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Abstract 

Background 

We aimed to identify molecular changes in recurrent or progressive pediatric brain tumors, as compared to the corresponding initial 
tumors from the same patients, using genomic, transcriptomic, and proteomic data from a unique and large cohort of 55 patients and 

63 recurrent or progressive tumors from the Children’s Brain Tumor Tissue Consortium, representing various histologic types. 
Methods 

We carried out paired analyses for each gene between recurrent/progressive and initial tumor groups, using RNA-sequencing and mass 
spectrometry-based proteomic data. By whole-genome sequencing (WGS) analysis, we also examined somatic DNA events for a set 
of cancer-associated genes. 
Results 

Of 44 patients examined by WGS, 35 involved at least one cancer-associated gene with a somatic alteration event in a recurrent 
or progressive tumor that was not present in the initial tumor, including genes NF1, CDKN2A, CCND2, EGFR , and MYCN . By 
paired analysis, 68 mRNA transcripts were differentially expressed in recurrent/progressive tumors with p < 0.001, and these genes 
could predict patient outcomes in an independent set of pediatric brain tumors. Gene transcript-level associations with recurrence 
or progression were enriched for protein-level associations. There was a significant overlap in results from pediatric brain tumors and 

results from adult brain tumors from The Cancer Genome Atlas. Unsupervised analysis defined five subsets of recurrent or progressive 
tumors, with differences in gene expression and overall patient survival. 

Abbreviations: CBTTC, The Children’s Brain Tumor Tissue Consortium; CBTN, Children’s Brain Tumor Network; CPTAC, Clinical Proteomic Tumor Analysis Consortium; TCGA, 
The Cancer Genome Atlas; GSEA, Gene Set Enrichment Analysis. 
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Conclusions 

Our study uncovers genes showing consistent expression differ
molecular clues as to processes or pathways underlying more agg
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Introduction 

Advances in surgical and adjuvant therapy have improved the survival rates
of children with certain types of pediatric brain tumors; for example, low-
grade gliomas now experience a five-year survival exceeding 75%. However,
the prognosis for other types, such as high-grade gliomas, is still poor,
and brain tumors remain the leading cause of childhood cancer-related
deaths ( 1 ). In the setting of tumor recurrence or progression, the patient
prognosis is substantially worse ( 2 ). Previous studies have reported distinct
molecular patterns between initial and recurrent or progressive pediatric
brain tumors of the same individual ( 3-5 ). In one study by Morrissy et
al .( 4 ), whole-genome sequencing of 33 pairs of human diagnostic and post-
therapy medulloblastomas demonstrated substantial genetic divergence of the
dominant clone after therapy. Petralia et al . ( 3 ) examined proteomic and
genomic profiles of 18 pairs of surgical samples of pediatric brain tumors
from two distinct disease occurrences of the same individuals, whereby the
recurrent or progressive tumors appeared largely distinct from their initial
tumor counterparts. In our recent survey of somatic Structural Variants (SVs)
in pediatric brain tumors ( 5 ), increased numbers of SVs involved recurrent or
progressive tumors as compared to the initial tumor from the same patient,
with a set of 34 genes identified as having SV-mediated altered expression
specifically involving recurrent or progressive tumors. 

Our present study aimed to identify molecular changes in recurrent or
progressive pediatric brain tumors compared to the corresponding initial
tumors from the same patients. We analyzed genomic, transcriptomic, and
proteomic data from a unique and large cohort of patients from The
Children’s Brain Tumor Tissue Consortium (CBTTC). The CBTTC has
generated open-access genomics data on pediatric brain tumors and has
provided these resources to the research community ( 6 ). Whereas pediatric
brain tumors represent a collection of diseases, each defined by distinct
histologic and molecular features, CBTTC data offer analysis opportunities
to identify molecular patterns cutting across the many histologic types
represented in its cohort. Importantly, a subset of CBTTC tumors represents
multiple tumors taken from the same patient, including paired recurrent
or progressive tumors along with the initial tumor. While we expect many
individual instances of molecular differences between recurrent or progressive
and initial tumors for any given patient, the availability of molecular data
from large numbers of patients allows us to identify consistent changes across
multiple patients as well as spanning diverse tumor histologic types. The set
of genes showing consistent differences may provide molecular clues about
the processes or pathways underlying more aggressive pediatric brain tumors.

Materials and Methods 

Patient cohorts 

Results are based upon data generated by the Children’s Brain Tumor
Network (CBTN). Specifically, we analyzed data from patients in the CBTTC
ences in recurrent or progressive tumors. These genes may provide 
ressive pediatric brain tumors. 

oteomics 

ohort of the CBTN. We carried out RNA-sequencing (RNA-seq) analysis
at 30x coverage) for 63 recurrent or progressive tumors from 55 patients for
hich the corresponding initial tumor was also profiled (n = 118 tumors in

ll). Of the tumors with RNA-seq data, 96 tumors from 44 unique patients
ere profiled (paired tumor and normal) by whole-genome sequence (WGS)
nalysis (at 60x coverage, 30X for germline), where each patient had an initial
umor and at least one recurrent or progressive tumor with data by WGS.
f the tumors with RNA-seq data, 30 tumors from 15 unique patients
ere profiled for proteomic expression by mass spectrometry, where each
atient had an initial tumor and one recurrent or progressive tumor profiled.
f the 18 tumor pairs analyzed in the Clinical Proteomic Tumor Analysis
onsortium (CPTAC) study of CBTTC proteomic data for initial versus

ecurrent/progressive comparisons ( 3 ), five did not involve an initial tumor,
nd the CPTAC data portal provided data on two additional initial tumor-
rogressive tumor pairs. In addition, RNA-seq data for another set of 806
BTTC tumors from 806 patients (not included in the above 55 patients

nd 118 tumors), which patients did not have paired initial and recurrent or
rogressive tumors, were scored for a gene signature obtained from the paired
ecurrent/progressive versus initial tumor expression analysis. 

Tumor samples in CBTTC spanned at least 33 different tumor
istologic types, the most represented types including the following: 
TRT, Atypical Teratoid Rhabdoid Tumor; CHDM, Chordoma; CPP, 
horoid plexus papilloma; CRANIO, Craniopharyngioma; DIPG, 
iffuse intrinsic pontine glioma; DNT, Dysembryoplastic neuroepithelial 

umor; EPMT, Ependymoma; ES, Ewing’s Sarcoma; GMN, Germinoma; 
NG, Ganglioglioma; GNOS, Glial-neuronal tumor not otherwise 

pecified (NOS); MBL, Medulloblastoma; MNG, Meningioma; 
FIB, Neurofibroma/Plexiform; PBL, Pineoblastoma; PHGG, High- 

rade glioma/astrocytoma (WHO grade III/IV); PLGG, Low-grade 
lioma/astrocytoma (WHO grade I/II); PNET, Supratentorial or Spinal 
ord primitive neuroectodermal; SCHW, Schwannoma; TT, Teratoma. 
s provided by the individual CBTN member institutions contributing 

he samples, the histologic designations of the tumors were confirmed by
ndependent pathology review at the CBTN centralized biorepository, with 

ost contributing sites providing representative histology slides. Samples 
ere collected at the time of surgery or autopsy, flash-frozen, and stored in

he Biorepository Resource Center at Children’s Hospital of Philadelphia. 
he contributing sites provided clinical annotation, including tumor status 

initial, recurrent, or progressive). 

olecular profiling datasets 

Tumor molecular profiling data were generated through informed consent 
s part of CBTN efforts and analyzed here per CBTN’s data use guidelines
nd restrictions. We obtained processed RNA-seq data for CBTTC tumors
rom the PedCBioPortal ( https://pedcbioportal.org/ ). RNA-seq data were 
uantile normalized before the analyses. 

https://pedcbioportal.org/
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We accessed the somatic Structural Variant (SV) calls (Manta v1.4.0
algorithm) through the public project on Cavatica at https://cavatica.
sbgenomics.com/u/cavatica/pbta- cbttc/files/#q?path=structural- variations . 
CBTTC used both Strelka2 v2.9.3 and Mutect2 v4.1.10 to call simple
variants, i.e., single nucleotide variants (SNV) and insertions/deletions
(INDEL), based on WGS data. We assessed the somatic variant MAFs
through the public project on Cavatica at https://cavatica.sbgenomics.
com/u/cavatica/pbta- cbttc/files/#q?path=simple- variants . Variant calls
passing quality filters made by either Strelka2 or Mutect2 were considered,
as the focus of this study was on SNVs and indels involving already
known cancer genes ( 7 ) and hotspot residues ( 8 ), and with allowances
made for the lower sequencing coverage of WGS as compared to that
of whole-exome sequencing (WXS). Gene-level copy number alteration
(CNA) calls, made based on CBTTC WGS data, were obtained from
the PedCBioPortal ( https://pedcbioportal.org/datasets ). High-level gene
amplification (approximating five or more copies) or deep copy loss
(approximating gene deletion) were based on the “thresholded” calls (with
values of + 2 or -2, respectively) as made available by PedCBioPortal. 

CPTAC, as part of its Pediatric Brain Cancer Pilot Study ( 3 ), generated the
mass spectrometry-based proteomics data used in this publication. Samples
were analyzed using the 11-plexed isobaric tandem mass tags (TMT-11).
We obtained processed protein expression data from the CPTAC Data
Portal ( https://cptac- data- portal.georgetown.edu/cptacPublic/ ) ( 9 ). Taking
the expression values provided in the Protein Report provided by CPTAC
Data Portal, we normalized each CPTAC proteomic dataset for downstream
analyses as done previously ( 10 ): first, log2 expression values were normalized
to standard deviations from the median within each proteomic profile; next,
expression values were normalized across samples to standard deviations from
the median. 

Analysis of somatic variants 

Somatic DNA events for a set of cancer-associated genes ( 5 , 11 ) were
examined across 96 tumors from 44 patients for which CBTTC profiled, by
WGS, both an initial tumor and at least one recurrent or progressive tumor.
For SNV and indels, we focused on a manually curated set of genes involving
key pathways ( 5 ). For known oncogenes, if an SNV occurred in “hotspot”
residues by Chang et al .( 8 ), the SNV was included in the analysis. For
putative tumor suppressor genes, we included all hotspot SNVs, inactivating
SNVs (nonstop/nonsense), and indels. For CNA events, we focused on genes
with cancer association by COSMIC ( 11 ) and either deep deletion or high-
level amplification. For somatic SV events, we focused on COSMIC genes
with a significant SV-expression association (p < 0.01) for the 1MB region
(incorporating tumor type and CNA) across the entire CBTTC cohort of 854
tumors by previous analyses ( 5 ). We defined SV-associated altered expression
in a given tumor as having a breakpoint falling within 1Mb of the given gene,
with expression > 0.4SD or < -0.4SD from the median for the given tumor for
genes with a global positive or negative association, respectively, between SV
and expression (with the median defined above using the entire 854 CBTTC
WGS cohort). Using the above, we tabulated all somatic events detected in
a recurrent or progressive tumor but not in the initial tumor from the same
patient. 

Differential expression analyses 

Taking the CBTTC RNA-seq data for 63 recurrent or progressive
tumors from 55 patients for which the corresponding initial tumor was
also profiled, a paired test between recurrent/progressive and initial tumor
groups (using log2-transformed values) was carried out for each gene using
limma method ( 12 ). In all, we tested 16503 genes (median > 0 for the 118
tumors) in the paired analysis. The expected numbers of genes that would be
nominally significant due to multiple testing, based on probability, were also
onsidered. Taking the CBTTC/CPTAC proteomic dataset for 15 recurrent 
r progressive tumors from 15 patients with the corresponding initial tumor 
lso profiled, we carried out a paired t-test between recurrent/progressive 
nd initial tumor groups (using normalized values) for each protein. The 
aired analysis served to control differences between histologic types, as we 
valuated relative differences between each recurrent or progressive tumor and 
ts paired initial tumor reference across the dataset. We evaluated the overall 
oncordance between the CBTTC mRNA results and protein results using 
ene Set Enrichment Analysis (GSEA) method ( 13 ). The GSEA ranked gene

ist was based on differential protein expression using paired t-statistic (based 
n 7154 genes with data). The sets of genes found nominally significant in
he paired analysis may have relatively high expected false positive rates ( 14 ).

e therefore carried out integration of the differential patterns observed in 
he CBTTC cohort by RNA-seq platform with other platforms or with other 
atient cohorts, following a similar approach as that of the GSEA method, 
hich aims to identify significant enrichment patterns even in instances 
here the differential gene sets involved do not have low false discovery rates
 15 ). 

We applied the ESTIMATE algorithm ( 16 ) to the CBTTC RNA-seq 
ataset, which algorithm estimates relative tumor sample purity based on gene 
xpression patterns. To determine whether the differential expression patterns 
ssociated with recurrent or progressive tumors might be attributable entirely 
o tumor sample purity differences, we carried out a regression analysis 
ith the top 68 genes with differential expression with p < 0.001 by limma,
hereby ESTIMATE scores were included as a covariate for the association 
f each gene with tumor status. In this regression analysis, the paired initial
umors were included but with zero values for both gene expression and 
STIMATE score, while the recurrent or progressive tumors had values 
entered on the corresponding initial tumor pair. All 68 genes significant with 
 < 0.001 (by limma) were also significant with p < 0.01 by regression model
ncorporating ESTIMATE score, meaning that the ESTIMATE score alone 
ould not explain away the significant differences observed for each gene. 
either the CPTAC nor the TCGA paired samples showed any significant 
ifferences in estimated tumor sample purities between recurrent/progressive 
ersus initial tumors by ESTIMATE. 

urvival analyses 

We scored RNA-seq data for an independent set of 806 CBTTC tumors 
rom 806 patients (not included in the 55 patients with paired initial 
nd recurrent/progressive tumors) or a gene signature obtained from the 
aired recurrent/progressive versus initial tumor expression analysis (based on 
 < 0.001 by paired limma test). We centered log2 gene expression values on
he median across samples. The centered expression profiles were each scored 
or the recurrent/progressive signature using our t-score metric ( 17 ), which 
etric is high when the genes found high or low in recurrent/progressive

umors also appear relatively high or low, respectively, in the external profile. 
e evaluated the t-score as a continuous variable for association with patient 

urvival using the Cox model. We also binned patients into thirds based 
n the tumor t-score and evaluated differences in survival using a log-rank 
est. In addition, we used stratified Cox models or stratified log-rank to 
valuate survival association when correcting for tumor histologic type. With 
he stratified analysis, the p-value for the association with worse outcome 
s significant only if histology alone cannot explain the survival differences 
bserved. 

omparisons with adult glioma results 

For The Cancer Genome Atlas (TCGA) glioma cases (GBM and LGG 

rojects), we obtained RNA-seq data from The Broad Institute Firehose 
ipeline ( http://gdac.broadinstitute.org/ ). All RNA-seq sample profiles were 
ligned using the by UNC RNA-seq V2 pipeline ( 17 ). Recurrent and paired

https://cavatica.sbgenomics.com/u/cavatica/pbta-cbttc/files/#q?path=structural-variations
https://cavatica.sbgenomics.com/u/cavatica/pbta-cbttc/files/#q?path=simple-variants
https://pedcbioportal.org/datasets
https://cptac-data-portal.georgetown.edu/cptacPublic/
http://gdac.broadinstitute.org/
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initial tumors from 20 adult glioma patients from TCGA were examined for
differential expression by paired limma applied to each gene. We evaluated
the overall concordance between the CBTTC results and TCGA results using
GSEA ( 13 ). The GSEA ranked gene list was based on differential mRNA
expression in TCGA glioma using paired limma t-statistic (based on 16152
genes represented in both datasets). 

Unsupervised clustering 

ConsensusClusterPlus R-package ( 18 ) was used to identify the structure
and relationship of the CBTTC progressive or recurrent tumors, as
normalized to their initial tumor pair. Taking the RNA-seq dataset of 63
recurrent or progressive tumors from 55 patients for which the corresponding
initial tumor was also profiled, we centered the log2 expression values on the
value of the initial tumor. We selected the top 2000 most variable mRNAs
from the centered dataset, according to standard deviation, for unsupervised
clustering analysis. Consensus ward linkage hierarchical clustering identified
k = 2 to k = 10 subtypes, with the stability of the clustering increasing with
increasing k. Taking the k = 5 cluster solution, we defined for each tumor
subset the top 200 genes highest in the given subset versus the rest of the
differential tumor profiles (using unpaired t-test of the centered expression
values). The unsupervised discovery involved differential expression profiles
of each recurrent or progressive tumor subtracted from its corresponding
initial tumor pair, which essentially corrected for histologic differences.
Therefore, the sample profiles did not segregate according to tumor histology
in this analysis, which would be the case had the clustering analysis been
carried out on the original dataset ( 5 ). 

Statistics 

All P-values were two-sided unless otherwise specified. We assessed
differential expression using paired limma or paired t-test. One-sided Fisher’s
exact tests determined the significance of overlap between two given feature
lists. We carried out GSEA ( 13 ) using version 4.0.3 of the software, with
GSEAPreranked feature and classic enrichment statistic. We evaluated Gene
Ontology (GO) annotation term enrichment within sets of differentially
expressed genes using SigTerms software ( 19 ) and one-sided Fisher’s exact
tests. Visualization by heat maps used JavaTreeview ( 20 ) and matrix2png
(version 1.2.1) ( 21 ). 

Ethics 

Tumor molecular profiling data were generated through informed consent
involving institutional review boards as part of CBTTC efforts and analyzed
here per CBTTC’s data use guidelines and restrictions. 

Role of funders 

The funder had no role in study design, data collection, data analysis, data
interpretation, or writing of the report. The corresponding authors had full
access to all the data in the study and had final responsibility for the decision
to submit for publication. 

Results 

DNA-level alterations 

Our study focused on RNA-seq data for 118 pediatric brain tumor
samples from the CBTTC, representing 55 patients with both an initial
tumor (n = 55) and one or more recurrent or progressive tumors (n = 63).
Of the tumors with RNA-seq data, 96 tumors from 44 unique patients
ere profiled by WGS, with each patient having both an initial tumor and
ne or more recurrent or progressive tumors. Tumor samples in the 118-
atient cohort spanned 16 different tumor types based on histology (Data
ile S1), the more represented types including: low-grade glioma/astrocytoma 
n = 23 tumors), high-grade glioma/astrocytoma (n = 18), medulloblastoma 
n = 16), ependymoma (n = 16), atypical teratoid rhabdoid tumor (n = 8),
nd meningioma (n = 7). Our molecular analyses below focused on paired
omparisons between a patient’s recurrent or progressive tumor and the
orresponding initial tumor, which served to control for inherent differences
etween histologic types. 

By WGS, we examined somatic DNA events for a set of cancer-associated
enes ( 5 , 11 ) (including COSMIC ( 11 ) genes and genes involved in key
ncogenic or tumor-suppressive pathways ( 5 ), see Methods), in recurrent
r progressive tumors having a paired initial tumor from the same patient
 Figure 1 and Data File S2). Interestingly, increased overall numbers of
omatic SNVs or indels were detected on average in recurrent or progressive
umors from a given patient, as compared to the initial tumor from the
ame patient (p = 0.006, paired t-test). For selected genes, we considered
omatic SNVs or indels, high-level amplification or deep deletion, and
ltered expression associated with nearby somatic SV breakpoints (which 
nvolve gene fusions such as KIAA1549 - BRAF as well as altered gene cis-
egulation ( 5 )). Of the 44 patients examined, 35 involved at least one cancer-
ssociated gene with an alteration event in a recurrent or progressive tumor
hat was not present in the initial tumor, involving 86 cancer-associated
enes. On average, the 44 patients had 3.15 events involving somatic
ene alteration in a recurrent or progressive tumor but not in the initial
umor. Genes most frequently involved in the above events included NF1
n = 6 events, SV-associated), CDKN2A (n = 6, SV or copy loss), BAX (n = 4,
V), CCND2 (n = 4, SV), EGFR (n = 4, SV or amplification), CREB3L2
n = 3, amplification), GNAS (n = 3, amplification), MYCN (n = 3, SV or
mplification), PLAG1 (n = 3, SV), PTK6 (n = 3, amplification), RIM2 (n = 3,
mplification), RNF213 (n = 3, SV), and WNK2 (n = 3, amplification). In
ontrast, we also found events involving a somatic gene alteration found
n the initial tumor but not in a corresponding recurrent or progressive
umor. Still, these latter events were statistically less common than the former
average of 1.52 versus 3.15 events across the 44 patients, p = 0.005 by paired
-test). 

ltered gene and protein expression 

Using RNA-seq data representing 16503 genes and 118 tumors from 55
atients (63 recurrent or progressive tumors and 55 paired initial tumors),
e carried out a paired analysis for each gene between recurrent/progressive

nd initial tumor groups. At different significance thresholds, the numbers
f significant genes exceeded the chance expected due to multiple testing
f genes ( Figure 2 a and Data File S3). At p < 0.001 (paired limma test),
8 mRNA transcripts (15 higher in recurrent/progressive, 53 lower) were
ignificantly differentially expressed ( Figure 2 b), where we expected just
16 of these genes by chance. More nominally significant genes could be

efined at more relaxed statistical cutoffs, though with a greater proportion
f expected false positives. At p < 0.01 or p < 0.05, about twice as many
ignificant genes over chance expected were found ( Figure 2 a). Despite
ets of nominally significant genes having a relatively high expected false
ositive rate, the entire set would be enriched for true positives representing
olecular information. Such information would represent real biological 

ifferences, which downstream analyses and integration may reveal with other
atasets, as described below. For example, genes differentially expressed in
ecurrent/progressive tumors at p < 0.01 were significantly enriched for gene
ategories by GO (Data Files S3), including ‘neurotransmitter transport’ (7
enes, p < 1E-5, one-sided Fisher’s exact test) and ‘anterograde trans-synaptic
ignaling’ (10 genes, p = 0.0001) for the higher genes and ‘collagen-containing
xtracellular matrix’ (19 genes, p < 1E-6) and ‘extracellular region’ (38 genes,
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Figure 1. DNA alterations involving recurrence or progression of pediatric brain tumors. Somatic DNA events for a set of cancer-associated genes ( 5 , 11 ) are 
represented across 96 tumors from 44 patients for which CBTTC profiled, by WGS, both an initial tumor and at least one recurrent or progressive tumor. 
Tumor status color bar denotes initial tumor, progressive, or recurrence. Tumors are organized by histology of the initial tumor followed by the tumor pair (the 
initial tumor being represented first for each patient). Black matrix entry represents SV breakpoint in proximity to the gene (within 1 Mb of the gene start) 
and associated with altered gene expression ( > 0.4SD or < −0.4SD from the median of the CBTTC WGS cohort ( 5 ) for the case harboring the breakpoint). 
Green represents somatic SNV/indel (either missense SNV within hotspot residue ( 8 ) or inactivating mutation by indel/nonsense/nonstop, with only hotspot 
mutations being considered for oncogenes). Red or blue represents high-level amplification or deep deletion, respectively. As tabulated in the bar chart along 
the bottom, “alteration events from initial tumor” are somatic events detected in a recurrent or progressive tumor but not in the initial tumor from the same 
patient. Of the 44 patients represented here, 35 involve at least one gene with an alteration event in a recurrent or progressive tumor that was not present in 
the initial tumor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

t  

d
(  

O  

m
s
S
a
S

g
d  

w
/

p = 0.00002) for the lower genes. We found somewhat higher estimated
tumor sample purity on average in recurrent or progressive tumors versus
initial tumors (p = 0.03 paired t-test), while regression analyses indicated
that this purity association would not explain the widespread differential
expression patterns observed (see Methods). 

Of the above 118 tumors with RNA-seq data, 30 tumors from 15
unique patients were profiled for proteomic expression by mass spectrometry
( 3 ), with an initial tumor and one recurrent or progressive tumor profiled
for each patient. Out of 7154 genes with protein data, 445 were
differentially expressed at the protein level with p < 0.05 (paired t-test)
between recurrent/progressive and initial tumor groups, which somewhat
exceeded chance expectation ( ∼357 genes). At the same time, by GSEA ( 13 ),
the differential proteomic patterns associated with recurrent or progressive
tumors were broadly enriched, with consistent direction of change, for
mRNAs higher or lower in recurrent or progressive tumors based on RNA-
eq ( Figure 3 a). Between the 621 genes differentially expressed (p < 0.05) at
he mRNA level (based on the analysis of 118 tumors) and the 445 genes
ifferentially expressed (p < 0.05) at the protein level, 59 genes overlapped 
 Figure 3 b), a significant number (p = 0.0005, one-sided Fisher’s exact test).
f the 59 genes, 55 has the same direction of change in both protein and
RNA data ( Figure 3 c), including genes with GO annotation ‘synaptic 

ignaling’ (eight genes: ALS2, CACNB3, MBP, PLP1, RAB3A, SNCB, 
TXBP1, SV2B ) among those higher in recurrent or progressive tumors, 
nd ‘sphingolipid metabolic process’ genes (four genes: HEXA, NAGA, PSAP, 
GPL1 ) among those lower in recurrent or progressive tumors. 

To facilitate access to CBTTC transcriptomic and proteomic results by the 
eneral research community, we integrated CBTTC data with the UALCAN 

ata portal ( 22 ), allowing users to query genes of interest for associations
ith recurrence/progression, tumor histology, or patient characteristics ( http: 

/ualcan.path.uab.edu/ ). 

http://ualcan.path.uab.edu/
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Figure 2. Altered gene transcription involving recurrence or progression of pediatric brain tumors. (a) Based on RNA-seq data, numbers of significantly 
differentially expressed genes (using p < 0.001, p < 0.01, and p < 0.05 significance thresholds, respectively), comparing recurrent or progressive tumors with 
the patient’s initial tumor. Analyses involve 63 recurrent or progressive tumors from 55 patients for which the corresponding initial tumor was also profiled. 
P-values by limma moderated paired t-test ( 12 ) using log2-transformed gene expression values. The numbers of genes expected by chance due to multiple 
testing involving 16504 genes analyzed are also represented. (b) Heat map of 68 genes differentially expressed (p < 0.001, limma paired t-test) in recurrent or 
progressive tumors compared to the initial tumor. Gene values for each recurrent or progressive tumor represented are centered on the corresponding initial 
tumor. Initial tumors are not represented here, as these are the reference for each patient and would therefore appear as all black in a heat map representation. 
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Gene signature predicting patient outcome 

We hypothesized that the differential expression patterns between
recurrent or progressive and initial tumors would represent molecular
differences between more aggressive versus less aggressive cancers, respectively.
To test this, we examined RNA-seq data for an independent set of 806
CBTTC pediatric brain tumor tumors from 806 patients, which patients
did not have an initial tumor and recurrent or progressive pair (involving
667 initial, 40 recurrent, and 97 progressive tumors). Taking the above 68-
gene signature from the paired recurrent/progressive versus initial tumor
nalysis (p < 0.001, limma), we scored the 806 tumors based on the signature
attern ( Figure 4 a). Tumors with high signature scores showed relatively
igh or low expression for the genes higher or lower, respectively, in
ecurrent or progressive tumors. High signature scores were associated 
ith worse overall survival ( Figure 4 b, p = 6E-7, univariate Cox, p = 0.02,

tratified Cox correcting for tumor histologic type). Of the 68 genes, 14
ndividually associated with patient outcome in the 806-patient cohort 
p < 0.05, stratified Cox correcting for histologic type) and consistent with the
ignature direction of change: DUXAP8, DUXAP9, PCID2, PUS7, SMG7 ,
nd TENM3 , associated with worse overall survival; ACP2, CD14, DISC2,
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Figure 3. Altered protein expression involving recurrence or progression of pediatric brain tumors. (a) Recurrent or progressive and paired initial tumors 
from 15 pediatric brain tumor patients from CBTTC and CPTAC ( 3 ) were examined for differential protein expression by mass spectrometry. Profiled genes 
were ranked from higher to lower differential protein expression in recurrent or progressive versus initial tumors (based on 7154 genes with data), and the 
relative positions of genes with mRNAs higher or lower (two-sided p < 0.05, limma paired t-test) in CBTTC pediatric recurrent or progressive tumors were 
evaluated for enrichment within the proteomic recurrent/progressive-associated patterns by GSEA method ( 13 ). Bar graphs represent normalized enrichment 
scores (NES) with associated significance of enrichment or anti-enrichment, respectively. (b) Venn diagram representing the overlap between the genes with 
differential protein expression and the genes with differential mRNA expression (p < 0.05 for each) in recurrent/progressive tumors. P-value by one-sided 
Fisher’s exact test. (c) Heat maps represent the 55 genes (from part b) having differential expression in recurrent or progressive tumors compared to the initial 
tumor, in the same direction for both mRNA and proteomic datasets. Gene values for each recurrent or progressive tumor represented are centered on the 
corresponding initial tumor. 

 

 

 

 

 

 

 

 

 

 

 

G  

g
m
(  

i
s
(  

5  

t
n
p  

b
F
p
a

OR2A1, PEX11G, SLCO2B1, SMPDL3A , and ZNF18 , associated with better
overall survival. Estimated tumor sample purities were higher on average in
the poor prognosis group as compared to the other two groups (p = 1E-50,
t-test), where molecular subtypes in general frequently involve differences
according to sample purity, which may entail the involvement of the tumor
microenvironment ( 7 , 23 ). 

Comparison with altered expression in adult gliomas 

Notwithstanding the extensive molecular differences between pediatric
and adult brain tumors ( 5 , 24 ), we hypothesized that a portion of the
genes differentially expressed between recurrent or progressive pediatric
brain tumors and initial tumors might also be involved in recurrent brain
tumors from adult patients. We examined RNA-seq data from recurrent and
paired initial tumors from 20 adult glioma patients from TCGA ( 25 ). By
SEA ( 13 ), the differential mRNA patterns associated with adult recurrent
liomas were broadly enriched, with consistent direction of change, for 
RNAs higher or lower in recurrent or progressive pediatric brain tumors 

 Figure 5 a). In particular, between the 801 genes with lower expression
n pediatric recurrent or progressive tumors (p < 0.05, paired limma, two- 
ided) and the 1956 genes with lower expression in adult recurrent tumors 
p < 0.05, paired limma, one-sided), 126 genes overlapped ( Figures 5 b and
 c), a significant number (p < 0.0005, one-sided Fisher’s exact test). On
he other hand, the genes higher in recurrent or progressive tumors did 
ot significantly overlap between pediatric and adult tumors (51 genes, 
 = 0.34, one-sided Fisher’s exact test). The 126 shared genes lower in
oth pediatric and adult tumors were enriched (p = 0.0003, one-sided 
isher’s exact test) for genes with GO annotation ‘regulation of cytokine 
roduction genes’, including CD274, CSF1R , and HIF1A ( Figures 5 c 
nd 5 d). 
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Figure 4. A gene transcription signature of recurrence or progression predicts patient outcome in an independent set of pediatric brain tumors. (a) RNA-seq 
data for the set of 806 CBTTC tumors from 806 patients (not included in the 55 patients with paired initial and recurrent/progressive tumors) were scored 
for the 68-gene signature from Figure 2 b (see Methods). As shown in the heat map, the 806 tumors could be stratified into those with differential expression 
patterns either positively or negatively correlated to the recurrent/progressive signature and those with intermediate patterns not strongly correlated with the 
signature (grouping tumors into top third, middle third, and bottom third of signature scores). Genes individually associated with patient outcome in the 
806-patient cohort (p < 0.05, stratified Cox correcting for histologic type) and consistent with the signature are listed off to the right. (b) Kaplan-Meier plot 
represents the 68-gene recurrent/progressive transcriptional signature associating with overall survival in the 806-patient pediatric brain tumor set. P-values by 
log-rank test and by univariate Cox, as indicated. “Corrected” p-values correct for histologic type. 
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Altered gene expression within specific tumor subsets 

Where the above expression analyses could identify genes with statistically
consistent changes across the 63 recurrent or progressive tumors examined,
we hypothesized that some genes are changed in only a subset of tumors.
We carried out unsupervised clustering analysis of the differential expression
profiles of recurrent or progressive tumors to identify such patterns. Centering
the 63 recurrent or progressive pediatric brain tumor RNA-seq profiles on
the corresponding initial tumors, we selected the top 2000 most variable
genes and defined five subsets of recurrent or progressive tumors ( Figure 6 a),
each subset consisting of seven to 16 tumors of diverse histologic types.
Of the seven patients with multiple recurrent or progressive tumors (eight
tumors in all), only one had different tumors falling within different subsets.
We observed significant differences in overall patient survival among the
ve subsets ( Figure 6 b, p = 0.03, log-rank test), reflecting true biological
ifferences among them, with ‘k3’ (n = 6 patients) and ‘k4’ (n = 13) subsets
ssociated with markedly better outcome compared to the other subsets. For
ach recurrent/progressive tumor subset, we identified the top genes most
ighly expressed in the given subset but not across the rest of the tumors
 Figure 6 c), which again showed the tumor subsets to be distinct from
ach other. Within the top differentially expressed genes underscoring each
umor subset, specific GO gene categories were over-represented ( Figure 6 d
nd Data File S4). The ‘k3’ and ‘k4’ tumors involving better survival
ere respectively associated with GO terms ‘cilium assembly’ and ‘immune

ystem process’. Of the tumor subsets involving worse patient outcome, ‘k1’
umors involved GO terms ‘voltage-gated channel activity’ and ‘complement 
ctivation’; ‘k2’ tumors involved GO terms ‘neuron projection’, ‘dendrite’, 
nd ‘microtubule’; and ‘k5’ tumors involved GO terms ’mitotic cell cycle
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Figure 5. Overlapping gene transcription signatures of recurrence or progression between pediatric brain tumors and adult gliomas. (a) Recurrent and paired 
initial tumors from 20 adult glioma patients from TCGA ( 25 ) were examined for differential expression by RNA-seq. Profiled genes were ranked from higher 
to lower differential expression in TCGA recurrent versus initial tumors, and the relative positions of genes higher or lower (two-sided p < 0.05, limma paired 
t-test) in CBTTC pediatric recurrent or progressive tumors were evaluated for enrichment within TCGA recurrent-associated patterns by GSEA method ( 13 ). 
Bar graphs represent normalized enrichment scores (NES) with the associated significance of enrichment or anti-enrichment, respectively. (b) Venn diagram 

representing the overlap between the genes with lower expression in recurrent/progressive tumors in CBTTC cohort (p < 0.05, two-sided) and the genes with 
lower expression in recurrent tumors in TCGA cohort (p < 0.05, one-sided). P-value by one-sided Fisher’s exact test. (c) Heat maps represent the 126 genes 
(from part b) having lower expression in recurrent or progressive tumors compared to the initial tumor, in both CBTTC pediatric and TCGA adult glioma 
cohorts. Gene values for each recurrent or progressive tumor represented are centered on the corresponding initial tumor. Genes with GO annotation ‘regulation 
of cytokine production genes’ are listed individually off to the right. (d) In CBTTC cohort, box plots representing differential expression between recurrent or 
progressive tumors and paired initial tumors for selected genes CD274, HIF1A , and CSF1R . P-values by limma moderated paired t-test using log2-transformed 
gene expression values. Box plot represents 5% (lower whisker), 25% (lower box), 50% (median), 75% (upper box), and 95% (upper whisker). Data points 
are colored according to tumor histologic type, using the color scheme in part c. Lines are drawn between tumor pairs, with most pairs showing decrease in 
the progressive or recurrent tumor for each of these genes. 
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Figure 6. Altered gene transcription involving recurrence or progression within specific subsets of pediatric brain tumors. (a) Taking the differential expression 
profiles for the 63 recurrent or progressive tumors (each profile centered on the corresponding initial tumor), ConsensusClusterPlus ( 18 ) clustering algorithm 

was applied to identify tumor subsets. Delta area plot graphic shows the relative change in area under the cumulative distribution function (CDF) curve 
comparing k and k − 1. For k = 2, there is no k -1, so the total area under the curve rather than the relative increase is plotted. This graphic allows one to 
determine the relative increase in consensus and determine k at which there is no appreciable increase. (b) Differences in patient overall survival among the 
five tumor subsets within the cohort of 55 patients with paired recurrent or progressive tumor. P values by log-rank test, evaluating for significant differences 
among the groups. (c) Differential expression patterns for a set of 1000 genes help distinguish between the five tumor subsets from part a (for each subset, 
showing the top 200 genes highest in the given subset versus the rest of the differential tumor profiles). (d) For the top over-expressed genes associated with 
each tumor subset (from part c), represented categories by GO were assessed, with selected enriched categories represented here. P-values by one-sided Fisher’s 
exact test. 
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process’ and ’DNA replication’. Estimated tumor sample purity levels were
higher in the k5 subtype as compared to the other subtypes (ANOVA
p = 0.003; p = 0.0004, t-test). The above findings would suggest multiple
and distinct pathways being involved with advanced disease within different
tumor subsets, in addition to genes commonly altered on average across all
tumors. 

Discussion 

Here, we identified consistent gene changes between recurrent or
progressive pediatric brain tumors compared to the corresponding initial
tumor across multiple patients. While genomic or transcriptomic changes
in a recurrent or progressive tumor may be specific to a given patient,
molecular changes that would be common across multiple patients and
diverse histologic types may point to pathways or processes underlying more
aggressive disease. At the DNA level, we observed changes within individual
atients, but no consistent changes observed across all samples or all samples
f a given histology. In contrast, At the RNA or protein level, we observed
oth consistent changes across all samples and very robust changes within
ubsets of patients. The multiple patient tumor samplings and large sample
izes represented by the CBTTC datasets provided the power needed to
dentify significant differences over chance expected. Future studies utilizing 
ven greater patient numbers could help further refine the gene expression
ignatures of recurrence or progression. The sets of nominally significant
enes identified in this present study would contain a certain level of statistical
oise. Also, not all differentially expressed genes observed may play an

mportant role in the disease. Therefore, an important aspect of our study was
ntegrating the differential patterns observed in the CBTTC cohort by RNA-
eq platform with other platforms or with other patient cohorts. Significant
umbers of genes overlapped between transcriptomic and proteomic datasets 
nd between pediatric and adult brain tumors. Such genes with consistent
hanges observed across multiple datasets would seem likely to represent true
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changes within pediatric brain tumors, even if the significance levels of these
genes might be nominal for the CBTTC RNA-seq dataset. 

Both the individual genes and their associated gene categories involved
in differential expression in recurrent or progressive tumors could represent
possible mediators of disease progression. In addition to genes showing
consistent differences in expression across all tumors examined, unsupervised
clustering analysis could identify genes with differential expression within
specific subsets of recurrent or progressive tumors. For example, genes with
increased expression on average across all recurrent or progressive tumors
included ‘neurotransmitter transport’ genes, while, in the clustering analysis,
genes high with one of the recurrent/progressive tumor subsets associated with
worse outcomes included ‘neuron projection’ and ‘dendrite’ genes. Elsewhere,
neuronal activity has been shown to promote the growth of a range of
pediatric brain tumor types ( 26 ). Another CBTTC recurrent/progressive
tumor subset involved better patient prognosis and high expression of
adaptive and innate immune response genes. In another study, low-grade
tumors have been characterized by greater T-cell density than high-grade
pediatric gliomas, and a decline in tumor-infiltrating T-cells characterized
recurrent tumors ( 27 ). Interestingly, genes involved with ‘mitotic cell cycle
process’ and ‘DNA replication’ were highly expressed only within a subset
of recurrent or progressive tumors, suggesting that other processes may
be involved in most of the other tumors. With gene-level associations
with recurrence or progression, our results would represent a resource for
identifying gene candidates for further investigation. To extend the resource
potential of CBTTC data, our user-friendly UALCAN data portal ( 22 )
facilitates differential analyses by individual gene or protein. 
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