ability of our proposed model
on multiconcept coding, we presented 14 contexts to the
network one by one, each of which was presented for several
times and then fed to the model to study the impact of
repetition time on concept coding. +e concepts were
encoded in the GC layer with the neurogenesis rate of
3 neurons/s, which had the strongest effect on pattern in-
tegration and pattern separation (Section 3.1) and could
ensure the balance between the numbers of excitatory (GCs
and MCs) and inhibitory neurons (BCs and HCs) in the
network.

Figure 4 shows the concept similarity matrices of CSLB
database (Figure 4(a)), input neural coding in the EC layer
(Figure 4(b)), and output responses in the GC layer with
repetition time between 1 and 5 (Figures 4(c)–4(g)). From
the matrices, we see that the representation of contexts
significantly changed the coding similarity between con-
cepts. +e distance between concepts was random before
experiencing the contexts (Figure 4(b)). After representa-
tion, the distance of concepts between the same context
became smaller, whereas the distance between different
context became larger (Figures 4(c)–4(g)), which agrees with
pattern integration and pattern separation effect,
respectively.

Furthermore, the similarity between concepts in the
CSLB database and the proposed network was calculated as
the normalized dot product between matrices (Table 4). We
found that as repetition time of each context increased from
1 to 4, the similarity of coding distance in the GC layer and
the CSLB database increased significantly (all p< 0.001), and
no significant difference between repetition time of 4 and 5
was found (p � 0.467). +ese data suggest that after the
contexts are presented multiple times, the concept re-
lationships became stable, and eventually, the similarity
matrix of the GC layer became highly consistent with that of
the CSLB.
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Figure 4: Continued.
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4. Discussion

4.1. Insights forNeuroscience. In this study, we constructed a
SNN with neurogenesis to investigate the comprehensive
effects of neurogenesis rate, input time interval, and input
similarity on concept coding in the DG. Our model suggests
that neurogenesis may induce pattern integration for closely
presented patterns.We observed attractor effect based on the
sigmoidal relationship between input similarity in the EC
and output similarity in the DG with weak temporal asso-
ciation. In addition, we found that intermediate level of
neurogenesis (e.g., 3 neurons/s in 200 GCs) had the strongest
effect on PSI, which may be a balanced state for developing
neurons shared by concepts. +e properties of the network
were examined in a variety of maturation time scales and
neuron numbers, and the conclusions are consistent among
different conditions.

+e results in our model suggest that among the situ-
ations with neurogenesis, when the temporal association
between concepts is strong, pattern integration occurs be-
cause the concepts could share newborn neurons
(Figures 2(b)–2(f)). Moreover, when the stimuli were pre-
sented far in time and the input similarity is below 50%,
pattern separation was reduced without neurogenesis
(Figure 3(e)). +e role of adult-born neurons in the DG has
been studied by neurogenesis knockdowns [15]: the adult-
born GCs exhibited selectivity to single environment when
rats experienced a long temporal separation between context
exposures, and the selectivity was attenuated as the temporal
separation between context exposures was shortened and the
selectivity was further reduced with neurogenesis knock-
down. +is phenomenon is consistent with our model.

Likewise, Danielson et al. [23] used the optogenetic tech-
nique to silence the adult-born neurons during exposure to
the novel contexts, and they found impaired behavioral
pattern separation in rats, which suggests the unique role of
adult-born GCs in contextual discrimination behaviors.+is
is also consistent with our findings that neurogenesis could
enhance pattern separation with large input temporal in-
terval, where mature and adult-born neurons participate in
coding familiar and novel contexts, respectively (Figure 2).

In our study, pattern separation dominates in the
condition without neurogenesis (Figure 2(a)). Experimental
studies also support such patterns: by analyzing the firing
fields for the GCs of navigating rodents exploring morph
environments, the DG was shown to disambiguate small
differences in cortical input patterns [31]. +is is consistent
with our simulation results of no neurogenesis as the ex-
ploration of environments in the experiment was very fast
(10min) compared to the neuronmaturation period. During
spatial navigation, the DG receives highly specific spatial
information from the medial EC (MEC) [32]. +us, the
results hint the possibility of altering our model to be used
with the MEC as the input to study spatial coding.

In the longer temporal separation situation, we found
that neurogenesis induces sigmoidal relationship between
the input similarity and output similarity, which shows
attractor effect (Figure 3(e)). A similar effect was also ob-
served in behavioral studies to classify morphing cats and
dogs [17]. Attractor effect was also found in place cells as the
environment changes from square to circular gradually [18].
Currently, the relationship between perceptual input simi-
larity and EC coding similarity is still unclear. Our simu-
lation provides insight for future experimental studies to

(g)

Figure 4: +e concept similarity matrices of (a) the CSLB database, (b) the EC layer, and the GC layer with repetition times (rep) of (c) 1,
(d) 2, (e) 3, (f ) 4, and (g) 5.

Table 4: +e similarity (mean (%)± std (%)) between coding matrices in the EC or the GC layer responses and the CSLB database under
different repetition times (rep).

EC GC (rep� 1) GC (rep� 2) GC (rep� 3) GC (rep� 4) GC (rep� 5)
56.59± 0.54 75.76± 1.17 83.59± 1.15 86.50± 1.08 87.69± 1.07 88.16± 0.73
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investigate the changing process of coding similarity from
perception to cognition, especially in a variety of temporal
associations.

4.2. Implications for Artificial Intelligence. By simulating the
14 brain-experienced contexts, our results suggest that
during neurogenesis, the coding distance between concepts
in the same context is decreased, and the coding distance
between different scenes is increased (Figures 4(c)–4(g)).
After pattern separation and pattern integration in the DG,
the concept coding distance in the GC layer is highly
consistent with the perception of the concepts using human
subjects (Figure 4(a)). When each scene was presented 1 to 4
times, the similarity between concept relationship in the GC
layer and the CSLB database reached 75.76%, 83.59%,
86.50%, and 87.69%, respectively, which means that the
concepts within each context get closer as scenes are ex-
perienced for more times. Likewise, concept coding simi-
larity is suggested to be positively correlated with association
scores provided by the participants and web-based metrics
[3]. +us, the concept coding simulated in our model is
comparable to the neural coding of human brains. More-
over, no significant difference was found between the 4th
and 5th repetition (Figures 4(f) and 4(g)), which suggested
that the relationship between concepts would be plateaued
upon repetitive presentation of the same contexts. As a
simulation of brain-like concept coding based on SNN, our
work is the basis for the construction of brain-like con-
ceptual knowledge map and provides the potential of
achieving human-level artificial intelligence.

4.3. Limitations and Future Work. +ere are several limi-
tations to our computational simulation. Firstly, the asso-
ciation between contexts may be heavily dependent on the
pattern association function of the CA3 region of the brain,
which contains large amounts of recurrent connections [33].
CA3 was not included in our model of the neural network,
and thus the association between contexts with internal
relations such as hardware tools and weapons would not
manifest in this study. +erefore, CA3 is a candidate to be
added to the neural network in the future work. Secondly, it
has been shown that the neurogenesis rate in the DG is not
constant—when we perceive novel stimuli, our brain will
release dopamine, which in turn promotes neurogenesis
[34–36]. Further studies are needed to establish the re-
lationship between the novelty of concept stimuli and
neurogenesis rate and to explore the effects of concept
novelty on concept coding.+irdly, cell death is an inevitable
phenomenon in the brain [37], and increasing the number of
GCs beyond certain threshold will lead to neural network
imbalance. It is necessary for further studies to take cell
death into consideration to model concept coding.

5. Conclusions

In this simulation study, we found that neurogenesis causes
pattern integration for concepts with close temporal re-
lationship and thus causes either pattern integration or

pattern separation for concepts with far temporal rela-
tionship—depending on the similarity of the input concepts.
+e results were robust in a variety of maturation time scales
and neural network scales. Furthermore, coding trans-
formation is the most obvious with intermediate neuro-
genesis rate as opposed to extremely high or low rates,
suggesting the existence of a balanced neurogenesis rate. By
presenting 14 contexts of concepts to the network, we
simulated dynamic neural coding of 56 concepts. As the
repetition times of each context increases, the similarity
between the neural concept coding matrix and the subjective
concept coding matrix increases and eventually stabilizes,
which provides a new framework of word representation for
artificial intelligence. Our work serves as the foundation of
potential future work to improve the model by adding CA3,
concept novelty attribute, and cell death to the model, in-
vestigating the relationship between concept novelty and
neurogenesis rate, establishing the association between
contexts, and exploring the effects of neuron death on
memory loss.
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Supplementary Materials

Figure S1: the impact of input similarity and input time
interval on concept coding with the neurogenesis rate of (A)
0 neurons/s, (B) 1 neuron/s, (C) 2 neurons/s, (D) 3 neurons/
s, (E) 4 neurons/s, and (F) 5 neurons/s in the 200 GC net-
work with a maturation period of 10 s, where PSI> 0 means
pattern separation, PSI< 0 indicates pattern integration, and
PSI� 0 (black dotted line) presents neither pattern separa-
tion nor pattern integration. +e error bars show standard
deviation. NG: neurogenesis rate; TI: time interval. Figure
S2: the impact of input similarity and input time interval on
concept coding with the neurogenesis rate of (A) 0 neurons/
s, (B) 1 neuron/s, (C) 2 neurons/s, (D) 3 neurons/s, (E)
4 neurons/s, and (F) 5 neurons/s in the 200 GC network with
a maturation period of 20 s, where PSI> 0 means pattern
separation, PSI< 0 indicates pattern integration, and PSI� 0
(black dotted line) presents neither pattern separation nor
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pattern integration. +e error bars show standard deviation.
NG: neurogenesis rate; TI: time interval. Figure S3: the
scatter plots of the relationship between similarities of the
firing patterns of the EC and the firing patterns of GCs with a
neurogenesis rate of 3 neurons/s and an input time interval
of (A) 2 s, (B) 4 s, (C) 6 s, (D) 8 s, and (E) 10 s in the 200 GC
network with a maturation period of 10 s. Each dot repre-
sents one concept pair stimuli with similarity between the
firing patterns of the EC shown along the horizontal axis and
similarity between the firing patterns of GCs shown along
the vertical axis. Sigmoidal relationship can be found be-
tween similarities of the firing patterns of the EC and those
of GCs with input time interval of 10 s. Black dashed lines
denote the limit above which pattern separation is per-
formed in the model. TI: time interval. Figure S4: the scatter
plots of the relationship between similarities of the firing
patterns of the EC and the firing patterns of GCs with a
neurogenesis rate of 3 neurons/s and an input time interval
of (A) 4 s, (B) 8 s, (C) 12 s, (D) 16 s, and (E) 20 s in the 200 GC
network with a maturation period of 20 s. Each dot repre-
sents one concept pair stimuli with similarity between the
firing patterns of the EC shown along the horizontal axis and
similarity between the firing patterns of GCs shown along
the vertical axis. Sigmoidal relationship can be found be-
tween similarities of the firing patterns of the EC and those
of GCs with an input time interval of 20 s. Black dashed lines
denote the limit above which pattern separation is per-
formed in the model. TI: time interval. Figure S5: the impact
of input similarity and input time interval on concept coding
with the neurogenesis rate of (A) 0 neurons/s, (B) 2 neurons/
s, (C) 4 neurons/s, (D) 6 neurons/s, (E) 8 neurons/s, and (F)
10 neurons/s in the 400 GC network with a maturation
period of 5 s, where PSI> 0means pattern separation, PSI< 0
indicates pattern integration, and PSI� 0 (black dotted line)
presents neither pattern separation nor pattern integration.
+e error bars show standard deviation. NG: neurogenesis
rate; TI: time interval. Figure S6: the impact of input sim-
ilarity and input time interval on concept coding with the
neurogenesis rate of (A) 0 neurons/s, (B) 5 neurons/s, (C)
10 neurons/s, (D) 15 neurons/s, (E) 20 neurons/s, and (F)
25 neurons/s in the 1,000 GC network with a maturation
period of 5 s, where PSI> 0means pattern separation, PSI< 0
indicates pattern integration, and PSI� 0 (black dotted line)
presents neither pattern separation nor pattern integration.
+e error bars show standard deviation. NG: neurogenesis
rate; TI: time interval. Figure S7: the scatter plots of the
relationship between similarities of the firing patterns of the
EC and the firing patterns of GCs with a neurogenesis rate of
4 neurons/s and an input time interval of (A) 1 s, (B) 2 s, (C)
3 s, (D) 4 s, and (E) 5 s in the 400 GC network with a
maturation period of 5 s. Each dot represents one concept
pair stimuli with similarity between the firing patterns of the
EC shown along the horizontal axis and similarity between
the firing patterns of GCs shown along the vertical axis.
Sigmoidal relationship can be found between similarities of
the firing patterns of the EC and those of GCs with input
time interval of 5 s. Black dashed lines denote the limit above
which pattern separation is performed in the model. TI: time
interval. Figure S8: the scatter plots of the relationship

between similarities of the firing patterns of the EC and the
firing patterns of GCs with a neurogenesis rate of
10 neurons/s and an input time interval of (A) 1 s, (B) 2 s, (C)
3 s, (D) 4 s, and (E) 5 s in the 1,000 GC network with a
maturation period of 5 s. Each dot represents one concept
pair stimuli with similarity between the firing patterns of the
EC shown along the horizontal axis and similarity between
the firing patterns of GCs shown along the vertical axis.
Sigmoidal relationship can be found between similarities of
the firing patterns of the EC and those of GCs with an input
time interval of 5 s. Black dashed lines denote the limit above
which pattern separation is performed in the model. TI: time
interval. Table S1: the contexts and concepts used in sim-
ulation. (Supplementary Materials)
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