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Abstract: It has been very difficult to predict the development of the COVID-19 pandemic based on
mathematical models for the spread of infectious diseases, and due to major non-pharmacological
interventions (NPIs), it is still unclear to what extent the models would have fit reality in a “do
nothing” scenario. To shed light on this question, the case of Sweden during the time frame from
autumn 2020 to spring 2021 is particularly interesting, since the NPIs were relatively minor and
only marginally updated. We found that state of the art models are significantly overestimating
the spread, unless we assume that social interactions significantly decrease continuously throughout
the time frame, in a way that does not correlate well with Google-mobility data nor updates to
the NPIs or public holidays. This leads to the question of whether modern SEIR-type mathematical
models are unsuitable for modeling the spread of SARS-CoV-2 in the human population, or whether
some particular feature of SARS-CoV-2 dampened the spread. We show that, by assuming a certain
level of pre-immunity to SARS-CoV-2, we obtain an almost perfect data-fit, and discuss what factors
could cause pre-immunity in the mathematical models. In this scenario, a form of herd-immunity
under the given restrictions was reached twice (first against the Wuhan-strain and then against
the alpha-strain), and the ultimate decline in cases was due to depletion of susceptibles rather than
the vaccination campaign.

Keywords: modeling; SARS-CoV-2; COVID-19; SIR; SEIR

1. Introduction
1.1. Background

In March 2020, when it became clear that the COVID-19 outbreak was turning into a
global pandemic, mathematical models were used to predict the magnitude of viral spread
and health care needs, which had a major impact on public policy. For example, the Imperial
College report No. 9 predicted an 81% hit-rate within a couple of months, in the worst case
scenario [1], if the government did nothing to mitigate or suppress the pandemic. This led to
a subsequent strategy shift towards suppression and eventually lock-down in the UK on 23
March 2020, as well as in many other countries world-wide. In sharp contrast, the Swedish
government decided to keep the society relatively open and maintained relatively minor
and rather fixed non-pharmacological interventions (NPIs) until the summer of 2021, when
the majority of the population had been vaccinated. Sweden therefore provides an excellent
example that can be used to test the validity of epidemiological mathematical models.
Rather surprisingly, in the light of typical modeling outcomes, it is estimated that the total
hit-rate in major Swedish cities was just above 20% in March 2021, one year after the onset
of the pandemic [2] (Supplementary Material explains how to access the data in [2]). in this
article, we analyze potential explanations for this drastic reduction.

In April 2020, when seroprevalence measures indicated a hit rate of around 5% [2],
we observed a decline in admissions to intensive care units (ICUs) that continued through
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May and led to very low new ICU-admissions during the summer of 2020, indicating that
the viral spread in society was very low as well. This is also visible in Figure 1, displaying
daily cases of COVID-19 in Stockholm County. Note that the data from the “first wave” is
very unreliable since there was no large-scale public testing before May 2020.

Figure 1. Full data series (weekly average) from the Swedish Public Health Agency. During first
wave, only patients admitted to hospital were tested, so the data are very unreliable. General testing
started in late May 2020. The red section indicates the time frame we focus on in this paper.

When a major deadly epidemic hits, the society reacts in a way that is impossible to
predict mathematically, sometimes referred to as “herd-protection”. Therefore, mathemati-
cal models are often grossly wrong in their predictions, as exemplified by previous potential
disasters, such as various Ebola outbreaks [3,4]. This phenomenon, i.e., major voluntary
reductions in social interactions, could, in theory, explain the difference between model
outcome and reality also for SARS-CoV-2 in Sweden. However, the decline of the first wave
happened despite the fact that schools were open and face-masks were not used. Even so,
the seroprevalence among children aged 0–19 was very low, just above 6%, in June 2020
after the first wave [2]. It seemed difficult to envision such a development was the result
of NPIs and voluntary measures alone, indicating that a part of the population could have a
higher protection against contracting SARS-CoV-2, i.e., having some sort of pre-immunity.

1.2. Contributions

We use publicly available data from the Swedish Public Health Agency regarding
incidence, variants, vaccination coverage and seroprevalence of SARS-CoV-2 in Stockholm
County, Sweden, along with tailor-made mathematical models, in order to test these
different explanations of what kept the spread at bay in Sweden. We base our model on an
extension of a SEIR-model with age-stratification, developed by Britton et al. [5], which we
update to include antibody waning and vaccination roll-out. For comparison with real data
we chose the metropolitan area of Stockholm with about 2,400,000 inhabitants, since effects
due to geographical isolation are likely negligible, compared with more scarcely populated
areas elsewhere. We test the hypotheses: the observed fluctuations in cases are due to:
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(1) Variations in NPIs and/or population behavior over time;
(2) Some form of protective pre-immunity and natural depletion of susceptibles.

Although the reality certainly could be a mixture of both, we find that the former
hypothesis is unlikely to be the sole explanation, whereas we obtain a good data fit in the sec-
ond hypothesis (which assumes that social contact patterns were constant during the time
frame studied). In this scenario, our modeling implies that Sweden has reached herd
immunity twice (given the mild restrictions), once to the Wuhan-strain in early December
2020, and thereafter to the alpha-strain in the beginning of April of 2021. Additionally,
the effect of the vaccination scheme in the decline of the alpha-wave seen in May 2021 is,
given this hypothesis, marginal.

In a separate study [6], we demonstrate that, from a modeling perspective, a number
of population heterogeneities, such as variable susceptibility, variable activity patterns, as
well as self-isolatory measures, seem to have an effect identical to assuming that a certain
proportion of the population had a sterilizing pre-immunity. This “pre-immunity”, if
it indeed existed, is thus likely a manifestation of a much more complex phenomenon than
the name suggests, and to underline this we will refer to it as “artificial pre-immunity”.
In other words, it is possible that including “artificial pre-immunity” in mathematical
models is crucial for good model fit, even if sterilizing immunity against the virus, a priori
to the disease, does not exist on an individual level. A more rigorous attempt at explaining
what this artificial pre-immunity derives from is found in [7], which we also discuss to
some extent in Section 5.3.

2. The COVID-19 Pandemic in Sweden
2.1. Choice of Time Frame

We removed the “first wave” from our study, for a number of reasons. First, testing
was very unreliable, mainly limited to hospitalized patients only, and, hence, we have
no data to compare the models with. Secondly, it is clear that major oscillations in social
interactions took place during this period, and this can not be built into mathematical
modeling in a reliable manner. Additionally, social interactions significantly drop during
the Swedish summer vacations, which comes close to a soft lockdown. In September of 2020,
when schools had reopened, society had largely returned to a “new normal”. At the time,
most people were convinced there would be no more major waves in Sweden, and the chief
epidemiologist continuously downplayed the situation, for example describing a 35%
increase in new cases in Sweden as “a small cautious increase” [8]. During the autumn,
the number of cases were never alarmingly high and the hospitals were coping with
the stream of patients, and hence there was never a sense of panic. Indeed, at the peak
of the second wave, seen as the first wave in Figure 2, the recommendations for the elderly
to self-isolate were lifted, thus sending a message that the pandemic was under control to
the population. It is crucial to underline that mathematical models work well, in theory,
also during NPIs and voluntary social reductions, as long as these are kept fairly constant
during the modeling time frame, and we believe that this was the case from September
2020 to May 2021. Another factor that speaks in favor of this time frame is that testing was
widely available, so data from this period are reliable, (although needs to be adjusted to
account for under-reporting of cases and asymptomatic infections). Furthermore, the fact
that only two major strains are involved, the original Wuhan-strain and alpha, allows us to
separate the amount of cases from each respective strain, which is key for modeling.

We do not include the delta and omicron waves in our study for a number of reasons,
the key reason is that the majority of the population then was vaccinated, which significantly
alters the model and moreover the data on seroprevalence no longer gives any information
about how many had had COVID-19. Moreover, while it is clear that antibodies from both
natural infection and the vaccine protected against delta, it is not clear to what degree,
and, hence, it is not possible to perform any reliable mathematical modeling. Concerning
the omicron-wave, it is known that neither antibodies from the vaccine nor natural infection
gave a strong protection against contracting omicron, but to what extent did it give partial
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protection? Without a certain answer to these questions, further mathematical modeling
becomes too speculative. Of course, the fact that there was no major delta wave but a
substantial omicron wave is interesting, and will be discussed further in Section 5.2

Based on the above remarks, we argue that the time frame from September 2020 to
May 2021 is optimal for mathematical modeling.

Figure 2. (Left): 7-day rolling average of new cases in Stockholm county, adjusted to match
the reported increase in seroprevalence of antibodies against SARS-CoV-2. The numbers 1–5 cor-
respond with the updates to the NPIs in Table 1. (Right): total cases separated in Wuhan-strain
and Alpha-strain.

Table 1. Summary of major updates to the NPIs in Sweden between September 2020 and May 2021.

1 (Oct-20) Recommendations for elderly (70+) to self-isolate are removed and replaced by
the same recommendations as for the general population.

2 (Nov-20)
Before 1 November the maximum amount of visitors to a public event was 50,
which then was changed to 300, although a cap on maximum 50 participants
in dancing events remained.

3 (Nov-20) Prohibited public gatherings involving more than 8 people (shopping,
restaurants, bars etc., were exempt from this rule).

4 (Dec-20) Alcohol-sales only until 20.00, compared with 22.00 previously.

5 (Jan-21) Facemask recommendation is issued for health care visits and rush-hour
public transport.

2.2. Separating the Data

Data for new cases in Stockholm County based on PCR-testing, which has been
obtained from the Swedish Public Health Agency “Folkhälsomyndigheten” (see Supple-
mentary Material for details) and averaged over a 7 day window, is displayed in Figure 1
and a zoom of the relevant time frame is displayed in Figure 2 (left). The most important
thing to realize in order to understand the graph in Figure 2 is that what we see is two
distinct waves superimposed. Thanks to available data on variants of concern collected by
the Swedish Public Health Agency [9], we know what percentage is caused by the Wuhan
strain and the variants of concern, respectively. The second wave seen in the figure (i.e., the
third wave in reality) is almost entirely caused by the “British variant” B.1.1.7, also known
as alpha. It also contained small portions of other variants of concern, P.1, B.1.167, and
B.1.351, but those caused, at most, 6% of the cases (in the month of February) and even less
in the last measurement, so for simplicity we shall refer to it as the alpha-wave, whereas
we shall call the first wave (in Figure 2) the Wuhan-wave. The separation in cases due to
the original “Wuhan-wave” and “alpha-wave” is displayed in Figure 2 (right).
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2.3. The Swedish NPIs

Sweden provided a unique opportunity to test mathematical models for disease
progression, in particular the densely populated metropolitan area of Stockholm with
about 2.4 million inhabitants, due to the virtually constant NPIs. The only major change
in these during the time frame Sept 2020 to May 2021 was the closing of high-schools
(age-group 15–18 years) on 7 December 2020 and subsequent reopening on 1 April 2021.
Bars and restaurants have been open but only with table-service and a maximum of 4
people at each table. In addition, a number of minor changes in the recommendations were
made, which are collected in Table 1, (also marked in the timeline in Figure 2). It should
be noted that public compliance with these restrictions was not ideal, for example less
than one out of three was reported to follow the recommendation concerning facemasks
in public transport, based on random testing performed by the Swedish Public Broadcasting
company [10].

Neither these policy-updates nor any of the major holidays (Autumn, Christmas, Sport,
and Easter school holidays), see Figure 2 (left), seems to have had any notable effect on
the two waves. In particular, the Wuhan-wave was declining rapidly before the Christmas-
break and subsequent mask-recommendations, and the alpha-strain had leveled out before
the Easter break. It is also noteworthy that the relaxations 1–2 coincide with the time when
the second wave looses momentum and levels out. Altogether this is an indication that
neither holidays nor updates to the NPIs had a major impact on case numbers. Moreover,
one has to bear in mind that the Swedish population had been informed by the Swedish
Public Health Agency that frequent washing of hands and keeping 2 m distance between
people are the key factors to limit the spread of the virus in society. Aerosol transmission
was consistently denied by the Swedish Public Health Agency who maintained that droplet
transmission was the main source of infections, which, for example, led to good ventilation
not being part of the pandemic preventive measures in Sweden. Consequently, among
those who did try to protect themselves, face-shields were about as common as face-masks,
due to the wide-spread misconception that SARS-CoV-2 primarily spreads by infected
individuals coughing and sneezing, which has been repeated over and over by spokesmen
for the Swedish Public Health Agency. Since COVID-19 can spread by aerosols [11],
particularly in indoor climate, we argue that the conditions for steady spread of COVID-19
were good throughout the time-period studied, in particular the cold and rainy months
between October 2020 and May 2021 (April and May 2021 were unusually cold).

Furthermore, the first COVID-19 vaccinations started in Sweden after Christmas 2020,
but people younger than 70+ were not offered vaccinations until early April 2021 (with
the exception of special work groups, such as health care workers). As the elderly are
not main drivers of the epidemic, and protective antibody levels take several weeks to
develop, vaccinations most likely had limited effect on case numbers during the time frame
in question. (Given the second hypothesis, we prove this last claim in Section 4.2.)

2.4. Under-Reporting and Seroprevalence Levels

Data on daily cases is difficult to use since there is always an unknown proportion of cases
that do not get tested. To account for this, we have corrected the magnitude so that it fits with
data from serological testing, which is a more stable indicator of total amount of infections,
since the majority who have had COVID-19 go on to develop antibodies [12]. According to
the Swedish Public Health Agency [2] (see also Supplementary Material), in early June 2020
the seroprevalence of antibodies against SARS-CoV-2 was 11.2%, which dropped to 9.8% mid-
October 2020. Since this period was characterized by a very low prevalence of COVID-19,
we assume that the drop is due to antibody waning. Interpolating between these data points,
we estimate the seroprevalence at 10% in early September, the beginning of our time-line.
The seroprevalence then rose to 22.8% in early March 2021 [2], at the time of the onset of the
alpha-wave. Based on this, we estimate that there are 2.4 actual cases of COVID-19 for every
reported case. The graph in Figure 2 has been amplified accordingly.
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In the serological measurements performed by the Swedish Public Health Agency
it is not possible to separate between antibodies caused by the virus and the vaccine, so
the measurement from March 2021 is the last that gives an indication of how many had had
COVID-19 at the given time. However, children under the age of 12 were not vaccinated
in Sweden, and in Table 5 of [2] data from this age-group are displayed separately, indicating
that the seroprevalence rose to just below 30% after the alpha wave, and remained at that
level throughout the delta surge, which was very mild in Sweden. The seroprevalence then
abruptly jumps to above 70% in March 2022, following the omicron-wave.

3. Methods

In this section, we briefly describe key ingredients in our modeling and processing of the
data, as well as the underlying assumptions. A fuller description is found in Appendix A.

3.1. Choice of Model

We build our model upon the SEIR-model with age-stratification which was devel-
oped by Britton et al. [5]. This is a rather standard compartmental model, with 6 age-
compartments for each category, Susceptible, Exposed, Infective, and Recovered, making
24 compartments in total. The flow of people between these compartments is governed
by a system of ordinary differential equations, which is the standard way of building
mathematical epidemiological models, see, e.g., [13] or [14].

We include age-stratification since it is one heterogeneity for which one can find
realistic parameter values, and it allows us include the vaccination roll-out (which started
among the elderly and gradually was offered to younger age-groups, see Appendix A.3 for
details). For contact intensities between various age-groups we rely on the pre-pandemic
study [15] but we updated the numbers to reflect Swedish demographics, along with a
relatively higher reduction in contacts among the elderly, who were encouraged to self-
isolate (see Appendix A.2 for details). Finally, to incorporate antibody waning we also have
a flow of people moving from the recovered group to the susceptible group. We assume
that antibodies for either the alpha or Wuhan strain gave protection against reinfection
with a half-life of 16 months, (following [16] and also less precise observations in [17]).
We implemented the code in MatLab, which can be downloaded from https://github.
com/Marcus-Carlsson/Covid-modeling (accessed on 10 August 2022), and the details are
further described in Appendix A.

In Figure 3, we see a typical model outcome (red curve), where the parameters have
been chosen to match the time series during the first two months September–October 2020.
As is clear to see, it fits the data very well in those months, but in November the model
curve continues to rise drastically. If this model had been used for policy decisions, then
clearly a lock-down would have been called for, but no lock-down was ever imposed and
some restrictions were even lifted, as explained earlier. Despite this, the measured case
numbers start to level out and then sharply decay, and there is no indication of a resurge
of cases before the introduction of the more contagious alpha-variant. The key research
question of this paper is what caused this decay and why the model data is off (by a factor
of around 3 compared to measured data). Are SEIR-type models simply poor for pandemic
predictions, or is there something about human behavior or the virus itself which does not
correspond to how the model is built?

We stress that nothing in the model we use is accelerating the spread compared with
other models (in fact, Britton et al. developed it in an attempt to modify standard SEIR
in order to dampen the spread). They also made a model that takes variability in the social
activity level into account and demonstrated that such variations have a further damp-
ing effect on model curves. However, it is clearly impossible to measure such variations
in the social activity level, and, hence, we cannot find realistic parameters for applying this
model to a real society, wherefore we have built our model on the simpler age-stratified
version. Nevertheless, we have also tested this model with the same parameters as in [5],
and found that this does not dampen the model curves enough to alter any of the conclu-

https://github.com/Marcus-Carlsson/Covid-modeling
https://github.com/Marcus-Carlsson/Covid-modeling
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sions of this paper, even if the contrast between reality and model data becomes somewhat
less stark, see Figure 3, (black curve).

Figure 3. Comparison between real data and model outcome for the age-stratified SEIR and age-
activity-stratified SEIR based on [5], which assumes that contact patterns are stable over time. The pink
graph is produced with variable social interactions (over time), as described further in Section 4.1.

Furthermore, the model we use is very similar to the one developed by a well
renowned Swedish modeling team [18], as well as other models published for exam-
ple by the Imperial College Team [19], in terms of the dynamics between the major groups
Susceptible, Exposed, and Infected. These models also tend to drastically overestimate
the spread. Indeed, ref. [18] predicts a cumulative number of infected people of around
30% after the first wave. The authors arrive at the “low” value of 30%, from a modeling
perspective, due to assuming a 56% decrease in contacts among people of age 0–59 and
a 98% reduction among those aged 60–79 (this is for scenario d), which accurately fitted
ICU-occupancy and death, see Figure 2b in [18]. Given that many people in the latter
age group are still working (average retirement age was 65 in Sweden 2021), an overall
reduction of 98% in contacts seems somewhat unrealistic. More realistic reduction numbers,
thus, give cumulative infection numbers above 30%, when the actual figure was around
10% (as we saw in Section 2.4), demonstrating the tendency of compartmental models to
overestimate the spread, compared to what happened in reality (in Sweden).

Along the same lines, the famous Report 9 by the Imperial College [1] predicted a
total number of 81% infected in a “do-nothing” scenario, based on a more advanced so
called “agent-based model” that also treats household-contacts separately. According to
Table 3 in the report [1], the number of deaths and peak ICU capacity can be reduced by
50% and 81%, respectively, in the most effective NPI-scenario, which certainly goes beyond
what was implemented in Sweden. However, if these figures are directly adjusted to apply
for Stockholm County, the predictions using the most severe restrictions still overestimate
the actual numbers by a factor of roughly 4 (deaths) and 10 (ICU) (comparing with data
from February 2021).
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We remark that non-compartmental mathematical models, as found, e.g., in [20,21],
have been more successful at predicting the pandemic in the short term, but we will not
discuss this type of model further here.

3.2. Artificial Pre-Immunity and Population Heterogeneities

Before we introduce how to model with pre-immunity, we need to discuss what this
actually means. Pre-immunity, as well as immunity developed after an infection, is not a
binary variable that either gives a 100% protection (so-called “sterilizing immunity”) or none
at all. In the separate study [6], we show that there is practically no difference mathematically
between an advanced model taking variable susceptibility into account, and a more naive
model which simply stipulates that a certain proportion of the population has sterilizing
immunity. Hence, the idea of a binary pre-immunity works well on a macro-level, as long as
one is aware that this is a simplification that does not apply on a micro-level. We remark that
a number of different factors, such as genetic, cross-reactive immunity, and innate immunity,
have been shown to provide variation in susceptibility [22–24]. In addition, whether a person
gets infected or not upon exposure to SARS-CoV-2 clearly depends on the dosage as well as
the time of exposure.

To complicate things further, a fraction of the population went into various degrees
of self-isolation, and clearly it is impossible to distinguish such individuals from individuals
with high-levels of natural defense against contracting SARS-CoV-2. However, it is shown
numerically in [6] that such variations are also manifested as an artificial level of sterilizing
immunity. In practice, this means, for example, that the black curve in Figure 3, produced by
a model with 72 compartments (Age-Act-SEIR), could be obtained easily from the simpler
24-compartment Age-SEIR model, upon including artificial sterilizing immunity. Therefore,
we have chosen to build our model on the simpler Age-SEIR-model while including a level
of sterilizing immunity. This is a mathematical modeling simplification that comprises
a number of complex factors, and it is impossible to know how much of this immunity
comes from actual variations in susceptibility compared with variations in social interaction
patterns. To underscore this, we have coined the term “Artificial Sterilizing Immunity” [6],
but since this paper concerns the period when SARS-CoV-2 was relatively new, artificial
sterilizing pre-immunity, or artificial pre-immunity for short, seems more accurate.

3.3. The Hypotheses Posed Mathematically

In order to transform the two hypotheses into mathematical language, we now describe
in broad terms the key features of our model. Somewhat simplified, all mathematical
models for disease progression rely on some refinement of the formula

New cases = a · β · i · s, (1)

where a denotes the amount of daily contacts between individuals, β the probability that
such a contact leads to disease transmission, i is the prevalence and s is the fraction of the
population that are susceptible to the virus. Clearly i and s depend on time, but we shall
also consider a and β as time dependent, to account for variations in social activity during
the pandemic and the fact that the alpha strain was more contagious than the original strain.

In mathematical terms, Hypothesis 1 amounts to starting our model with s(1) = 0.9
(i.e., 90% are susceptible on day 1, since 10% already had antibodies at the start of the
timeline) and letting the amount of contacts vary with time. More precisely, we postulate
that a(t) = a · (1− f (t)/100) where a is a constant chosen so that f (t) ≈ 0 in September.
in words, f describes the percentage-wise change in amount of contacts, comparing with
September 2020 as a “normal month”.

Hypothesis 2, on the other hand, amounts to keeping the daily amount of contacts
fixed, so a(t) is a constant, and instead allowing the initial value of s(1) to be substantially
less than 0.9, to account for artificial pre-immunity. Since our model keeps track of infections
caused by alpha and Wuhan-strain separately, we give the two strains individual β-values,
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as well as individual levels of artificial pre-immunity, since a natural protection against
the original strain may be less effective against other variants.

4. Results
4.1. Hypothesis 1: Human Behavior

Recall that f describes the percentage-wise change in amount of contacts, as a function
of time, comparing with September 2020 as a “normal month”. Given any fixed choice
of f , our model produces a curve for the incidence which we can compare with measured
data. We wish to underline that, in our modeling, we continuously remove vaccinated
people (after the first shot) from the susceptible group to the recovered group, so f de-
scribes the updates in contact frequency with the vaccination roll-out already accounted
for. Our model also takes into account, by default, that a majority of the elderly were
self-isolating, so f really describes how the contact pattern in the remaining age-groups
need to fluctuate. For further details we refer to Appendix A, in particular Appendix A.6.

In order to find an f so that the incidence-curve fits well with measured data, we also
need to know how much more contagious the alpha-strain was compared with the original
Wuhan-strain. In [25], they estimate this factor as between 38% and 130% more contagious
(95% confidence interval), but this estimate comes with several uncertainties. If we suppose
for the moment that it was 50% more contagious, then the red curve in Figure 4 describes
how f (the relative change in social contacts) needs to fluctuate in order to obtain the data-
fit seen by the pink graph in Figure 3. Hence, in order to match real data, we see that
the contact frequency needs to continuously drop (except for a small increase in January)
until it reaches levels around 50% lower in May 2021, compared with September 2020. This
is clearly not realistic. On the contrary, May 2021 was characterized by a sense of relief
as the case numbers were dropping, which officially was explained by the success of the
vaccination campaign.

Figure 4. (Left): relative change in daily contacts needed to obtain a good fit with real data. The green
area accounts for uncertainty about how much more contagious the alpha-strain was. The red central
curve assumes 50% more contagious (following [16]), and the (almost perfect) data fit in Figure 3
(pink curve) is computed based on this. (Right): actual reduction in mobility pattern according to
Google Mobility Data. Notice that the y-axis is the same in both the left and the right image, and that
one would expect to see similar curves given that Hypothesis 1 holds.

Of course, the less contagious alpha is, the less reduction in behavior is needed to
keep the incidence down. This is the reason for the green shaded area, the upper boundary
corresponds to assuming that alpha is only 38% more contagious, the lower by assuming
it is 130% more contagious. As is plain to see, even in the 38% scenario, the fluctuations
in f are not realistic.

To provide objective support for this affirmation, to the right in Figure 4 we see
the actual behavior fluctuations according to Google Mobility Data. The data have been
averaged weekly and adjusted so that the mean in September 2020 is 0. In order for
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the Wuhan-strain wave to turn around, as it did in November to mid-December 2020, the left
image indicates that we need a reduction in f of around 30%. However, although Google
Mobility Data does go down over the same period, it does so more modestly. For example
“workplaces”, believed to be a key location for transmission, sees a reduction of around
10% in the relevant timespan, just before Christmas. Note, also, that the major fluctuations
around the Christmas and Easter holidays, which are clearly visible in the Google-mobility
graph, leave no clear bearing on the incidence, which is strange if human behavioral
changes are the key factor for variations in incidence.

Moving to the second wave, the left image in Figure 4 indicates that we need another
substantial reduction in human contacts from the month of February to May 2021, but,
in stark contrast, throughout this period all relevant curves in the Google-mobility graph
are going up. Let us again stress that, at this point, the seroprevalence measurements among
children (as well as the data in Figure 2) indicates a total hit-rate of around 30% in June
2021 (Section 2.4), and that the incidence during autumn 2021 was kept low throughout
the delta-surge (see Figure 1), even among unvaccinated children. Indeed, the September
2021 measurement in the groups 0–11, that were not given any vaccine but attended
school as normal, had an estimated 28.4% seroprevalence, whereas the measurement
in early December 2021 (after the delta surge) was 29.6% [2] (these data are easily accessible
in Supplementary Material). This seems more to indicate that some sort of herd-immunity
had been reached, and overall these observations cast doubt over Hypothesis 1 and indicate
that other factors than human updates in mobility are needed in order to explain the two
waves in Figure 2.

To further underline this point, the Google-mobility data over the entire pandemic
is displayed in Figure 5. Clearly, in March–April 2020 there is a significant reduction
in attendance to work and transit stations. Beyond this point, the annual fluctuations
are fairly similar, indicating that people had adapted a “new normal” that they kept
throughout the pandemic. Although we see recurrent significant oscillations, particularly
due to summer and Christmas holidays, no significant fluctuations in behavior can be
coupled with the rise and fall of new cases seen in Figure 1. Overall, this coincides with
the authors personal observations, i.e., that while people updated their behavior during
the pandemic, they did not continuously change social patterns depending on whether
the viral levels were high or not.

However, in this case, the SEIR-type epidemiological models should in theory work,
but no such model will predict herd-immunity at around 30% for a virus with the charac-
teristics of SARS-CoV-2. Thus, we are left with two possible options to explain what is seen
in Figure 3; either the models of SEIR-type are not useful, or some unknown factor was
dampening the viral spread in society.

Figure 5. Google-mobility data over the full pandemic time-frame, preprocessed as in Figure 4.
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4.2. Hypothesis 2: Depletion of Susceptibles

We now update the model so that a(t), the human contact rate, is constant throughout
the modeling time-span, but, instead, we include a certain level of artificial pre-immunity,
which we choose manually in order to obtain a good fit with measured data. As discussed
earlier, if variable susceptibility on an individual level exists, it will manifest itself as
(artificial) pre-immunity on a macroscopic level [6]. Thus, if a certain level of pre-immunity,
say 50%, gives a good fit between model and reality, it does not mean that 50% are immune
to SARS-CoV-2. However, a certain level of protection against the Wuhan-strain may work
less well against the alpha-strain, and, hence, there is no reason to assume that the level
of artificial pre-immunity would be the same against the two strains (just as we assume
that they have different transmission probabilities βWuhan and βalpha).

The model output, shown in Figure 6, uses a 65% artificial pre-immunity against
the Wuhan strain and a 56% artificial pre-immunity against alpha, in addition to the 10%
natural immunity acquired before September 2020. The blue, light brown, and yellow
represent the measured incidence (total, Wuhan, alpha) just as in Figure 2. The green color
shows the model-incidence due to the Wuhan strain and light blue represents the alpha
strain, whereas dashed brown represent the total model-incidence. As is plain to see,
the model gives a very accurate fit.

For the Wuhan-strain wave (green), we have Re ≈ 1.4 in early September 2020.
To obtain a good fit for the subsequent alpha-wave, we adjust the artificial pre-immunity
down from 65% to 56% and leave the transmission probability unchanged. This would
mean that what made alpha dominant was not a superior spreading capacity among those
already susceptible to the Wuhan strain, but rather that it mutated in a way that it could
get around some of the pre-immunity. For the blue model curve (for alpha) we have an
Re of around 1.5 in the initial phase. Note that this is perfectly compatible with reports
of alpha being 38–130% more infectious, since the acquired immunity was much higher
during the alpha wave, which means that the virus needs to be significantly more infectious
in order to be able to keep spreading.

Figure 6. Actual and modeled curves using artificial pre-immunity. The brown-orange, yellow, and
blue curves display measured cases, separated into Wuhan-strain, alpha-strain, and total, respectively,
same as in Figure 2 (so reweighted as before). The green, light-blue, and dashed black display
corresponding curves for our model. Finally, the pink dashed curve shows total model output
in the absence of vaccinations (only displayed during April–May 2021). Clearly, if this model is
correct, the vaccination campaign had virtually no part in the final demise during May 2021, contrary
to popular belief.
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4.3. Herd-Immunity under NPIs

Under Hypothesis 2, the decline in cases seen in January and again in May 2021, is due
to depletion of susceptibles, given the fixed and rather mild NPIs (or “recommendations”,
as they were officially known). In Figure 6, we also plot the model output without the vac-
cination scheme (dashed pink curve), indicating that the cases caused by the alpha-strain
would have started to decline in April anyway, indicating that some form of herd-immunity
had been reached. Another indication of this is the fact that there was no notable surge
among unvaccinated school children under the age of 12 (prior to the omicron-wave), as
discussed in Sections 2.4 and 4.1. Note that antibodies against alpha were shown to provide
good protection against delta, but less so against omicron [26,27].

In any case, there is always the possibility that another surge could have followed
if people had returned to pre-pandemic mobility patterns (which there is no indication
of in Figure 5), so the term herd-immunity may be misleading. Therefore, we will refer
to herd-immunity “under NPIs”. By this we mean the point in the model at which cases
naturally start to drop due to depletion of susceptibles, leading to a value of Re below 1
(despite human social patterns assumed constant over time). How to accurately compute
the point at which this happens (against a certain strain) is rather subtle, and described
in detail in Appendix A.9.

If Hypothesis 2 is correct, then Stockholm reached herd-immunity under NPIs against
the Wuhan-strain in early December 2020, just before the closing of high schools, when
the incidence curve leveled out. This is because the herd immunity threshold is reached at
the peak of the wave, not after it has receded, (which is why a major outbreak usually ends
with a final size substantially larger than the herd-immunity threshold). By the same logic,
the herd-immunity threshold under NPIs for the alpha-strain was reached on 9 April 2021,
when most people in the group 0–69 were still unvaccinated.

5. Discussion

The SARS-CoV-2 hit-rate in Sweden prior to omicron was around 30%, about equally
distributed over three distinct waves, in stark contrast with state of the art SEIR-models
which predict at least 60% hit rate in one massive wave. It seems generally believed that
this can be explained by NPIs and voluntary public reduction in contact patterns, as well as
ultimately the vaccination campaign. We investigate this hypothesis and find that, based on
data from serological studies, the incidence-curve and Google-mobility data, the hypothesis
seems unlikely, even without doing any modeling. We then run an age-stratified SEIR
model taking vaccination and isolation of elderly into account, and found that only an
unrealistic decrease in contact patterns could explain the cases seen in Stockholm during
chosen time frame.

This challenges the interpretation of variable NPIs and human behavioral changes as
the main cause for the rise and fall of epidemic waves, at least in locations where authorities
have been either unwilling or incapable of enforcing strict NPIs, such as Sweden. Although
NPIs and changes in social behavior clearly are important, we demonstrate that it is difficult
to envision that they alone can explain the outbreaks seen in Stockholm County during
the second and third waves.

However, this raises the question: is it always so that SEIR-models significantly
overestimated the magnitude of spread, or is there something particular about SARS-CoV-2
that kept the incidence unexpectedly low?

Although it is clear that people in Sweden made major changes to their social in-
teraction patterns, it seems to us that these changes were kept rather constant prior to
the vaccination campaign. Some people worked from home and minimized unneces-
sary contacts, others organized private parties, but in both cases they did so irrespective
of whether the incidence was high or low. However, under the assumption that human
behavior was rather constant, standard mathematical models, such as SEIR, should, in the-
ory, work well to predict the spread of COVID-19 in a densely populated area, such as
Stockholm County. However, we have showed that it clearly does not.
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Another interesting case is that of Brazil, which also reported surprisingly low levels
of seroprevalence from most major cities during the first year of the pandemic (possibly
with the exception of Manaus) despite applying limited NPIs. Similar comments can be
made also about India, which could be explained if a level of pre-immunity was indeed
present against the major strains of SARS-CoV-2 prior to omicron.

To mathematically investigate this possibility, we rely on a SEIR-model which is an
extension of a state of the art model (developed for modeling COVID-19 by well known
specialists in the field [5]), and find that the model, under the assumption that everybody
is equally susceptible, significantly overestimates the disease spread (recall Figure 3).
The only way that we are able to obtain a good model fit with real data is by including
a pre-immunity assumption, and we find that this pre-immunity fraction needs to be
substantial, in the range 55–65%, in order to obtain a good match with measured data.

5.1. What Could Have Caused Pre-Immunity?

We demonstrate in the adjacent publication [6] that a number of factors, such as
people isolating, variable social activity patterns, as well as variations in susceptibility,
are manifested as “artificial pre-immunity”. Hence, the hypothesis of pre-immunity does
not necessarily imply that certain people had sterilizing protection against SARS-CoV-
2. However, 65% is a large proportion, and it seems far-fetched to assume that people
isolating to various degrees could amount to an average effect of 65% artificial pre-immunity.
Additionally, the fact that seroprevalence among unvaccinated school children leveled
out at around 30% until the omicron-wave, seems to indicate that a majority of these
children had a high level of protection against contracting the initial strains of SARS-CoV-2
(i.e., Wuhan, alpha, and delta).

5.2. The Case of Omicron

Relying on the numbers from the Swedish Public Health Agency for the unvaccinated
group aged 0–11 (see Supplementary Material), we infer that the amount of antibodies
in this group increased by 42% (from 29.6 to 71.8) during the omicron surge December 2021
to March 2022. Since it is known that antibodies against prior variants of SARS-CoV-2 gave
a very limited protection against infection by omicron, this tells us that somewhere between
42.2% and 71.8% were infected with omicron in this wave, and based on the authors
personal observations it seems that the higher number is the more accurate figure. The fact
that around 40–70% were infected with omicron in the course of 3 months also gives
support to the hypothesis that actually SEIR-models do work, but some other, yet to be
fully understood, factor was damping the initial waves of SARS-CoV-2. Since the actual
amount of people who were infected with omicron is unknown, we refrain from fitting
the measured omicron-wave with our model, but whether it is around 40 or 70% it is clear
that this can be completed without heavily relying on any form of pre-immunity (especially
in the latter case).

If it is the case that antibodies due to some cross reactive immunity protected a large
part of the population during the first waves, then natural selection will favor variants
that are able to circumvent this protection. Indeed, the omicron-mutations managed to
circumvent the antibodies from prior variants. Therefore, it is natural to postulate that also
the level of pre-immunity gradually deteriorates and eventually disappears. Thus, the fact
that there was a massive omicron-wave is not in contradiction with Hypothesis 2.

5.3. Influenza-A Mediated Pre-Immunity

A number of factors, such as genetic, cross-reactive immunity and innate immu-
nity, have been shown to provide variation in susceptibility [22–24]. Due to the findings
presented in this article, we searched for the identity of a protective pre-immunity to
SARS-CoV-2 and found that previous infections by influenza A H1N1 (Flu–strains) pro-
vides a specific antibody-mediated immunity preventing binding of the Spike protein to
the Angiotensin Converting Enzyme 2 (ACE2) receptor. This antibody reactivity was found
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in 55–73% of people in Stockholm [7] and could, hence, be an important factor behind
the 65% “artificial” pre-immunity identified in the present study. We also identified 12
different cross reactive T cell peptides that are shared between Influenza A H1N1 and
SARS-CoV-2, which could provide HLA dependent T cell mediated protection against
severe COVID-19 disease. We provide modeling data that Scandinavians carry HLA types
that could mediate such protection in 71% of the population, while only in 40% of people
among the world’s population [7].

We highlight that the fact that the hit-rate was rather low in Sweden, and that the death
rates were lower in Sweden than in some other countries, fits well with this theory. In our
study describing the identity of the Flu mediated protective pre- immunity, we make a
case analysis with Stockholm and India to support this statement. Yet more compelling
evidence that this theory could be true in reality comes from epidemiological observations
demonstrating that Flu vaccinations have protected people from becoming infected with
SARS-CoV-2 or becoming severely ill or dying from COVID-19 [28–33], with estimated
protection rates of about 40–80%.

When omicron emerged, we were concerned that the mutations in the receptor binding
domain of the Spike-protein (in region 477–505) would cause a loss of immunity mediated
by previous infections, vaccinations, as well as the Flu mediated cross-protective immunity
(localized to region 481–486) and create a highly infectious variant. As a consequence,
we expected that many people would become infected with omicron, which is precisely
what then happened. In this scenario, the observed data in Sweden and elsewhere is
completely compatible with SEIR-models, and the fact that the outcome of the Swedish
relaxed strategy was not a complete disaster could be attributed to luck, as this protective
immunity was not known to the Swedish authorities. This possibility is important to be
aware of when modeling infectious disease outbreaks and forming strategies to protect
people in future pandemics.

6. Conclusions

We find that state of the art mathematical models, as well as standard formulas for
the herd immunity threshold, are completely at odds with what happened in Sweden dur-
ing the first year of the pandemic. The hypothesis that this is due to non-pharmacological
interventions and/or voluntary updates in social patterns, is found unlikely to be true.

We are, thus, left with two possibilities: either state of the art models are inapt for
modeling COVID-19, or a large proportion of the population had some a priori protection
against contracting SARS-CoV-2. This is as far as the present work takes us, and we can
only speculate over which answer is correct. Pre-immunity is one possible explanation for
why there is such a large gap between model output and observed data, and, in this case,
data are completely compatible with SEIR-models.

In summary, we argue that our findings favors the hypothesis that state of the art
SEIR-models are good for modeling spread of SARS-CoV-2, but that a large fraction of the
population indeed had some degree of protective pre-immunity, due to factors that remain
to be understood in greater depth.
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Appendix A. Mathematical Modeling, Details

We build upon the age-stratified SEIR model developed by Britton et al. [5], which is
described in greater detail in the Supplementary Material of [34]. In Appendices A.1–A.5,
we explain how the model works in its most basic setup, enough to produce the red curve
seen in Figure 3. In Appendix A.6, we then explain how to further update this in order
to test Hypothesis 1, i.e., to produce the pink graph seen in Figure 3. How to model with
pre-immunity and multiple strains is then explained in Appendix A.7, upon which the code
for Figure 6 is built. The final two sections are mainly of mathematical interest and derive
formulas for the herd-immunity threshold valid in the presence of (artificial) pre-immunity.

Appendix A.1. Age-Stratified SEIR with Antibody Waning

Following Britton et al. [5], we divide the population into 6 age-groups and let s, e, i
and r represent column-vectors including the fraction of the full population in respective
age-group of the classes: Susceptible, Exposed, Infective, and Recovered. A contact matrix
A, which we describe in detail in the coming section, determines the amount of contacts be-
tween the groups and a coefficient β the rate of transmission, so the equation corresponding
to (1) becomes

ν(t) = βdiags(t)Ai(t), (A1)

where ν is the rate of new cases in each respective group, and diags(t) denotes a diagonal
matrix with the values in the vector s(t) in the diagonal.

The remaining functions in the model are e, i and r, which relate to s as follows:
s′(t) = −ν(t) + τr(t)
e′(t) = ν(t)− σe(t)
i′(t) = σe(t)− γi(t)
r′(t) = γi(t)− τr(t)

(A2)

A new feature is the term τr(t) which takes the waning of antibodies into account.
Since we have decided to put half-life to 16 months, we set τ = ln(2)

16/12×365 . Following [19],
we set σ = 1/Tincubation = 1/4.6 and γ = 1/Tin f ectious = 1/2.1. The rationale behind these
choices is explained in the Supplementary Material (Section 5) of [34].

Appendix A.2. Calibration of the Contact Matrix

To model how the disease spreads within and between the different groups, we need
some sort of measure of how often people in these groups interact. Wallinga et al [15]
divided in 2006 the Dutch population into 6 groups aged 0–5, 6–12, 13–19, 20–39, 40–59,
and 60+ and measured the amount of average weekly conversations held between group j
and group g. To be precise, Wallinga et al. presents a “contact matrix” M, which is a 6× 6
matrix whose j, k:th entry equals the amount of conversations between age group j and k
on a weekly basis, divided bythe amount of people in group k. Hence Mj,k is the average
number of persons in group j that a person of group k has contacts with in a week (based
on data from the Netherlands in 2006).

https://github.com/Marcus-Carlsson/Covid-modeling
https://github.com/Marcus-Carlsson/Covid-modeling


Viruses 2022, 14, 1840 16 of 24

Several issues arise when modeling COVID-19 using this matrix: the age distribu-
tion in Sweden is clearly different than that of the Netherlands and, furthermore, even
the Netherlands has a very different age distribution in 2020 than in 2006. For example,
in [15], it is stated that the age group 60+ is about 17%, whereas the age group 70+ in Swe-
den 2020 make up 14%, due to an aging population. We, thus, need to decide on how to
update M given a new age distribution w.

The elements of M represent “the average number of persons in group j that a person
of group k has contacts with”, in the Netherlands in 2006. If we postulate that these numbers
are roughly the same in Stockholm County 2020, then Mj,kwk N is roughly the amount
of conversations between groups j and k, whereas by reciprocity Mk,jwjN represents
the same number, but these two numbers will no longer be the same. (Here N denotes
the total population N = 2, 400, 000). To remedy this issue, we suggest to define Mnew

j,k by
taking the average and then divide by the amount of people in group k, i.e., wk N. This leads
to the formula

Mnew
j,k =

Mk,jwj + Mj,kwk

2wk
. (A3)

For modeling of COVID-19 in Sweden, it is clearly better to have 70 as a delimiter for
the last age group, since special recommendations applied to this group which in partic-
ular was encouraged to minimize all social contacts during a large part of the pandemic.
Therefore, the w we used for the modeling in this paper was chosen to correspond with
the distribution in the age-groups 0–5, 6–12, 13–19, 20–39, 40–69, and 70+.

Based on Mnew, we can now introduce the contact matrix A by the formula

Aj,k =
Mnew

j,k

7wj

which, thus, is a symmetric matrix (since Mnew
j,k wk = Mnew

k,j wj), where the factor 7 is
convenient, since it allows us to work with daily contacts instead of weekly. This choice is
discussed in greater depth in the Supplementary Material of [34].

The above matrix is likely a good contact matrix for the Swedish population in the ab-
sence of NPIs. However, one also needs to take into account that the group 70+ were
recommended to self-isolate during large parts of the pandemic, and, hence, it is likely that
they reduced their contacts much more than the other age groups. We incorporate this by
multiplying all numbers in the last row and column of A by a factor ξ, which we set to
ξ = 1/4 for reasons to be explained shortly. Our model, thus, assumes that the 70+ group
reduced social contacts 4 times more than other age-groups.

In order to test whether our contact matrix A actually represents social interaction
patterns in Sweden during the pandemic, we run our model and compare the fraction
of infected in each subgroup with actual data. Relying on data from the Public Health
Agency data from February 2 2021 (before the effect of vaccinations became relevant),
we inferred that 24% of the total cumulative COVID-19 cases were from the age group
0–19, 31% in the age group 20–39, 37% in the age group 40–69, and 8% of the cases
were in the group 70+. Upon running our model, we found that the reduction factor
ξ = 1/4 gives values 23%, 32%, 37%, and 8% on the same date. This is sufficiently close to
the observed numbers mentioned above, which, thus, gives support for using the contact
matrix with the modifications described above.

Appendix A.3. Incorporating Vaccinations

We rely on data from the Public Health Agency [35] for percentages of the population
vaccinated each week (see Figure A1 below). After interpolation, we let v(t) denote fraction
of vaccinated as a function of time. Since vaccine efficacy varies between different vaccines
and different age groups, it is not entirely straightforward how to include vaccines in a
model where immunity is a binary value. The AstraZeneca vaccine was given to elderly
people and to health care personnel in the beginning of 2021, whereafter the mRNA vaccines
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from Pfizer and Moderna became the major vaccines given to all age groups in Sweden, but
the second dose of these vaccines were given after June 2021 and, hence, we do not include
this in our modeling. The AstraZeneca vaccine was estimated to have a 70% protective
effect to the original SARS-CoV-2 strain, and a reduced protection rate is expected against
the alpha variant. In our model, the highest age-group 70+ consist of 15% (this is group
number 6), which coincides with the amount of complete vaccinations early June 2021 (see
Figure A1). With this in mind, we postulate that 70% of the vaccinated people become
immune, and that the vaccination only affects group 6. In the medRxiv preprint of this
paper [36] we instead assumed a 90% efficacy after the first shot, and, therefore, also
included vaccinations in group 5 in our modeling. We updated this since the way we do
it here seems more realistic and also much simpler to describe and code. This only has a
marginal effect on the curve and does not in any way alter the conclusions of the paper.

Figure A1. Fraction vaccinated v as function of time t.

In practice, we thus add an “artificial” flow from the 6th group s6 of s to the corre-
sponding group in r, which hence represents both recovered and vaccinated. Another
thing to keep in mind is that the vaccination scheme did not separate between people who
had had COVID-19 and those who had not. Therefore, some people who were vaccinated
were already in the corresponding age-group of the r-compartment. Since s6(t)/w6 is
the fraction of elderly that are still susceptible to the virus at time t, and v′(t) is the vacci-
nation rate, we postulate that 0.7v′(t)s6(t)/w6 is the rate at which the vaccination roll-out
provides protective antibodies to individuals in group 6. We, therefore, subtract the term
0.7v′(t)s6(t)/w6 from the last row of the equations for s′, and simultaneously add it to
the last row of the r′ equations.
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Appendix A.4. Approximative Solutions to (A1) and (A2)

Since s is changing very slowly, we can linearize the Equation (A1) around a given time
value t0. The equations for the disease compartments e and i when t ≈ t0 then become:

d
dt

[
e
i

]
=

[
σI βdiags(t0)

A
−σI γI

][
e
i

]
, (A4)

written using standard matrix-vector notation, where I denotes the identity matrix. For simplic-
ity we shall denote the above matrix by Mt0 . As is well known by standard theory of Ordinary
Differential Equations, the dominant solution to the above equation system is given by the eigen-
vector with the largest eigenvalue, given that this is real and unique. We now prove that this is
the case.

Theorem A1. The eigenvalues α1, . . . , α6 of βdiags(t0)
A are real and the largest eigenvalue is

positive and has multiplicity 1. The eigenvalues of Mt0 are given by

− σ + γ

2
±

√(
σ− γ

2

)2
+ σαk, k = 1, . . . , 6. (A5)

The eigenvalue with the largest real part, i.e. λ1 = − σ+γ
2 +

√(
σ−γ

2

)2
+ σα1, has multiplicity

one and the corresponding eigenvector can be chosen to have positive entries.

Proof. The eigenvectors xk of βdiags(t0)
A also solve the generalized eigenvalue problem

αk(diags(t0)
)−1xk = βAxk.

Since A is symmetric, it follows by standard theory of such equation systems that
there exists a basis of 6 real eigenvectors with corresponding real eigenvalues, see, e.g.,
ref. [37]. Moreover, the largest eigenvalue is positive, has multiplicity one and |αk| < α1
for all k > 2, by the Perron–Frobenius theorem, which also states that the corresponding
eigenvector x1 can be chosen to have positive entries.

We now show that each such pair (αk, xk) gives rise to two eigenvalues/eigenvectors

of Mt0 . Indeed, if we consider a vector of twice the size given by
[

axk
bxk

]
, it follows that

this is an eigenvector to Mt0 if, and only if,
[

a
b

]
is an eigenvector of

[
−σ αk
σ −γ

]
. (A6)

The corresponding eigenvalue of Mt0 is then the eigenvalue of the above 2 × 2-matrix.
It follows by basic matrix theory that this matrix has the eigenvalues stated in (A5).

Since α1 has multiplicity one and is positive, it follows by (A5) that λ1 also has

multiplicity one. Let
[

a1x1
b1x1

]
be the corresponding eigenvector. It remains to show that

also a1 and b1 can be chosen positive. By some basic computations that we omit, we can
pick a1 = λ1 + γ and b1 = σ, and it is easy to see that

λ1 + γ = −σ− γ

2
+

√(
σ− γ

2

)2
+ σα1 > 0.
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To conclude this section, we remark that it follows by standard theory of Ordinary Dif-

ferential Equations that the solution to (A4) will be dominated by a multiple of eλ1t
[

a1x1
b1x1

]
for t >> t0, independent of the initial distributions at time t0.

Appendix A.5. Initial Conditions

At the start of our modeling, on 1 September 2020, we know that 10.2% in Stockholm
were already recovered and that the rate of new infections was around 80 per day. However,
we do not know the distribution of the 10.2% among the different age groups, which we
need to pick an initial value for s, and it is also not clear how to chose initial values of e and
i to match 80 cases per day. In this section, we describe how this is performed. (Since this
becomes rather technical, we want to stress that the way the initial conditions are chosen
have no major bearing on the model curves or conclusions of the paper. In the medRxiv
preprint version of this paper [36], we chose initial conditions by simply running the model,
and the corresponding graphs are almost identical).

At the onset of the pandemic in February 2020, we have s = w (at least in the absence
of pre-immunity, which we will discuss how to include in a later section). By the results
in the previous section, it is therefore reasonable to assume that the distribution of cases
in the first wave roughly was distributed as xFeb

1 , where xFeb
1 is the eigenvector correspond-

ing to the largest eigenvalue of βdiagw A. Hence, we set the initial value for r to ψ · xFeb
1 ,

where ψ = 0.102 and we choose xFeb
1 so that its entries sum up to 1. Since the vectors

s, e, i, and r must sum up to w, this means that, when cases start to accumulate again
in September of 2020, we should have s ≈ w− ψ · xFeb

1 (since the amount in e and i are
negligible). Consequently, again following the logic of the previous section, the distribution

of cases in
[

e
i

]
, in the beginning of September 2020, should be a constant multiple of[

a1xSep
1

b1xSep
1

]
where now xSep

1 is the eigenvector of βdiagw−ψ·xFeb
1

A with largest eigenvalue

α1, and a1, b1 are corresponding positive numbers, just as in the proof of Theorem A1. Since
s(0) ≈ w− ψ · xFeb

1 , the constant multiple c can now be found by setting i(0) = cb1y1 and
choosing c so that the vector βdiagw−ψ·x1

Ai(0) (representing the fraction of new cases on
day 0, recall (A1)) sums up to 80/N (where N = 2, 400, 000; the population in Stockholm
County). Finally, we pick the initial condition for s by the requirement that the vectors
s, e, i, and r must sum up to w. (Doing this with the actual numbers gives that there
are about 2.4 more people in the exposed group than the infected group, which is almost
the same as what one obtains by running the model with one initial case and stopping
when reaching around 80, as was done in [36]).

Appendix A.6. Modeling with Variable Human Contact Patterns

For testing Hypothesis 1 we also need to update (A1) so that the transmission rate β is
allowed to vary over time. We replace the constant β with the product of two functions
β(t) and (1− f (t)/100), where the former describes the variation in transmission rate due
to the introduction of alpha and the latter only model changes in behavior/NPI. Concretely,
we replace (A1) with

ν(t) = β(t)(1− f (t)/100)diags(t)Ai(t), (A7)

The function β(t) will be constant until the arrival of alpha in early January, by which
time it will start to grow and reach a new level once alpha took over, in early April. Since
we know the fraction of alpha over time we can form β(t) easily by setting

β(t) = βWuhan
CasesWuhan(t)

CasesTot(t)
+ βalpha

Casesalpha(t)
CasesTot(t)
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where CasesWuhan, Casesalpha and CasesTotal represent the red, yellow, and blue curves
in Figure 2 (right), respectively. The constants βWuhan and βalpha, represent the transmission
rate of the Wuhan strain and alpha strain, respectively. In Figure 4, we have used βalpha =
1.38βWuhan (upper black), βalpha = 1.5βWuhan (red), and βalpha = 2.3βWuhan (lower black),
which is based on estimates from [25] about how much more contagious the alpha strain is.
Finally, we pick a value of βWuhan so that we obtain a good initial fit with real data upon
setting f (t) = 0 for t in September.

Now, given a fixed choice of f we can run our model and compare its outcome
with real data. The concrete estimate of f seen in red in Figure 4 (left) was obtained by
first running the model “backwards” to compute an f that gave an identical fit (using
βalpha = 1.5βWuhan). This f was then averaged over a 30-day window and extrapolated
linearly on the edges. Of course, exactly how f is obtained is not so interesting as long as
it gives a good fit with real data, which indeed is the case, as seen in Figure 3 (pink).

Appendix A.7. Incorporating Artificial Pre-Immunity and Multiple Strains

To deal with pre-immunity and multiple strains, the basic setup (A1) and (A2) needs
to be modified slightly, as we now explain. Adding pre-immunity is most easily done by
initializing s by s(0) = (1− θ)w where θ is the fraction of pre-immunity and w the vector
with the fraction of the population in the respective age-group (since we have no reason
to assume that the pre-immunity is not evenly distributed among different age-groups).
However, as explained in [6], the pre-immunity θ (which we have estimated to 0.65 for
Stockholm and the Wuhan-strain) is most likely an over-simplification resulting from
the phenomenon that susceptibility to the virus is variable between individuals. Upon in-
troducing a variant of concern, we obtain a new value of β but potentially also a new value
for θ, since the new strain may be better at infecting some individuals that had a good
protection against the previous strain (see [6], Section 4.2, for a fuller discussion of this
topic). Since we can not suddenly change the initial value in the model, the above way
of introducing pre-immunity is unsuitable for dealing with multiple strains. Therefore, we
instead incorporate the pre-immunity θ by replacing the term (A1) by

ν(t) = βdiags(t)−θw Ai(t). (A8)

As long as the model is only dealing with one strain, this is equivalent to using
s(1) = (1− θ)w as initial condition, but this approach allows for multiple θ’s related to
various strains.

To include the alpha strain, we introduce new parameters βalpha and θalpha, as well
as functions, νalpha, ealpha, and ialpha, which describe the incidence, as well as the fraction
of exposed and infected in the population that contracted the alpha strain. As before we set

νalpha(t) = βalphadiags(t)−θalphaw Aialpha(t), (A9)

and obtain an equation system where both the Wuhan strain and the alpha strain exist
in parallel as follows: 

s′(t) = −ν(t)− νalpha(t) + τr(t)
e′(t) = ν(t)− σe(t)
e′alpha(t) = νalpha(t)− σealpha(t)
i′(t) = σe(t)− γi(t)
i′alpha(t) = σealpha(t)− γialpha(t)
r′(t) = γi(t) + γialpha(t)− τr(t)

This is the main update needed in order to produce the curves in Figure 6. For simplic-
ity, we have not included the terms related to the vaccination roll out in the above equation
system, which was explained how to do in Appendix A.3 above. We have also omitted to
discuss the rather straightforward modifications to Appendix A.5 that needs to be made
to include 10.2% acquired immunity in the initial conditions. We refer to the code Fig6.m,
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found on https://github.com/Marcus-Carlsson/Covid-modeling (accessed on 10 Augsut
2022).

Appendix A.8. Computing R0

In the coming section we discuss how to estimate when herd-immunity is reached,
given the model (A1) and (A2) with pre-immunity, i.e., we do not consider the model
involving multiple strains, and we include pre-immunity as explained in (A8). Recall
that the classical formula states that the herd-immunity threshold is given by 1− 1/R0.
To update this we first need to work out how R0 depends on β, θ, A, following Section 5.2
[14], which is done in this section.

The equations for e′ and i′ using (A8) become[
e′(t)
i′(t)

]
=

[
βdiags(t)−θw Ai(t)− σe(t)
σe(t)− γi(t)

]
=

[
−σI βdiags(t)−θw A
σI −γI

][
e(t)
i(t)

]

(where the term −θw is added since we now model using (A8) instead of (A1) to compute
daily new cases). As explained in Appendix A.4 this system can be approximated by a
linear ODE, at any time t = t0, by simply freezing the value of s(t), giving rise to[

e′(t)
i′(t)

]
=

[
−σI βdiags(t0)−θw A
σI −γI

][
e(t)
i(t)

]
:= Mt0

[
e(t)
i(t)

]
(A10)

valid for t ≈ t0, where the matrix Mt0 is defined by the above line. Since s(t0) = w in the be-

ginning of the pandemic we set F =

(
0 βdiag(1−θ)w A
0 0

)
and V =

(
σI 0
−σI γI

)
, so

that F − V equals Mt0 , (using the notation in [14], in particular Example 1, Section 5.2).
The next generation matrix, denoted KL, is now defined as

KL = FV−1 =

(
1
γ diag(1−θ)wβA 1

γ diag(1−θ)wβA
0 0

)
.

The R0 value is then defined as the modulus of the largest eigenvalue of this ma-
trix, also known as the spectral radius ρ(KL). Using the well-known formula ρ(KL) =
limn→∞(‖Kn

L‖)1/n, it is easy to see that

ρ(KL) = ρ(
1
γ

diag(1−θ)wβA) = (1− θ)βTin f ectiousρ(diagw A)

and, hence, it follows that

R0 = (1− θ)βTin f ectiousρ(diagw A). (A11)

Appendix A.9. The Herd Immunity Threshold

In this section, we discuss how to estimate when herd-immunity is reached. We do not
consider the model involving multiple strains because both times herd-immunity seems
to have been reached in Stockholm we had only one dominant strain. Even under this
simplification, it is not entirely obvious of how to define the herd-immunity threshold, due
to the fact that we work with multi-compartment models (various age-groups).

Intuitively, herd-immunity is reached when the amount of susceptibles are few enough
that the amount of people who become sick, i.e., the total in e and i, start to recede. This is
equivalent to demand that if we have no spread and a group of infectives are added
to the system, the amount of secondary cases will be a decreasing function. The issue
of at what level this happens becomes delicate since this does not only depend on the total
amount of remaining susceptibles, but also on their distribution between the various groups.
Classical estimates of HIT, (see [14] Ch. 5), assume a uniform distribution of immunity,

https://github.com/Marcus-Carlsson/Covid-modeling
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whereas during a real outbreak immunity will be higher in groups that are more active
in spreading the virus. In practice, this means that the intuitive definition will be fulfilled
before the classical estimate is fulfilled.

To take a concrete example, the mathematical (homogenous) HIT is reached on day 191
of our modeling, i.e., 10th of March, but the amount of individuals in all subgroups of both
e and i start to decrease on day 94, i.e., the second of December, just before the first update
in the NPIs that could have had a limiting effect on the spread (closure of high-schools, see
Figure 2). We now describe mathematically how to compute the HIT in two different ways,
starting with the more intuitive one corresponding with day 94 in the earlier example.

To locally analyze the progression, we linearize around a given time point t0, as
in (A10). As explained in Appendix A.4, the solution to such an equation system consists
of linear combinations of exponential functions whose exponents are the eigenvalues of the
corresponding matrix Mt0 . Hence, the solutions will be decreasing independent of initial
data whenever all eigenvalues have negative real part. The following theorem indicates
precisely when this happens.

Theorem A2. Assume that A is a symmetric positive matrix. Given a time t0 and a distribution
of susceptibles s(t0), we have reached herd immunity if, and only if,

ρ(diags(t0)−θw A) < 1/βTin f ectious. (A12)

Note that the contact matrix A indeed should be symmetric and positive, as shown
in Appendix A.2. Hence, the theorem basically states that the point at which all compart-
ments in the disease states e and i start to decrease, equals the first value of t0 for which
(A12) is fulfilled.

Proof. By the arguments before the statement, we need to show that the eigenvalues of Mt0

all have negative real part if, and only if, (A12) holds. By Theorem A1 we thus need to

show that λ1 < 0 if and only if (A12) holds, where λ1 = − σ+γ
2 +

√(
σ−γ

2

)2
+ σα1 and α1

is the largest eigenvalue of βdiags(t0)−θw A. Rewriting λ1 as

λ1 = −σ + γ

2
±

√(
σ + γ

2

)2
+ σ(αk − γ)

we see that λ1 < 0 if, and only if, α1 < γ. Since γ = 1/Tin f ectious and α1 equals the spectral
radius βdiags(t0)−θw A (by the Perron–Frobenius theorem), this is equivalent to (A12), and
the proof is complete.

The above theorem can easily be used in practice given a concrete model fit of real data,
as in Figure 6. Then, all quantities in (A12) are known and the first date that it is fulfilled is
easily computed. This is how we derived that herd immunity against the Wuhan-strain
was reached on 2 December 2020, and similarly we find that herd-immunity against alpha
occurred on 9 April 2021.

In order to derive the classical herd-immunity threshold we now assume that immunity
is homogeneously distributed over the groups. Let ζ be the fraction of immune needed to
have herd-immunity. To derive a formula for ζ, under the above assumption, we simply
replace s(t0) in (A12) with (1− ζ)w. This leads to the equation

ρ(diag(1−ζ−θ)w A) < 1/βTin f ectious,

which, upon recalling (A11), can be recast in the following more attractive form

ζ = (1− θ)(1− 1
R0

). (A13)
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Relying on this formula, one sees that the effect of artificial pre-immunity θ is to reduce
the herd-immunity threshold by the corresponding fraction, which is why this threshold
in reality is much lower than traditional models predict (if the pre-immunity hypothesis
is correct). For example, given the parameters used in this paper for the second wave
of Stockholm, the herd-immunity threshold as given by (A13) is around 20%, whereas
(A12) is satisfied when the total immunity level is merely 14%. This happens on day 94
in our model (i.e. on December 2nd, when all disease compartments de facto start to shrink),
whereas a total of 20% of immunity is reached on day 191 of our model, i.e. long after
the second wave was over. In summary, we argue that (A12) is the more realistic definition
of when the herd-immunity threshold is reached in a concrete modeling example, whereas
(A13) is a good first order approximation (upper bound) to the actual figure.
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