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Abstract

RNA interference via exogenous small interference RNAs (siRNA) is a powerful tool in gene function study and disease
treatment. Designing efficient and specific siRNA on target gene remains the key issue in RNAi. Although various in silico
models have been proposed for rational siRNA design, most of them focus on the efficiencies of selected siRNAs, while
limited effort has been made to improve their specificities targeted on specific mRNAs, which is related to reducing off-
target effects (OTEs) in RNAi. In our study, we propose for the first time that the enhancement of target specificity of siRNA
design can be achieved computationally by domain transfer in heterogeneous data sources from different siRNA targets. A
transfer learning based method i.e., heterogeneous regression (HEGS) is presented for target-specific siRNA efficacy
modeling and feature selection. Based on the model, (1) the target regression model can be built by extracting information
from related data in other targets/experiments, thus increasing the target specificity in siRNA design with the help of
information from siRNAs binding to other homologous genes, and (2) the potential features correlated to the current siRNA
design can be identified even when there is lack of experimental validated siRNA affinity data on this target. In summary,
our findings present useful instructions for a better target-specific siRNA design, with potential applications in genome-wide
high-throughput screening of effective siRNA, and will provide further insights on the mechanism of RNAi.
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Introduction

RNA interference (RNAi) is a post-transcriptional gene silencing

process during which the expression of endogenous mRNA is

blocked by introducing a double-strand RNA (dsRNA) [1]. The

mechanism of RNAi can be summarized as following: First, the

Dicer enzyme binds dsRNA and cleaves it into 21,23 nt

fragments named short interference RNA (siRNA). Then, the

siRNA loads onto the RNA-induced silencing complex (RISC) and

separates into the guide strand (antisense to the target mRNA)

staying in the RISC, and the passenger strand (sense to the target

mRNA) released and degraded [2]. Next, the siRNA-RISC

complex recognizes the target mRNA with guide strand pairing

up with the complementary mRNA sequence [3]. Finally, the

target mRNA is cut by Ago protein, leading to an efficient

inhibition of gene expression.

RNAi is a simple, effective and low-cost technology which is of

extensive applications such as gene function investigation, drug

target discovery and disease treatment [4]. In a notably short time

since their development, siRNAs have entered human clinical

trials in various disease areas [5,6,7]. However, the silencing ability

of different siRNAs varies widely. Rapid acceptance of the use of

siRNAs has been accompanied by recognition of several obstacles

for RNAi technology, such as the lack of specificity to a target

mRNA, commonly termed as the ‘‘off-target effects’’ (OTEs) [8].

OTEs can complicate the interpretation of phenotypic effects in

gene-silencing experiments and potentially lead to unwanted

toxicities [5]. Hence, the efficient and specific design for siRNAs

has become two important issues in RNAi. Here, efficiency means

that a siRNA inhibits the expression of target mRNA exhaustively,

while specificity means that a siRNA would better not affect the

non-target mRNAs as to avoid an ‘‘off-target’’ effect. These two

principals have been concerned and followed by a number of

research groups in their studies, during which a series of criteria

for siRNA design are addressed [9,10,11,12]. Among them, a

number of the criteria are generally proposed to improve the

efficiency in siRNA design from different perspectives, i.e. (1)

siRNA sequence features; (2) siRNA sequence motifs; (3)

thermodynamic features of siRNA duplexes and their targets;

and (4) other structural features for optimal siRNA-mRNA

interactions [13,14]. Besides the above criteria concerning about

efficiency, there are several ways to further improve the specificity

and reduce OTEs in siRNA design. For example, a ‘‘siRNA pool’’

technology is used to silence mRNA with lower concentrations of a

set of siRNAs [15], and chemical modification like the locked
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nucleic acids (LNA) modification [16] is introduced into siRNA at

both sequence level and structure level to improve their specificity.

With the increasing siRNA data, various statistical machine

learning methods have been developed for siRNA efficacy analysis

to derive more specific in-silico siRNA design rules. This

procedure is generally formulated in a training-testing phase.

The training data consist of a collection of siRNA sequences with

related inhibiting affinity vis-a-vis their target genes, and these data

are used to train a siRNA affinity prediction model. In the testing

phase, trained models are applied to new instances to predict

siRNAs affinity and perform feature selection. In 2005, Novartis

published a relatively large siRNA dataset and modeled their

affinity with neural network [17]. Following this work, Shabalina

et al. [10] performed further thermodynamic and correlation

analyses. Using four independent databases, Matveeva et al. [18]

developed a new method for predicting siRNA efficacy with linear

regression. In 2009, Klingelhoefer et al. [19] applied a Bayesian

analysis on several combined datasets to identify a number of

features associated with siRNA affinity. Nevertheless, although

these studies have made considerable progress in siRNA design,

we found that there still exist significant issues to be addressed,

which are listed below.

1. Improper integration of the cross-platform siRNA data
A number of RNAi datasets are publicly available but each

dataset was typically generated by a different group possibly using

a different platform under specific experimental conditions (i.e.

different cell types, test methods, siRNA delivery methods and

siRNA concentrations), making integrated analysis and utilization

of these datasets a challenge [20]. Different studies might use

different measurements to assess the siRNA efficacy, thus leading

to the different data distribution, i.e., heterogeneity among

different datasets. We observed from our previous study that

generally the siRNA efficacy for different platforms cannot be

easily compared, hence making a simple-mind integration of

heterogeneous datasets hardly useful [20,21]. For a given siRNA

dataset, how to make use of data from other related datasets

becomes a critical issue, since the number of samples from

individual dataset is small and the design rules derived from such

individual dataset may not be statistically significant. This issue

can be further explained by that the empirical rules obtained

through studies on individual dataset have been questioned about

their general applicability [14,19,21,22,23]. And the rules

proposed by different groups may be inconsistent. For instance,

Saetrom et al. claimed that the sequence information alone can

determine the efficacy of siRNAs [23] while several other groups

suggested that thermodynamic features are important to siRNAs

effectiveness. In our previous study [21], we have applied an

aggregated ranking method to derive the common features for

siRNA design across different heterogonous datasets.

2. Inadequate consideration of the specificity of target
mRNAs

It has been proposed in the recent studies that the effect of

siRNAs on individual gene is not only influenced by site-specific

factors, such as the sequence match between siRNA-mRNA and

the local RNA structure, but also depend on other system-level

factors like the target mRNA cellular abundance and turn-over

rate [24,25] in the whole cell environment. Considering the

properties of mRNA do play an important role in determining the

binding efficacy of a siRNA, we believe that the general siRNA

design guidelines derived from individual dataset need to be re-

considered and improved. We propose that the traditional in-silico

models for siRNA efficacy prediction may no longer work properly

for the large-scale cross-platform data and more concerns on the

specificity of different target genes should be paid [20,21]. It

should be noted that when such specificity is concerned, two points

are needed to be raised firstly, (1) Since the system-level factors of

mRNA may influence the siRNA efficacy, we conjecture that

siRNA affinity prediction model should be built based on a

‘‘granularity’’ of mRNA, that it, it is better to compile siRNA

affinity data targeted on the same mRNA to build the prediction

model, rather than traditional work to mix the data from different

targets, since affinity of siRNA targeting on other mRNAs may

bias the design on the current target. (2) When we treat each

mRNA and its existing binding siRNA as an independent dataset,

the general problem faced here is that commonly the number of

experimental RNAi data toward a specific target mRNA is small,

and they are insufficient to train an accurate predictive model or

derive statistical significant design rules for more efficient and

specific siRNAs design.

These two points seem to be contradictory to each other. On

the one side, we need to consider siRNA dataset in a granularity of

mRNA. On the other side, the number of existing siRNA data

with measured affinity on a specific target mRNA is generally

insufficient. Nevertheless, if we treat the siRNA data on each

specific target as different task or domain, a probably solution to

‘‘unify’’ them is to perform ‘‘knowledge transfer’’ across the

domain/task, which helps to solve the data sparseness within a

specific domain/task.

In summary, two basic problems are raised and studied in our

paper: (1) if the existing siRNA affinity data for a specific mRNA

(Target mRNA) is insufficient, can we leverage the information on

other targets (Source mRNA) to help to construct the computa-

tional model for current target? That is, can we ‘‘transfer’’ the

knowledge from source mRNA to target mRNA to help its siRNA

design? (2) how to select suitable source mRNAs for knowledge

transfer, and what is the influence of different source mRNAs on

the target mRNA [26]?

In order to addressing these two problems, we formulate the

target-specific siRNA design in a transfer learning-based schema,

i.e., heterogeneous regression (HEGS) [27]. Our extensive analysis

indicate that HEGS can help to build a more accurate model for

target-specific siRNA efficacy prediction, alleviating the insuffi-

cient of training data taking the advantages of data transferred

from homogeneous genes, and substantially improving the design

for siRNAs with more affinity specific to the given target mRNAs.

Materials and Methods

Dataset
Ten experimental validated siRNA efficacy datasets from

different research groups were used in our study [19]. The

datasets were limited to siRNA sequences targeted at mammalian

mRNAs. By convention, siRNA sequences were represented as

anti-sense sequences from 59 to 39 and the siRNA potency was

measured by the mRNA/protein product levels after gene

silencing. A detailed description of the ten datasets is presented

in our previous published work [21]. Note that the siRecord data

(Ren, et al., 2006) was excluded from our study since the data used

categorical values, unlike continuous values used in the other

datasets in measuring the siRNA potency. The remaining datasets

contain nearly all the RNAi data using numerical siRNA efficacy

values reported so far. In totally 4,482 unique and experimentally

validated 19 nt siRNAs along with their efficacy values. The same

497 features proposed by Klingelhoefer et al. [19] were adopted as

the starting point of our study, including compositional, thermo-

dynamic and structural features, which is believed to be a
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comprehensive feature description for siRNA. These ten datasets

were treated as ‘‘cross-platform’’, with heterogeneity from each

other.

Besides these ten cross-platform datasets, 31 sub-datasets

compiled from the largest dataset, i.e., Novartis’s dataset, were

also used in our study. The 31 sub-datasets were divided based on

the ‘‘granularity’’ of mRNA. That is, the siRNA samples targeted

on the same mRNA were just taken as a sub-dataset, totally 31

sub-datasets targeted on 31 mRNAs (Table 1). Such data was used

to test our model on the target-specific siRNA design.

General workflow of our experiment design
The computational framework of our study is presented in

Figure 1, which can be divided into two parts: (1) The first part

was performed based on the 10 cross-platform siRNA datasets.

The simple linear regression model (baseline), was compared with

a simple data combination and normalization method (termed as

simply-combined model, SCM) as well as our proposed domain

transfer based model (HEGS) [27], in terms of the model

prediction performance (Tests 1–3). (2) The second part was

performed based on the 31 target-specific siRNA sub-datasets.

How different domains of source data influence the result of

HEGS model was investigated, and then, a couple of homologous

genes were selected as an example to demonstrate our feature

selection for target-specific siRNA design (Tests 4–6). A detailed

description of each test is listed in File S1.

General outline for HEGS model
Specifically, Figure 2 presents a general outline of HEGS

model. The basic idea of HEGS is to select a subset of source

examples similar in distribution to the target data to improve the

prediction ability of the model trained from target domain; All the

selected instances are ‘‘re-scaled’’ and assigned new output values

from the labeled space of the target task. In Figure 2A, it can be

seen that the training set in target domain can be enlarged based

on the data transferred from source domain, by a two-steps

procedures, i.e., (1) data distribution unification between the source

domain and target domain, and (2) output spaces unification

between source domain and target domain. These two steps are

described in Figure 2B and Figure 2C, where their details will be

explained in the following section.

Details of HEGS model
Definition and notation. In this section, we start by

presenting the definitions and notations in HEGS model for

target-specific siRNA efficacy modeling. In our study, the siRNA

affinity data were generally split into source domain and target

domain. This is naturally suitable for our 10 cross-platform

datasets or the 31 sub-datasets, where one dataset can be selected

as the target domain and the remains are taken as source domains.

We want to investigate how the siRNA efficacy prediction model

from target domain can be influenced by the knowledge

transferred from the source domain, and provide novel clues on

our target-specific siRNA design.

Supposing that we already selected one dataset, either from the

10 cross-platform datasets or the 31 sub-datasets, as the target

dataset; then the mathematic notions used in our study are listed in

the following:

The training set from the target source is denoted as L~(X ,Y ),

where X~(x1,x2, � � � ,xm)T is the data array (xi is the column

feature vector) and Y~(y1,y2, � � � ,ym)T denotes the correspond-

ing regression outputs (siRNA affinity); the test set from target set is

defined as U~(u1, � � � ,ut)
T where ui is the column feature vector

data array, here we use the 497 feature representation for siRNA

aforementioned [19]. The goal is thus to predict regression outputs

for Vui[U such that the predictive siRNA efficacy value is close to

the true value. We take the remain n datasets as n tasks in source

domains, denoted as S~fS1,S2, � � � ,Sng, and Si~(Wi,Vi) where

Wi is the data array like X in target domain and Vi is the

corresponding outputs.

It should be noted that the outputs (siRNA affinity) of the target

data and the source data are allowed to be heterogeneous, which is

defined as the same feature vectors with different outputs in

different datasets. A traditional method to unify the heterogeneous

outputs is to apply min-max normalization to transform the source

outputs into the same scale as the target outputs. However, this

idea requires that the source output spaces must be linear to the

target output space, which is often not accordance with our

problems. It has been suggested in our previous study that the

normalization strategy doesn’t work well for large-scale cross-

platform siRNA data [20].

Table 1. Description for 31 siRNA sub-datasets.

Sub-dataset
ID

mRNA with GenBank accession
number Data Size

1 BD135193 67

2 NM_004359 57

3 NM_003340 78

4 NM_003337 79

5 NM_003969 76

6 XM_371822 145

7 NM_015213 126

8 NM_003347 53

9 NM_003344 70

10 NM_003345 64

11 NM_014501 79

12 NM_004223 72

13 NM_016406 70

14 NM_014176 77

15 NM_001001481 78

16 NM_016021 49

17 NM_005339 79

18 NM_053656 77

19 NM_003348 79

20 NM_003342 79

21 NM_006357 79

22 NM_021988 74

23 NM_022005 72

24 XM_214061 144

25 NM_017346 46

26 NM_012864.1 75

27 NM_012864.2 75

28 NM_025237 75

29 NM_005450 71

30 NM_007019 76

31 NM_002559 90

doi:10.1371/journal.pone.0050697.t001
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Linear ridge regression. Given the training set L~(X ,Y )
from target domain, a linear ridge regression model minimizes the

following cost can be built to train a siRNA efficacy prediction

model:

J(w)~
X

i

(yi{wT xi)
2zlDDwDD

2 ð1Þ

where l is a positive regularization parameter that controls the

trade-off between the bias and variance of the estimate. The

predicted label (i.e. wT xi) of a new unlabeled example x is:

Y T~(KzlI)-1k ð2Þ

where Ki,j~xT
i xj and ki~xT

i x, in which kernel trick can be easily

applied [20].

It should be noted that we just use such a simple yet efficient

liner ridge regression model to train our siRNA efficacy prediction

model, since model selection is not our main focus here, and we

concentrate on how to take advantage of different sources to help

build the target predictive model. Considering the performance of

linear regression model is comparable to most of the more

complex methods on siRNA efficacy prediction, we employ the

linear ridge regression to train a basic siRNA efficacy prediction

model.

Heterogeneous regression for siRNA efficacy

prediction. The heterogeneous regression (HEGS) model is

based on a transfer learning paradigm initially proposed by us in

machine learning community [27]. The basic algorithm of HEGS

is described in Table 2. For each of the source tasks, HEGS first

selects a subset of examples that is similar to the target data in

distribution evaluated by the Kullback–Leibler (KL) divergence

(Step 3). The algorithm then generates new outputs for each of the

selected instances in Step 4. With the new training data (Step 5),

the algorithm then returns a regression model in Step 7 [27]. The

whole algorithm is soundly derived with a theoretical generaliza-

tion bound [27]. Step 3 and 4 are the two key steps used in this

model, which will be described in the next two sections

respectively.

KL divergence based sample selection. The basic idea of

KL divergence based sample selection is illustrated in Figure 2B.

Intuitively, the goal of the clustering-based KL divergence is to

perform clustering on the combined data set (target data and

source data), and then select the source data that are similar to the

target data in distribution evaluated by the clustering-based KL

divergence [27] , as defined in Equation (3), where smaller KL

divergence is preferred here.

Figure 1. Computational framework of our study.
doi:10.1371/journal.pone.0050697.g001
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KLc(TDDS)~
2

DTD
Uzlog

DSD
DTD

s:t: Vc, Ex[T,x[c½x�~Ex[D,x[c½x�
ð3Þ

Where S denotes the source dataset while T denotes the target

dataset. DSD and DTD denote the data size of T and S respectively.

Ex[T,x[c½x� denotes the centroid of data from T in cluster C, and U
is defined as the following:

Figure 2. General outline of HEGS model.
doi:10.1371/journal.pone.0050697.g002

Table 2. The HEGS Algorithm.

Step Procedure

Input: Target training data L~(X,Y); Target test data U ; Source tasks S~fS1,S2, � � � ,Sng
Output: Regression model parameter w

1 w0/regression(L)//Initial parameter

2 For each Si[S do

3 ~DDi/ min
D(Si

KL(U|XDDD)//KL divergence based sample selection

4 ~YYi/getOutput(w0, ~DDi)//Similarity preserved output generation

5 L/L|( ~DDi, ~YYi)

6 end

7 Return w/regression(L)

doi:10.1371/journal.pone.0050697.t002
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U~
X

C

(
DT\CD2

C
log

DT\SD
DS\CD

) ð4Þ

Where DT\CD represents the number of samples in T that are

contained in cluster C, and similar for DS\CD. For example, in

Figure 2B cluster C3 will not be selected because the sub-term in

equation (3) tends to be infinity, which makes KL very large.
Similarity Preserving Output Generation. After selecting

the samples from source data, we present the similarity preserved

output generation method [27] to generate new outputs for the

selected instances where their similarity in the original output

space can be preserved in the target output space, as illustrated in

Figure 2C. Basically it contains two steps. First, initial outputs of

the source samples are generated by the regression model learnt

from the initial training set, i.e., t1~wT
o d1, where d1 is the data

sample vector and wo is the regression parameter learnt from the

initial target training data. Next, the source samples are grouped,

which can be generated from clustering on the regression values in

the source output space. Then their assigned outputs are modified

towards their group centers to preserve their original similarity.

That is, if d1 and d2 are similar in their initial output space, the

new output t2 of d2 should be also similar to t1 of d1. Therefore the

values of t1 and t2 are modified to make them closer to their center

[27]. In Figure 2C group centers are marked with dash lines in the

target output space.

Results

Using ten cross-platform siRNA datasets and 31 target-specific

sub-datasets, a number of tests (Tests 1–6, which can be referred in

File S1) were performed. Our results were also demonstrated in

two parts, corresponding to the general workflow of our

experiment design as illustrated in Figure 1: (1) Firstly, the

regression accuracies of HEGS, SCM and the baseline (traditional

linear ridge regression) on the 10 cross-platform datasets were

compared (Tests 1–3), and (2) Based on the 31 sub-datasets, the

target-specific siRNA efficacy analysis and siRNA feature selection

at an mRNA-level were performed (Tests 5–7). In all the tests, the

root mean square error (RMSE) was adopted as the performance

evaluation. In addition, the paired t-test was conducted to verify

the statistical significance between two different models.

HEGS for cross-platform siRNA efficacy prediction
Comparison between the baseline strategy and a simple

data combination and normalization strategy in siRNA

efficacy prediction. To learn whether a simple combination

and normalization method can improve the siRNA efficacy

prediction or not, we compared it with a normal single platform

regression model on the 10 cross-platform siRNA datasets. In this

study, we randomly selected 50% of the data from each dataset as

the training data to train a linear ridge regression model, and then

tested it on the remaining 50% of the data. The process was

repeated 10 times and the average RMSE for each dataset was

calculated. This test strategy was taken as the baseline method

here (Test 1). The result was compared with another test strategy

(Test 2), in which the same procedure was applied except that we

treated each dataset as target dataset respectively, and we

randomly selected 50% of the data in target dataset to combine

with all the data in other datasets (source dataset) as training data

to train the model, and tested it on the remain 50% of the target

dataset. From Table 3, we can see that even all the data were

normalized in the same range [0,1], and the data from source

datasets were add to the training data, the prediction accuracy was

still not improving. Moreover, worse results in almost half of the

datasets were founded. Based on this study, we draw the

conclusion that simple combination and normalization of cross-

platform data source provides little improvement on the siRNA

efficacy prediction of a particular platform, which encourages us to

apply more sophisticated HEGS to integrate data across different

dataset.

Comparison between the baseline strategy and HEGS in

siRNA efficacy prediction. Comparison between baseline and

HEGS was performed on the 10 cross-platform datasets respec-

tively. It should be noted that due to different bio-experimental

conditions aforementioned, the outputs of different datasets are

heterogeneous. As an example, Figure 3 illustrated the distribu-

tions of the output values of the first two datasets. In this study, we

set each of the 10 cross-platform datasets as target task

individually, while the rest datasets were taken as source tasks to

train the HEGS model respectively (Test 3). It was compared with

the baseline strategy trained with various different percentages of

data from each target dataset, to examine the impact of the size of

training set on the performance of the model. The testing results

averaged on 10 runs were reported in Table 4 and Figure 4.

From Figure 4, it can be clearly seen that HEGS achieved better

performance as compared to baseline under various training data

percentages for nearly all the experiments, except for dataset 9,

probable due to its relatively small data samples. Pair t-test

evaluation showed that HEGS is significantly superior to baseline

in siRNA efficacy prediction with different percentages of training

samples (Table 4), which indicated that the knowledge transferred

from source domain do help for siRNA efficacy modeling in the

target domain. Moreover, as shown by the p-values, the

significance of the difference between two methods was negatively

correlated with the percentage of the training data, suggesting that

our HEGS can greatly improve the accuracy of the siRNA affinity

modeling especially when the existed RNAi data is insufficient.

HEGS for target-specific siRNA efficacy analysis
Target-specific siRNA efficacy modeling. In this study, we

grouped the siRNAs binding to 31 mRNAs in Novartis’s dataset

[17] as 31 sub-datasets, to investigate the target-specific siRNA

efficacy modeling under various in silico strategies. We first ran

nucleotide BLAST on the 31 mRNAs to find whether there exist

any two genes with highly homology, which resulted in two

couples: (1) NM_002559 and NM_053656, two homologous genes

with a max identity referring to 95%; and (2) NM_012864.1 and

NM_012864.2, which are two different versions of the same gene.

Then nucleotide sequences of the 31 target mRNAs were

downloaded from Genbank and a phylogenetic tree was built

using MEGA 5.03 [28] to find the genes with highly genetic

relation, as showing in Figure 5. It can be seen that the same two

clades of the tree were also identified with bootstrap values larger

than 90, indicated that the genes on these two clades are

genetically related to each other (Highlighted in red in Figure 5).

The results of ClustalW alignment of these two clades are provided

in Figure S1 and Figure S2. For each clade, the sub-dataset

corresponding to one of the genes was taken as target task and the

other one was taken as source task to train the HEGS, respectively

(Test 4). This test was particularly designed to address the first

problem as we proposed in INTRODUCTION: when we design

siRNAs target on a specific mRNA, but lack of its affinity data

towards this target, can we leverage the existed siRNA affinity

information targeted on its highly homologue genes? In addition,

in order to further investigate the influence of source data on the

target data, as the second problem we proposed in INTRODUC-

TION, we want to examine whether it is better to transfer from

In Silico Target-Specific siRNA Design
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the most similar tasks (homologue genes) than those from all the

source tasks (all the genes) for siRNA design? With these two

questions in hand, we compared Test 4 with another two test

scenarios: (1) HEGS with all the remain data samples in Novartis’s

as the sources task (Test 5), and (2) the baseline model without

transfer (Test 6).

This study was performed on 2 clades of the tree, totally

containing 4 sub-datasets. Each dataset was selected as the target

task respectively, and compared in three different test sceneries

(Tests 4–6). The test data in the target task was hold with 10% to

90% of the whole data. The results on 10 runs of the three tests for

the 4 mRNAs were plotted in Figure 6, from which we observed

that compared with the baseline, extracting samples from highly

homolog genes indeed help improve the learning accuracy,

especially when the training dataset is small. Furthermore, with

a little surprising, samples extracted from all the other genes help

to achieve more significant improvement, as the performance of

Test 5 outperformed the other two in almost all cases with

different percentages of training data in the target domain,

especially for the two sub-datasets corresponding to genes

‘‘NM_053656’’ and ‘‘NM_002559’’.

Does this means that the more number of data it contained in

source domain, the better improvement it obtained by knowledge

transfer for target-specific siRNA affinity modeling? We found that

this is not always the case when we examined the amount of source

data in a following way (Test 7): we randomly added the 31 sub-

dataset one by one to the source domain to enlarge it, and

compared it with the baseline and HEGS_Homol at every step,

and this procedure was repeated for 10 times. The average results

were illustrated in Figure 7. We found that the results are fairly

random for all the 4 mRNAs. Although knowledge transfer always

achieved a better result compared to that of baseline, it is not

necessarily that the more number of source domain in transfer

performed better than that of less one. This test indicated, at least

for the current dataset, there exists no significant positive

correlation between the data amount of source domain and the

Table 3. Comparison of the baseline strategy and a simple data combination and normalization strategy in siRNA efficacy
prediction.

Test RMSE

D1 D2 D3 D4 D5

Test 1 0.1556 0.2639 0.1414 0.2649 0.1766

Test 2 0.1749 0.2513 0.1610 0.2595 0.2502

D6 D7 D8 D9 D10

Test 1 0.2704 0.3580 0.2363 0.1965 0.3105

Test 2 0.2659 0.2254 0.3357 0.1923 0.2757

doi:10.1371/journal.pone.0050697.t003

Figure 3. Distribution difference of the output values in Dataset 1 and 2 (Although the output values of Dataset 1 and 2 are scaled
to [0, 1], the distribution between these two datasets is different).
doi:10.1371/journal.pone.0050697.g003
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performance of target-specific siRNA affinity modeling. From the

biological point of view, we still recommend to select the most

homologue genes as source task to transfer for the target-specific

siRNA design, especially when large number of siRNA affinity

data for this source mRNAs existed. Such transfer will be ‘‘safer’’

since the source mRNA and target mRNA are evolutionarily

closed.

Feature selection for target-specific siRNA design. In

this section, we further studied how the domain transfer can be

helpful for target-specific feature selection for siRNA design. As an

example, we selected one couple of genes (NM_002559 and

NM_053656) on the two homologue clades in Figure 5, since they

are highly homologous. It should be noted that we can similarly

check other homologue pairs here, which will not be discussed in

detail. The basic idea of this study is that we want to examine

whether HEGS-based feature selection on the siRNA data for one

specific mRNA can be helpful for the siRNA design for another

mRNA, provided that these two mRNAs are homologue. In this

study, the siRNA data binding to mRNA NM_002559 were used

as an independent test dataset. Its homologue gene, Gene

NM_053656 with its binding siRNA was set as a target dataset

and the remaining siRNA in Novartis’s dataset was taken as source

dataset. We want to mimic such a scenario in in-silico siRNA

design: if we want to design efficient and specific siRNAs for the

gene NM_002559, while there doesn’t exist any prior knowledge

or experimental siRNA binding affinity data to this gene, can we

use its homologue gene NM_053656 to help its siRNA design,

provided that there existed a few but not sufficient siRNA affinity

data to NM_053656? We proposed that we can use HEGS to

improve the feature selection for target NM_053656, and then

these selected features after HEGS can be used for improved

siRNA design for target NM_002559.

Firstly before HEGS, we used two criteria proposed in the

previous study [10] to select siRNA features which were related to

the siRNA efficacy for NM_053656 on the current dataset: (1) the

selected features must have a correlation of at least 0.1 with its

Figure 4. Comparison between the baseline strategy and HEGS in siRNA efficacy prediction (the parameter l of ridge regression
were kept the same).
doi:10.1371/journal.pone.0050697.g004

Table 4. Pair t-test p-values for the comparison between
HEGS and baseline with different percentages of training data
for 10 datasets.

Pair t-test on baseline and HEGS

Training data percentage 10% 30% 50% 70% 90%

p-value 0.00087 0.0022 0.0032 0.0056 0.014

doi:10.1371/journal.pone.0050697.t004
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siRNA efficiency, and (2) this correlation is statistically significant

at 0.05 level to distinguish active and non-active siRNA. As a

result, 28 features were identified with a significant correlation to

siRNA efficacy. The features ranked with their correlation

coefficient were listed in order in Table 5.

Then we transferred knowledge from all the other mRNA

dataset by HEGS to help to improve the size of target siRNA

dataset on NM_053656, and used this enlarged dataset to select

the features under the same criteria. The transfer process was

repeated 1000 times and the top-28 features were selected and

ranked with their frequency of occurrence, as shown in Table 6.

Compared from Table 5 and Table 6, we can see that there

indeed exists a considerable difference between the selected

features before and after HEGS. The probable reason underlying

is that currently the accumulated siRNA affinity data for a specific

mRNA target (NM_053656) may not be sufficient, thus the feature

selection performed on the insufficient dataset may not reveal the

truly significant features for target-specific siRNA design. With the

more experimental siRNA data accumulated, more robust and

accurate feature selection can be achieved. Furthermore, in the

next section we will see these features are better in modeling

siRNA affinity for the independent test target NM_002559.

Figure 5. Discover the target genes with high homology using the phylogenetic tree (Three couples of homologous genes were
identified: NM_002559 and NM_053656, NM_005339 and NM_003348, NM_012864a and NM_012864b).
doi:10.1371/journal.pone.0050697.g005
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Validation of the selected features. To validate whether

the HEGS-based selected features were superior to target-specific

siRNA design, regression models were trained with the two feature

lists for siRNA efficacy prediction on the independent test dataset

NM_002559, respectively. Traditional linear ridge regression was

applied to construct the predictive model. Different percentages of

training data and 10 times 10-fold cross-validation were applied to

evaluate model generalization. Results were given in Table 7. It

Figure 6. Target-specific siRNA efficacy modeling with different test strategies (Red line represents the RMSE obtained by the
baseline strategy, labeled as ‘‘Single’’. Yellow line represents the RMSE obtained by transfer from the data of all the other genes, labeled as
‘‘HEGS’’. Blue line represents the RMSE obtained by transfer from the data of the homologues gene, labeled as ‘‘HEGS_Homol’’).
doi:10.1371/journal.pone.0050697.g006
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was clear that the predictive model using HEGS-based features

slightly outperformed that using the features without knowledge

transfer.

In addition, we investigated the relations between the HEGS-

based 28 features and test siRNAs. The bold items in Table 6

represent newly identified features with statistically significances to

distinguish active and non-active siRNA targeted on NM_002559.

These features are derived based on HEGS for target

NM_053656, which is a homologue gene of NM_002559. All

the top 7 features belonging to the categories of thermodynamic

features and compositional features (GC contents), are statistically

significant for siRNA design on NM_002559. The motif features

and structure features which were important for siRNA design on

NM_053636, however, contributed much less to that on

NM_002559. The p-values of these features were either between

0.05,0.1 or larger than 0.1 (not shown as blanked in Table 5 and

Table 6). Details of these newly identified features will be discussed

in the next section.

Discussion

HEGS can improve learning accuracy for siRNA efficacy
prediction

In our study, the results of our in silico tests demonstrated that

when the number of target siRNA data is limited, HEGS can

improve the prediction for siRNA efficacy by increasing the

potential source of training data. Compared to the simple

combination of different datasets, HEGS provides an effect way

to solve the problem brought by the heterogeneity of different

datasets. Due to the different data distributions of the source data,

Figure 7. Target-specific siRNA efficacy modeling with different amount of source data (Red node represents the RMSE value
obtained without transfer. Yellow node represents the RMSE value obtained by homologue gene transfer. While other blue nodes represent the
RMSE values obtained by randomly added the 31 sub-dataset one by one to enlarge the source domain in transfer).
doi:10.1371/journal.pone.0050697.g007
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direct use of the source examples is unsuitable to the learning with

limited improved predictive accuracy. It should be noted that the

‘‘negative transfer’’ should also be avoided as it can negatively

affect the learning results. Like the experiment 9 in Test 3,

sometimes redundant source data were harmful for model

construction [29].

Design of siRNA based on the specificity of target mRNA
It has been confirmed that the system-level factors of mRNA,

like the target mRNA cellular abundance and turnover rate,

influence siRNA efficacy [24,25]. We also found in our previous

study that in siRNA efficacy prediction, there indeed exist certain

efficacy distribution diversity across the siRNAs binding to

different mRNAs, and this distribution diversity seems to be weak

within the siRNAs binding to the same mRNAs [20,21]. These

findings help validate the observation that the properties of mRNA

do have impact on the efficiency and specificity of siRNA design,

since certain data heterogeneity has been detected across the

siRNAs binding to different mRNAs. Therefore we hold the

reason to improve the target-specific design of siRNA from the

viewpoint of considering the heterogeneity across siRNAs binding

to different targets.

In Test 4,6, we studied whether HEGS can help train an

accurate predictive model given that the siRNA data towards a

specific target mRNA is insufficient. In reality, as we often have no

prior knowledge about the siRNAs binding to the target gene, we

focus on the siRNA data available with their target gene that is the

homology to the gene to silence. We no longer adopt the same 497

siRNA features described in the literature [19] to construct the

predictive model since such a feature space is too large for accurate

and time-saving analysis. The similar characteristics within the

homologous genes inspired us to discover some features that are

significant to siRNAs binding to a specific target mRNA. From the

results of Table 5 and Table 6, we confirmed that the HEGS-

based features selected from the siRNAs binding to homologous

gene NM_053656 do enhance the predictive accuracy of siRNAs

binding to gene NM_002559. Further analysis on the selected

features allowed us to identify that some of these features

(presented in bold) after HEGS are significant as well for the

siRNAs binding to NM_002559. It can be observed from Table 5

that all the significant features belong to the categories of

compositional features and thermodynamic features. In the

following we just discussed these features that are important for

target-specific siRNA design.

Table 5. Selected features for siRNA targeted on NM_053656 before HEGS.

Feat. ID Feat No Features siRNA for NM_053656 siRNA for NM_002559

R p-value R p-value

1 477 dG(NT[1,2]) - dG(NT[18,19]) 0.5248 6.77e-03 0.4936 5.49e-05

2 415 dG in NT[1,2] 0.5151 3.95e-05 0.4359 1.65e-04

3 41 U @ NT1 0.4189 3.99e-03 0.4337 1.78e-05

4 498 dG(NT[1,2,3,4]) – dG(NT[18,19]) 0.3815 0.033 0.2986 0.011

5 22 G @ NT1 20.3634 0.007 20.3975 1.02e-04

6 344 UCUG in NT[1..19] 0.3499 8.0e-05

7 274 GCAC in NT[1..19] 0.3278 0.046

8 365 CACU in NT[1..19] 0.2727 0.0043

9 469 NT18 forms bond 20.2689 0.0089

10 364 CACG in NT[1..19] 0.2597 0.0496

11 468 NT17 forms bond 20.2511 0.0059

12 315 UGCA in NT[1..19] 0.2497 4.3e-04

13 281 GCUU in NT[1..19] 0.2480 1.97e-05

14 155 CCA in NT[1..19] 20.2478 0

15 115 GGA in NT[1..19] 20.2449 0.0084

16 339 UCGA in NT[1..19] 0.2427 0.0134

17 333 UUCU in NT[1..19] 0.2402 0.0074

18 329 UUUU in NT[1..19] 0.2153 0.0045

19 94 CC in NT[1..19] 20.1998 5.35e-04

20 495 GC content ,0.55 0.1911 0.013 0.2658 0.0054

21 434 dG in NT[1..4] 0.1713 0.025 0.3531 0.0015

22 138 UUC in NT[1..19] 0.1591 0.025

23 108 ACG in NT[1..19] 0.1488 0.023

24 2 GC content in NT[1..19] 20.1457 3.44e-03 20.3389 0.0051

25 42 U @ NT2 0.1345 0.0248

26 57 U @ NT17 20.1324 0.0209

27 433 SUM of dG 0.1297 8.24e-03 0.3388 0.0126

28 126 GCC in NT[1..19] 20.1254 0.0025

doi:10.1371/journal.pone.0050697.t005
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Compositional features. The connection between GC

content and siRNA efficacy is focused by a few research groups

[8,12,19–21]. However, the association between GC content and

siRNA functionality is described differently among studies. For

instance, Klingelhoefer et al. [19] suggested that siRNA candidate

sequences with GC content in the range of 35–73% have an

increased potency. Matveeva et al. [18] identified a GC content of

20–53% as more advantageous for siRNA design. Table 5

revealed three features of GC content as significant for predicting

siRNA efficacy in the independent test dataset: GC content ,55%

(Feat.ID = 1), GC content .45% (Feat.ID = 2) and GC content in

19 nt antisense strand (Feat.ID = 14). The positive correlation of

feature GC content , 55% shows that siRNA sequences with

these features have an increased efficacy to affect the target mRNA

NM_053656 or NM_002559, which is consistent with the upper

limit for GC content in Matveeva’s literature. Similarly, the

negative correlation of feature GC content in 19 nt antisense

strand indicates that very high GC content may be a negative

determinant of functionality since it can inhibit the dissociation of

the siRNA duplex, which is necessary for RISC loading. The

lower limit for GC content can be discovered from the feature GC

content .45% (Feat.ID = 2), which is, however, negatively

correlated with siRNA efficacy in test dataset. Hence, we

examined 73 siRNAs of which the GC content are larger than

0.45 in the test set and found only 16 of these siRNAs have a high

efficacy (efficient value ,0.3). Moreover, all the 16 efficient

siRNAs share a GC content between 0.45 and 0.55, which

corresponds with the other two features. Previous studies argued

that very low GC content is associated with decreased function-

ality, presumably due to lowered target affinity and specificity [22].

Such inconsistence, as well as the variety of the percentage of GC

content between studies, may result from the different character-

Table 6. Selected features for siRNA targeted on NM_053656 after HEGS.

Feat. ID Feat No Features siRNA for NM_053656 siRNA for NM_002559

R p-value t-test p

1 494 ‘GC content ,0.55’ + 0.2658 0.0054

2 485 ‘GC content .0.45’ + 20.2428 0.0019

3 493 ‘GC content ,0.6’ +

4 476 dG(NT[1,2]) - dG(NT[18,19])’ + 0.4936 5.94E-05

5 484 ‘GC content .0.4’ +

6 414 ‘dG in NT[1,2]’ + 0.4359 0.0001

7 497 dG(NT[1,2]) – dG(NT[16,17,18,19])’ + 0.2986 0.0113

8 492 ‘GC content ,0.65’ +

9 483 ‘GC content .0.35’ +

10 80 ‘AU in NT[1..19]’ 2

11 86 ‘UA in NT[1..19]’ +

12 491 ‘GC content ,0.7’ +

13 432 ‘SUM of dG’ + 0.3389 0.0126

14 1 ‘GC content in NT[1..19]’ 2 20.3388 0.0051

15 96 ‘AAU in NT[1..19]’ 2

16 85 ‘GC in NT[1..19]’ +

17 104 ‘AUU in NT[1..19]’ 2

18 449 ‘SUM of dG4’ + 0.3491 0.0118

19 91 ‘CG in NT[1..19]’ + 20.3070 0.0099

20 126 ‘UAA in NT[1..19]’ 2

21 490 ‘GC content ,0.75’ 2

22 496 dG(NT[1,2,3,4]) – dG(NT[18,19])’ +

23 495 dG(NT[1,2,3,4]) – dG(NT[16,17,18,19])’ +

24 115 ‘GGG in NT[1..19]’ 2

25 471 ‘G stretch of length . = 3’ 2

26 450 ‘Folding in NT[1..19]’ 2 20.3869 0.0011

27 136 ‘UUU in NT[1..19]’ 2

28 102 ‘AUA in NT[1..19]’ 2

doi:10.1371/journal.pone.0050697.t006

Table 7. Comparison of RMSE for the prediction model on
the target NM_002559 with HEGS-based features and features
without transfer, under different training data percentages.

NM_002559 0.1 0.3 0.5 0.7 0.9 10-fold CV

Without transfer 0.2787 0.2480 0.2370 0.2327 0.2234 0.2221

Transfer 0.2484 0.2332 0.2234 0.2220 0.2077 0.2095

doi:10.1371/journal.pone.0050697.t007
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istics of target mRNAs as well as the improperly using of different

combined siRNA data in previous studies.

Thermodynamic features. Three of the top 7 features after

HEGS are thermodynamic features, indicating the critical role of

the thermodynamic properties of siRNA in duplex unwinding and

strand retention by the complex. We found that the thermody-

namic stability difference between the 59 and 39-end of the

antisense strand (Feat.ID = 4) is more important than the separate

59 features (Feat.ID = 6), which has been pointed out by several

studies [12,18]. Moreover, such difference between the first and

last dinucleotide (dG1-2 – dG18-19, Feat.ID: 4) seems to be more

notable than the other combinations of the end strand stability

terms, such as dG1-4 – dG18-19 (Feat.ID = 22) and dG1-4 –

dG16-19 (Feat.ID = 23), which accords with the results that the

first tetranucleotide (dG1-2, Feat.ID = 2) is more critical than the

first dinucleotide (dG1-4, Feat.ID = 21). It is typical of the efficient

siRNA duplexes to contain less stable 59 ends and more stable 39

end of the antisense strand. In addition, the total free energy (SUM

of dG, Feat.ID = 13 and SUM of dG4, Feat.ID = 18) was also

included in the significant features, which implies that the stability

of longer stretches of neighboring nucleotides may have an impact

on siRNA efficacy as well.

Structural features. A negative correlation between the self-

folding (Feat ID: 26) of a siRNA and its silencing potential is

identified, which emphasizes the probability that the presence of

siRNA secondary structure may affect the interaction between the

guide RNA and its target.

The remaining features are not important to all the siRNAs. In

particular, the motif features selected from the siRNA data binding

to NM_053656 are less significant to the siRNA binding to

NM_002559. Thus we speculated that these features won’t

guarantee the high efficacy of siRNAs undoubtedly, hence they

should not be used to improve the design of target-specific siRNAs.

Throughout the features selected in our study, they are

somehow distinct from the current generally acknowledged siRNA

design rules in the field of RNAi. We cannot simply make the

judgment on whether a certain feature is important or not by

simply statistical evaluation. However, from our study we

confirmed that the joint siRNA design rules should be considered

along with the target-specific design rules to improve the efficiency

of siRNAs to reduce their OTEs for a specific target.

With the increasing need of therapeutic siRNA, it requires us to

develop the siRNA drugs that can silence disease genes effectively

and safely. This can be analogues to the Quantitative Structure

Activity Relationship (QSAR) study in chemistry community [30],

where the molecules binding to one target should have a specific

QSAR model for biological activity prediction rather than mix all

the targets together. From this point of view, we consider that the

siRNAs binding to one target mRNA may also contain inherent

characteristic we may not uncover, and should hold their own

efficacy predictive model. For a particular target gene, this can be

achieved by firstly design the siRNAs targeting the homologous

genes in animals such as mouse to derive the specific design rules,

and then apply such domain transfer based design guidelines to the

in-vivo siRNA design in human clinical trials.
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