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Abstract

DIBR-3D technology has evolved over the past few years with the demands of consumers

increasing in recent times for future free-view 3D videos on their home televisions. The

main issue in 3D technology is the lack of 3D content available to watch using the traditional

TV systems. Although, some sophisticated devices like stereoscopic cameras have been

used to fill the gap between the 3D content demand and 3D content supply. But the content

generated through these sophisticated devices can not be displayed on the traditional TV

systems, so there needs to be some mechanism which is inline with the traditional TV. Fur-

thermore, the huge collection of existing 2D content should be converted to 3D using depth

image-based rendering techniques. This conversion technique can highly contribute in over-

coming the shortage problem of the 3D content. This paper presents a novel approach for

converting 2D degraded image for DIBR 3D-TV view. This degraded or noisy/blur image is

enhanced through image dehazing and Directional Filter Bank (DFB). This enhancement is

necessary because of the occlusion effect or hole filling problem that occurs due to imper-

fect depth map. The enhanced image is then segmented into the foreground image and the

background image. After the segmentation, the depth map is generated using image pro-

files. Moreover, Stereoscopic images are finally produced using the DIBR procedure which

is based on the 2D input image and the corresponding depth map. We have verified the

results of the proposed approach by comparing the results with the existing state-of-the-art

techniques.

Introduction

Depth Image Based Rendering three-dimensional Television (DIBR-3DTV) technology added

a new dimension to the world of entertainment. The advancement in DIBR-3D changed the

conventional two-dimensional (2D) entertainment media to more realistic one. This diverse
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technology has adopted by many entertainment platforms such as TV, cinemas and video

gaming [1]. The 2D video games have been converted to 3D games by using Kinect camera [1]

in XBOX [2], so people can enjoy playing games in a more realistic virtual world representa-

tion. Film industries are gaining enormous financial benefits by introducing DIBR-3D tech-

nology and their income increased exponentially e.g. ‘avatar’, a DIBR-3D enabled movie

released in 2009 and it became the game changer in the film industry which earned tenfold of

its investment [3]. Multiple broadcasting service providers use DIBR-3D technology and many

European and Asian countries have commenced its transmission. DIBR-3D TV is the revolu-

tion in traditional television systems and made it even more smart where viewers enjoy lifelike

scenes on their traditional home television [4].

DIBR-3D TV contents were first introduced in Advance Three-Dimensional Television

System Technology (ATTEST) [4] by Fehn et. al. [5]. Information Society Technology (IST)

initiated the ATTEST project in March 2009 with the support of European commission.

ATTEST was a 2 years project in which number of industrial and academic partners worked

together. The goal of this collaboration was to build up a pliable, 2D suitable and commercially

viable 3D-TV for broadcasting system environments.

A novel approach based on combined transmission of the depth map and corresponding

2D video is proposed by Fehn et. al. [5]. Depth map is the gray-scale image, consist of informa-

tion related to the distance of objects in the scene from the viewpoint. The depth map and the

corresponding input 2D video/image are combined to generate the left and right view using

DIBR procedure for the DIBR-3D TV system [4]. 3D technology has improved over the past

few years and the generation of 3D contents has been enhanced significantly. 3D contents for

DIBR-3D TV can be generated by three different ways.

1. Direct 3D content generation.

2. Combined transmission of 2D data and corresponding depth map.

3. 3D content generation from a 2D image.

In first, the direct 3D content generation requires multiple expensive special high resolution

cameras. This mechanism is not an economical and feasible solution in terms of complex

coding [6], high bandwidth requirement [7] and data synchronization issues at the receiving

side.In second, the 2D data and the corresponding depth map information are transmitted

together. At the receiving end, the synthesized 3D image is generated using depth map infor-

mation of 2D data [4]. In third, the generation of 3D contents from a 2D image is a cumber-

some procedure due to the absence of information required to obtain the 3D scene. Although

2D scene possesses fewer cues for 3D view generation, still researchers have managed to

acquire efficient results by using the per pixel depth information of the 2D image.

The generation of 3D scene from a 2D image requires two steps. In the first step, depth map

(per pixel depth information) is extracted from 2D data. In the second step, the obtained depth

map image is combined with the original 2D image using DIBR. Above all, extracting efficient

depth information from a 2D image plays an important role in 3D view generation. Numerous

methodologies have been proposed to produce depth map [8–11].

In [12], defocus depth map is calculated using degraded or defocus 2D image. This defocus

depth map information can introduce occlusion effect in the synthesis 3D images if the quality

of the depth map is not upto mark. The occlusion effect compromise the quality of the 3D con-

tents since the occluded area can be seen while viewing the 3D contents. To tackle the occlu-

sion effect. Wang et al. [13] proposed depth map enhancement methodology by deploying

three different types of constraints on reference and target patches in depth map. The occlu-

sion problem is addressed in single as well as in multiple view using global optimization

Degraded image enhancement by image dehazing and Directional Filter Bank using DIBR for future free-view 3D-TV

PLOS ONE | https://doi.org/10.1371/journal.pone.0217246 May 23, 2019 2 / 24

https://doi.org/10.1371/journal.pone.0217246


method [14]. Here efforts have been made to decrease occlusion effect by improving the qual-

ity of depth map using different operations on depth map. Although, quality of the depth map

can be improved and occlusion would be decreased if we enhance the quality of the corre-

sponding input image. One of the main contributions of this paper is to minimize the occlu-

sion problem, that is mainly occurs due to the imperfection of depth-map. This occlusion

effect or hole filling issues increase due to the degradation of input image. This work mainly

emphasize on the enhancement of degraded image using dehazing process and trough direc-

tional filter banks. After enhancement, depth hypothesis are applied to generate the depth-

map. At the end, DIBR system is used to generate the left and right images to further calculate

the occlusion effect. The synthesized images are used to create the final anaglyph image for the

end users. Though this approach has been used in state of the art, but we present Directional

Filter Bank Depth Image based Rendering System (DFB-DIBR) which improves the Peak Sig-

nal to Noise Ratio (PSNR), Structure Similarity Index Measure (SSIM) and Universal Quality

Index (UQI) of the depth map. The enhanced depth map would decrease occlusion effect

which ultimately generates good quality 3D view.

Rest of the paper is organized as follows: Section 1 introduces the related work through

state of the art literature review in 3D technology related to DIBR. Section 2 presents the

proposed system and its working methodology for generation of depth map and 3D content

generation. Experiment and Results have been described in Section 3 while Paper has been

concluded in Section 4.

1 Related work

The existing depth map generation algorithms are mainly classified in two categories: Auto-

matic method and Semi-Automatic method. In Automatic method, different depth cues are

considered such as focus and defocus information [9, 10] where image’s focus data is consid-

ered by varying the focus parameters of a camera. Yang et al. [8] proposed a method which

classify the input image into the three categories i.e. landscape, closeup and the linear perspec-

tive image. After classification, each class’s depth map is produced. In [12], defocus / blur

information is calculated at the edges of objects to approximate the defocus depth map. Huang

et al. [11] proposed an algorithm for estimation of depth map which is produced by finding

defocus/blur edge information using wavelet transformation and the canny edge detector.

Depth from objects motion in video frames has been proposed by [15]. Tsai et al. [16] pro-

posed Gaussian mixture model (GMM) and (SLIC) super pixel simple linear iterative cluster-

ing algorithm to generate the initial depth map. The initial depth map further refined using

edge’s information and various scanning path mode. In [17], the formation of the depth map

is based on Sum of Absolute Difference (SAD) of neighborhood pixels of two same images.

Williem et al. [18] proposed anaglyph image based approach to generate the depth map. The

obtained depth map assists the algorithm to colorize the synthesis images. The defocus depth

map estimation in [19] has achieved in two phases. In the first phase, the defocus/blur image is

re-blurred. In the second phase, the ratio of edges’ information is taken of the re-blurred and

the input image. Although, automatic methods of depth map generation is less computational

expensive, still these methods compromise on the quality of depth map. All the above depth

map generation methods are relying on priory defined geometrical information.

On the contrary, the depth map estimation problem is solved by Deep Convolutional Neu-

ral Network (DCNN) without pre-defined image’s structure information. The pioneer work

on depth map estimation from an image is attributed to [20], in which CNN model is trained

jointly with Conditional Random Field (CRF) to learn the continuous nature of the depth

map image’s structure. Luo et al. [21], proposed dual neural network architecture. The view
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synthesis network is used to produce the right view of the input image. The stereo matching

network uses the right synthesis view and the input image to produce the depth map. In [22],

unsupervised DCNN architecture is proposed. The network predict probabilistic depth map

and combine it with the input to generate the side by side or anaglyph 3D view. A semi super-

vised deep network is proposed in [23]. In [23], the network architecture takes benefits of

supervised as well as unsupervised learning techniques. The network uses 3D laser to captured

ground truth data for supervised learning. On the other hand, network acquires stereo match-

ing geometry using stereo cameras to predict the depth map in unsupervised way. Depth map

from out of focus image is generated using deep learning in two phases [24], In first phase, net-

work takes an out of focus image and generates the defocus depth map. In second phase, the

depth map is used by network to refocus the out of focus image. Hand crafted features play an

important role to learn the best feature of the given data using deep neural networks. Hand

crafted and deep network features have been used synergistically to estimate the defocus depth

map from an input defocus image [25]. The architecture uses the advantages of hand crafted

and deep network features to overcome the weakness of each other. All the deep learning

architectures are fine-tuned to learn the best features of the training data. Hand crafted fea-

tures can assist the deep network to learn the reliable features of the training data. Our pro-

posed algorithm can be an efficient preprocessing step of the deep network to learn the best

features of the given data.

The efficient 3D view depends on high quality depth map generated from an image. To

have promising 3D results, semi-automatic methodologies have been proposed with little

users’ interference. Generation of depth map based on local depth hypothesis is proposed by

[26]. In [26], depth map is produced using vanishing point which are considered farthest

points in an input image. The dark shades of the gray scale image are assigned to these farthest

points and bright shades to closest points. Phan et al. [27] proposed integrated algorithms of

scale space random walk and graph cut segmentation to generate the depth map. In [28], a

semi-automatic method is proposed to generate the depth map. The system takes random

scribbles from the users which denote the far and nearest points in the image. These scribbles

generate the initial sparse depth map. The welsch M-estimator is used to convert the sparse

depth map to dense depth map. Though, semi-automatic methods can produce the good qual-

ity depth map for the 3D scene. However, such methods are time consuming and incompatible

to real time applications.

In recent times, an extended automatic method has made appearance. In such mechanism,

machine learning techniques have been used to train a huge repository of (RGB+Depth) which

contained consistent depth map images of queried images. The working rule of the system

is based on the structure similarity of the images. The trained (RGB+Depth) repository has

been used in [29–31]. In [29], kNN (k nearest neighbors) algorithm is used to search relative

images and the respective depth map images of the queried image. By fetching multiple similar

images with the depth map images, only the structurally similar image + depth are selected

and the rest of it is removed. Herrera et al. [30] proposed Local Binary Pattern (LBP) based fea-

tures to retrieve similar images from the (RGB+Depth) repository. Then, the corresponding

depths are combined using the correlation weighting scheme. In [31], a huge synthetic (RGB +

depth) database of soccer game is created. The algorithm transfers gradients of images’ depth

information from synthetic dataset and find the refined depth map using spatio-temporal

methodology.

Though, (RGB+Depth) based systems perform well in the respective domain. However,

such systems require huge data sets of color images along its depth map images. It also

required system training and exhaustive search to find the corresponding results. The main

objective of researchers is to provide the view of hyper-reality on traditional TV systems.
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Researchers are achieving this milestone through constant prodigious efforts. The constant

nagging on the development and betterment of hyper-realism on traditional screens make

researchers more efficient and efficacious to achieve the required results of 3D contents. The

perpetual desire of consumers makes researchers eager to accomplish the goal of advancement

in 3D technology. In order to transmit 3DTV data efficiently, transmission requires data com-

pression [32]. This compression creates artifacts at the receiving side i.e. data become blur/

noisy. This degraded image data caused occlusion effects which compromise the quality of the

3D view. To address the occlusion effect in single and multi degraded view, the data needs to

be enhanced. In [33], degraded data is enhanced using Discrete Cosine Transform (DCT) by

considering all the three attributes (brightness, Contrast, Color) of the RGB image. Yang et al.
[34] proposed a multi-lateral guided filter to enhanced the degraded depth map. The system

creates the Macro Super Pixel data structure where the priors of depth and color are used as

reference to guide the Gaussian kernels. We are proposing a novel approach to convert a

degraded (noisy/blur) image to a quality 3D scene. In the proposed system, the conversion

from a degraded image to 3D scene required to enhance the degraded image using the dehaz-

ing procedure and DFB [35]. The DBF has many applications such as fingerprint enhance-

ment, image denoising, edges detection etc. The enhanced image is segmented using k-mean

classify algorithm. The enhanced information ultimately creates the effective depth map which

becomes the concrete foundation for the efficient 3D content generation. After the segmenta-

tion, the depth map is generated using image profiles. The depth map is further refined by

bilateral filter and then converted to stereoscopic images using DIBR [36]. At the end, the syn-

thesized left and right images are combined to produce 3D view. The proposed calculation is

efficient as far as computational and memory confinements. The tested data sets are available

online [37] [38] [39]. We have complied with the term of service for the websites from which

we have collected data.

2 Directional Filter Bank Depth Image based Rendering System

(DFB-DIBR)

A novel approach to generate 3D view is proposed in this paper. Fig 1 is the block diagram of

the purposed system. The DFB-DIBR consists of following parts: Image Dehazing, Noisy/Blur

Fig 1. Flow for the proposed Directional Filter Bank Depth Image based Rendering System (DFB-DIBR).

https://doi.org/10.1371/journal.pone.0217246.g001

Degraded image enhancement by image dehazing and Directional Filter Bank using DIBR for future free-view 3D-TV

PLOS ONE | https://doi.org/10.1371/journal.pone.0217246 May 23, 2019 5 / 24

https://doi.org/10.1371/journal.pone.0217246.g001
https://doi.org/10.1371/journal.pone.0217246


Image Enhancement using DFB, grouping background pixels of similar intensity using k-

mean, Applying image profiles or depth hypothesis on background pixels, depth map genera-

tion and refinement, creating synthesized left and right image using DIBR, creating Anaglyph

image or 3D view. It is shown in Fig 1. A blur/noisy image is inserted to the system. The image

is dehazed first. Then the dehazed image is enhanced using DBF. After enhancement, the seg-

mented foreground (white) and background (black) image is inserted. The foreground is a

bright region and does not contain any depth discontinuity. On the other hand, the back-

ground region has depth variation and we are assuming that pixels of similar intensity have

similar depth. We have used K-means classification algorithm to group similar intensity pixels

and assigned the same depth value at the next stage. Image profile/depth hypothesis is assigned

to the classified background which combined with the foreground pixels to generate the initial

depth map. The initial depth map is further cultured to retrieve the refined depth map. In next

turn, the refined depth map is integrated with the input image to generate synthesized stereo-

scopic images using DIBR. At the final stage, the synthesized images are combined to generate

3D virtual view. Each part of the system is described in the following parts.

2.1 Image dehazing

The intensity variations between foreground and background can cause non-uniform illumi-

nation. The region with varied contrast can be modeled as haze with less visibility. For greater

clarity of the objects presents in the background region, we resort to using a de-hazing algo-

rithm, put forward in [40] for improving the visibility of images captured in outdoor scenarios.

This is a non-local method that removes haze from an image. Our objective here is to restore

the true color and contrast of objects that are usually present in less visible region as shown

in Fig 2. A hazy image is a complex combination of true scene, usually present in foreground

region, and global error (non-uniform illumination). This phenomenon fits well into the haze

model. It has been observed that a haze-free image in the RGB domain can be represented well

with few-hundred distinct colors, that form spherical clusters in RGB space. The presence of

haze in pictures modify the clusters into straight-line shape, referred to as haze-lines. Using

that haze-line, a regularized inverse algorithm presented to make the image haze-free. We

Fig 2. (a) Original image (b) Dehazed image.

https://doi.org/10.1371/journal.pone.0217246.g002
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adopted this inverse process for its contrast-improvement behavior and efficient computa-

tional structure nature that is linear in size of the image. Fig 2 shows the original and the

dehazed image.

2.2 Blur/Noisy image enhancement using Directional Filter Bank

Directional filter bank (DFB) was initially proposed by [35]. DFB has been used in many

image processing applications such as fingerprint enhancement [41], edges detection [42],

image denoising [43] etc. DFB has the uniqueness to disintegrate the multidimensional signal

in to few directional sub-band. The DFB can detect and present signal eccentricity in the form

of edges lying on the blur/noisy surfaces. The DFB is carry out by an n-layers tree-structure.

Due to the n-layers tree-structure, the signal can be decompose in to 2m sub-bands with

wedge-shape frequency partitioning as shown in Fig 3.

At each decomposition level, the DFB permit for various number of directions. The DFB

is also capable of detecting directionality of the coefficient at the high frequency. The Coarse

Fig 3. 2D frequency partitioning.

https://doi.org/10.1371/journal.pone.0217246.g003
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acquisition is provided by low pass sub-bands and directional information is provided by high

pass sub-bands. The edges can appear in an image at any range and direction. It is important

to acquire the reaction of an edge filter at any self-assertive position and coordinates. DFB is

an essential transform that offers the idealize reproduction i.e. the initial signal can be precisely

reproduced from its exterminating mediums. The F0(ω) and F1(ω) represent the low pass and

high pass filter responses. The Wedge shaped frequency responses are acquired by applying

the Checkerboard filter. The wedge responses are helpful for capturing the edges at different

scales which result in effective edge detection. F1(ω) provides edge information and a Checker

board filter is illustrated by Eq 1.

kðn1; n2Þ ¼ 1=2½F0ð� n
2

1
ÞF0ð� n

2

2
Þ � n1n2F0ð� n

2

1
ÞF0ð� n

2

1
Þ� ð1Þ

Moreover F0(ω) and F1(ω) fulfill Eq 2.

jF0ðoÞ
2
þ F1ðoÞ

2
j ¼ 1 ð2Þ

Transfer function Tf (n1, n2) that is achieved from the checkerboard filter. It is given in Eq 3

Tf ðn1; n2Þ ¼ 1=2½F0ð� n1n2ÞF0ð� n
� 1

1
n2Þ � n2F1ð� n1n2ÞF1ð� n

� 1

1
n2Þ ð3Þ

Eq 4 shows the response of the ideal fan filter.

Tf ðe
jo1; ejo2Þ ¼ kðeiðo1þo2Þ=2; eiðo1þo2Þ=2Þ ð4Þ

F1ω obtained the high frequency components that is useful in capturing edge information.

The directional derivative of a two-dimensional function is represented by D(x,y). Eqs 5 and 6

show directional derivatives of the function at different orientations.

D0

1
ðr; yÞ ¼ cosðyÞDðx; yÞ ð5Þ

Dp=2

1 ðr; yÞ ¼ sinðyÞDðx; yÞ ð6Þ

The order of the derivative is expressed by subscript and the angle of the derivative direction is

indicated by superscript. It is obvious that the function D1 can incorporate at an arbitrary ori-

entation ‘ϕ’ using Eq 7 and can be an edge filter.

D�

1
ðr; yÞ ¼ cosð�ÞD0

1
ðr; yÞ þ sinð�ÞDp=2

1 ðr; yÞ ð7Þ

D1 being a directional derivative can be developed at a random orientation as a linear combi-

nation of basis filter D0
1

and Dp=2

1 , cosϕ and sinϕ are assigned as interpolation functions. The

function D(x,y) is undeviating and used as a 2D directional filter. This filter is further useful

in extracting image’ edges at various orientation and results in precise edge response. Edges

consist of directional information where as the noise does not have directional information.

Fig 4 displays the noisy and noise free image. The noise has been removed using DFB. DFB

is helpful in enhancing the blur/noisy image by extracting the directional information from

the blur part of the image. Fig 5 shows pixels intensity histograms of degraded input image

and enhanced image.

2.3 Image Segmentation

After enhancement of an image by DFB, the input image as shown in Fig 6, is segmented

into its foreground image and background image by providing the ground truth of the input

image. The foreground image consists of high intensity pixels information whereas back-

ground consists of low intensity pixels. It can be seen in Fig 6, the foreground is bright (noise
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free/blur free) so it will appear ablaze in gray shades of the depth map image. The Background

region has intensity variation in the enhanced input image. Pixels of similar intensity should

have similar depth value in the depth map. In order to do so, K-mean classify algorithm has

been used to group similar intensity pixels as well as count the total number of Pixels con-

tained in each group.

Depth map image is expressed in grayscale where noise free or the enhanced region of the

input image is indicated as a bright region and the blur/noisy region is shown as a dark region.

In [26], image profiles are generated by finding the vanishing points using Hough transform.

The vanishing points in [26] have been considered the farthest region in the input image and

accepted to be the dark region in depth map. whereas, the closest points to the viewing position

are considered the bright region in depth map. In the DFB-DIBR, the image profile/depth

hypothesis is generated without using the vanishing points of Hough transform. By avoiding

Hough transform, the efficiency of the proposed algorithm is measured promising in the term

of computational complexity. The enhanced region of the input image appears bright in the

depth map image and the blur/noisy region appears dark because the farthest points usually

become blur/noisy while taking images. The image profile/Depth hypothesis is determined

using Euclidean distance formula and the relative height depth cue. The image profile of nth

regions can be determined by Eq 8

InEðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � xvÞ
2
þ ðy � yvÞ

2

q

=maxðInEÞ ð8Þ

Where InEðx; yÞ is the image profile xv and yv are the generalized points and their values are

assumed to be 1. Natural scene images are composed of sky and ground. The sky is the upper

part of the image and considered the farthest point, therefore that part appeared dark in depth

map. Whereas, the ground is assumed to be the nearest part and accepted to be the bright

region in the depth map. Therefore, relative height depth cue image profile IR(x, y) is deter-

mined by y coordinates only. The equation of IR is shown as Eq 9

IRðx; yÞ ¼ ðI � yÞ=I ð9Þ

Where I is the height of the input image. This image profile/depth hypothesis presents that

variation in gray-scale will occur along y-axis only. Our proposed method uses both 8 and 9

hypothesis separately to determine the depth hypothesis for the depth map generation. The

Fig 4. (a) Noisy image (b) Noise free image.

https://doi.org/10.1371/journal.pone.0217246.g004
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equation of If (x, y) can be obtained by combining Eqs 8 and 9 hypothesis i.e.

If ðx; yÞ ¼ I
n
Eðx; yÞ þ IRðx; yÞ ð10Þ

Fig 7 shows examples of the image profiles, generated by Euclidean distance formula and

relative height depth cue.

Fig 8 shows some examples of the image profiles with respect to the location of the viewing

point (VP). High intensity regions in the input image will appear bright in image profile and

as the intensity decrease of the regions in an input image, those regions will appear dark in

image profile. In Fig 8, regions close to the (VP) appeared bright in image profiles because

close points to the (VP) have high intensity information and it is the blur/noise free region. As

the regions getting far from (VP), image information will become blur/noisy gradually which

introduce dark shades in image profile. All image profiles in Fig 6 are generated by Euclidean

distance except Fig 8(c) and 8(g) which are generated by the relative height depth cue. The

concept behind Fig 8(i) is to focus the farthest middle regions in the input image and blurred

the nearest region so the farthest region is bright in image profile and the nearest region is

Fig 5. Pixels intensity histograms.

https://doi.org/10.1371/journal.pone.0217246.g005

Fig 6. Image Segmentation.

https://doi.org/10.1371/journal.pone.0217246.g006
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darker. For example, we usually watch scenes in a movie where the farthest object is focused

and the nearest region appeared blur. The inverse phenomenon of Fig 8(i) is shown in Fig 8(j).

After generating image profiles, depth map Dmap is generated. In order to generate depth map

Dmap, image profiles Ipro values are assigned to each segmented regions S in the previous step.

The Dmap value at any given point Dmap(x, y) is computed by average Ipro and the average

depth value of the segmented regions S(x,y), Ipro. The average value of the segmented region

S(x,y) and Eq 11 Ispro can be computed as

ISpro ¼
1

Tðnðx;yÞÞ

X
Iproðp; qÞ ð11Þ

where T(n(x,y)) shows the total number of pixels in a segmented S(x, y) region. We assumed

that regions of similar intensity have the same depth value in Dmap but this concept does not

hold for the large region. As the larger region contains an excessive number of pixels.

Fig 7. Image profile/depth hypothesis determination.

https://doi.org/10.1371/journal.pone.0217246.g007

Fig 8. Image profiles/hypothesis generation base on vp (.a, .b, .c, .d, .e, .f, .g, .h, .i, .j).

https://doi.org/10.1371/journal.pone.0217246.g008
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Therefore we check the number of pixels in each segmented region S(x,y) by

Dmap ¼
Ispro if Tnðx;yÞ < Tth

1

2
ðIpro þ IsproÞ otherwise

(

ð12Þ

Where Tth is the threshold, used to check the size of the region by counting the number of pix-

els in a region. If the region has less number of pixels which possess small depth variation then

Dmap is calculated by Ispro. Otherwise, Dmap is calculated by averaging both image profiles Ipro
and Ispro.

2.4 Depth map Refinement

In the Dmap, pixels of segmented regions differ across different depth value than those of the

neighboring pixels though they must have the same depth value that relates to the same region

in the input image. If a region in the input image with the same depth is divided into several

regions with different depth, it creates unnatural artifacts. To avoid such unnatural artifacts,

the adaptive bilateral filter is applied to produce a refined depth map. The input image and its

related depth map Dmap are shown in Fig 9.

2.5 Depth Image based Rendering

Depth Image Based Rendering is the procedure to generate the synthesized 3D virtual view of

a scene by combining the reference input image and the depth map. In [36], the DIBR is based

on two different synthesized images i.e. the virtual left eye and the right eye camera parameters

which are obtained by using 3D warping Eqs 13 and 14

ðXr; yÞ ¼ Xc �
tx
2
�
f
d

ð13Þ

ðXl; yÞ ¼ Xc þ
tx
2
�
f
d

ð14Þ

where (Xr), (Xl) are the right and left image pixels positions, Xc is the center of the image, tx is

Fig 9. Refined depth map Dmap.

https://doi.org/10.1371/journal.pone.0217246.g009
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the baseline or distance between two lenses of a camera, f is the focal length while d being the

depth map of the respective image. Occlusion may occur after the translation of the input

image into synthesized left and right images. To handle the occluded area, the neighborhood

pixels textures are averaged to fill the newly exposed area in synthesized images.

2.6 Handling occlusion

Input images are translated to stereoscopic (left and right) images using DIBR procedure.

Occlusion occurred whenever images are translated which leaves holes in translated images.

The occluded area may be visible in virtual views which can be filled by using the background

pixels using the following Eq 15

Iðx; yÞ ¼
Pw

n¼1
Bgði; yÞ
w

ð15Þ

Where I(x, y) represents the occluded point location in coordinate (x, y), Bg(i, y) is the back-

ground pixel in coordinate (i, y) only horizontal pixels are computed to fill the holes and w
stands for window size. After holes filling, a median filter is used to smooth the filled area.

3 Experimental results and discussion

To authenticate the predominance of the DFB-DIBR, numbers of degraded images datasets

[37–39] have been tested. In the dataset [37] tested images are Rabbit(800x490), Bear

(800x618), Troll(800x563), plant2(800x595), Threads(800x608), Donkey(800x543), Glass

(800x532), Plant(800x604) and Plastic bag(800x662). The Data set [37] consists of two types

of degraded images. First type of degraded images are photographed by placing the object in

front of the monitor seeming natural blur/noisy images. Second type of degraded images are

taken in real natural view. The experiments are conducted using a System with Intel Core i7-

3632QM CPU(2.20 GHz) having 8GB of RAM. To assess the results of the DFB-DIBR and

state of the art methods [12] and [26], the depth map and corresponding anaglyph images

have been shown in Figs 10 and 11 respectively. The depth map results of fabricated blur/

noisy images, generated by [12] and [26] cannot distinguish the architecture very well. In test

sequence “Glass” the texture information of digits written inside the clock is missing in the

depth map of [12] and [26]. Whereas such texture information is very much clear in the depth

map of the DFB-DIBR due to enhancement of the background data. The relationship between

depth values of different intensity pixels are ignored in [12], especially the depth values of dif-

ferent objects are same in the tested image “Threads” which in fact, contain different intensity

values and should have assigned different depth values. The proposed system clearly differenti-

ates the high and low-intensity pixels and assigned respective depth values accordingly. The

edges information of sky in the test sequence “Rabbit” is missing in the depth map of [12] and

[26]. The depth map results of blur/noisy images taken in natural view of the purposed system

are far superior than the depth map results of Refs [12, 26]. The depth map of the test sequence

“plant2” is properly bedded. In other words, the global depth gradient is maintained by the

proposed system whereas such property is ignored by [12] and [26]. To show the performance

dominance of the proposed system over conventional algorithms [12] and [26], some full-ref-

erence image quality evaluation parameters are used such as Universal image quality index

(UQI) [44], Structural Similarity Index (SSIM) [45] and Peak Signal to Noise Ratio (PSNR)

[46].

The statistical evaluation validate that the proposed system, compared with [12] and [26],

can estimate the efficient depth map. In PSNR, SSIM and UQI higher values are considered

better. Compare to [12] and [26], the values of the SSIM of the proposed system are better
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Fig 10. Depth map results of dataset [37]. (a) Input Images (b) Depthmap produced by Zhuo.et al. [12] (c)

Depthmap produced by Yang.et.al. [26] and (d) Depth-map generated by DFB-DIBR.

https://doi.org/10.1371/journal.pone.0217246.g010
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Fig 11. Anaglyph results of dataset [37]. (a) Input Images (b) Anaglyph produced by Zhuo.et al. [12] (c) Anaglyph

produced by Yang.et.al. [26] and (d) Anaglyph generated by DFB-DIBR.

https://doi.org/10.1371/journal.pone.0217246.g011
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Table 1. Comparison parameters PSNR, SSIM and UQI using dataset [37].

Image Zhuo et.al [12] Yang et.al [26] Proposed System

PSNR SSIM UQI PSNR SSIM UQI PSNR SSIM UQI

1 8.754 0.566 0.632 9.403 0.486 0.686 19.226 0.672 0.630

2 7.119 0.442 0.456 10.672 0.710 0.757 21.734 0.789 0.850

3 11.761 0.436 0.690 8.183 0.487 0.682 16.796 0.489 0.691

4 15.773 0.535 0.853 6.985 0.272 0.325 17.563 0.552 0.753

5 11.215 0.272 0.658 9.492 0.325 0.443 15.403 0.314 0.692

6 7.666 0.309 0.514 8.359 0.424 0.599 16.711 0.481 0.666

7 7.055 0.171 0.448 8.052 0.287 0.453 18.108 0.359 0.479

8 9.456 0.338 0.667 6.294 0.260 0.551 13.475 0.285 0.604

9 9.625 0.489 0.641 13.891 0.435 0.582 17.021 0.573 0.786

https://doi.org/10.1371/journal.pone.0217246.t001

Fig 12. MAE and RMSE of the dataset [37].

https://doi.org/10.1371/journal.pone.0217246.g012
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than [12] and [26]. At the same time, the PSNR value of proposed system compare to [12] and

[26], increases by 1.399 and 1.024 dB averagely. As to the UQI, the average value of UQI of the

proposed system is higher than [26] about 0.106. whereas, it is higher than [12] about 0.054

averagely. The bold values in the Table 1 are considered better. In PSNR, SSIM and UQI

higher values are better. Mean Absolute Error(MAE) and Root Mean Square Error(RMSE)

have been calculated of depth map obtained by Refs [12, 26] and the proposed system. MAE

and RMSE are shown in Fig 12. It is clear from the Fig 12 that error in depth map images gen-

erated by the proposed system is very low as compare to [12] and [26].

The proposed system has been tested using another dataset [38]. The dataset includes more

than 500 degraded images of different types i.e. indoor, outdoor, people, building, car etc. The

PSNR, SSIM and UQI have been calculated of the depth map generated by proposed, [12] and

[26]. Their values are displayed in Table 2. The depth map and anaglyph results of dataset [38]

are shown in Figs 13 and 14 respectively. The MAE and RMSE of the depth map generated

by proposed system, [12] and [26] is calculated using dataset [38]. The MAE and RMSE are

shown in Fig 15 respectively.

The proposed system has been tested using enhanced images’ dataset [39]. Enhanced

images do not require dehazing and DFB based enhancement. To check the performance of

the proposed system, the depth map results are compared with the depth map results gener-

ated by state of the art algorithm [8]. Full reference 2D image evaluation parameters PSNR,

SSIM and VIF [47] have been used to evaluate the quality of the depth map. The results of

the depth map are shown in Table 3. It is clear from the Table 3 that the PSNR and VIF val-

ues of the proposed system are dominant over the [8] i.e. 6.4 and 0.081 averagely. At the

same time, the average SSIM values of the [8] are higher than the proposed system about

0.06.

3.1 3D view evaluation

To evaluate the 3D results of proposed system, the percentage of holes in the occluded area has

calculated in translated images. The value of the percentage is quite minimal almost 0.006%

and 0.007% averagely. This minimum value of the percentage shows that the proposed system

generates quality depth map which ultimately creates a presentable 3D scene. Data about holes

in the occluded area has been calculated using block size 8x8 and 16x16 which can be seen in

the Tables 4 and 5. In Tables 4 and 5 LI refers to Left Image and RI refers to Right Image. The

hole percentage of the tested datasets [37] and [38] is displayed in Fig 16.

Table 2. Comparison parameters PSNR, SSIM and UQI using dataset [38].

Image Zhuo et.al [12] Yang et.al [26] Proposed System

PSNR SSIM UQI PSNR SSIM UQI PSNR SSIM UQI

1 11.292 0.302 0.671 5.823 0.282 0.501 18.744 0.597 0.685

2 6.352 0.406 0.423 6.823 0,427 0.638 15.236 0.527 0.403

3 11.393 0.493 0.592 6.017 0.345 0.587 14.297 0.366 0.413

4 9.497 0.244 0.577 5.864 0.253 0.523 17.087 0.428 0.626

5 10.824 0.465 0.662 7.233 0.506 0.638 17.089 0.427 0.578

6 10.953 0.392 0.668 4.865 0.337 0.538 14.328 0.45i 0.553

7 7.665 0.363 0.405 6.267 0.473 0.286 19.217 0.576 0.668

8 10.955 0.503 0.795 6.967 0.507 0.614 13.407 0.357 0.638

9 11.775 0.393 0.587 6.337 0.413 0.526 16.703 0.435 0.668

https://doi.org/10.1371/journal.pone.0217246.t002
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Fig 13. Depth map results of dataset [38]. (a) Input Images (b) Depthmap produced by Zhuo.et al. [12] (c)

Depthmap produced by Yang.et.al. [26] and (d) Depth-map generated by DFB-DIBR.

https://doi.org/10.1371/journal.pone.0217246.g013
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Fig 14. Anaglyph results of dataset [38]. (a) Input Images (b) Anaglyph produced by Zhuo.et al. [12] (c) Anaglyph

produced by Yang.et.al. [26] and (d) Anaglyph generated by DFB-DIBR.

https://doi.org/10.1371/journal.pone.0217246.g014
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4 Conclusion

In this paper, we proposed a novel approach to convert a 2D blur/noisy image to 3D view. The

image is dehazed first. Then the noisy image is enhanced using DFB. The enhanced image is

segmented into background and foreground in the next stage. The foreground is the enhanced

part of the image and the background part has intensity variation. The similar intensities are

grouped using k-mean algorithm. After grouping similar intensities, image profile/depth

hypothesis procedure is applied to generate depth map. The initial depth map is further refined

Fig 15. MAE and RMSE of the dataset [38].

https://doi.org/10.1371/journal.pone.0217246.g015

Table 3. Comparison parameters PSNR, SSIM and VIF using dataset [39].

Image Yang et.al [8] Proposed System

PSNR SSIM VIF PSNR SSIM VIF

Swords 12.36 0.65 0.04 19.25 0.53 0.08

Umbrella 13.24 0.70 0.05 20.15 0.75 0.21

Aloe 15.48 0.57 0.10 18.30 0.58 0.21

Ballet 12.44 0.70 0.12 24.34 0.64 0.19

Road 10.45 0.63 0,09 13.92 0.45 0.12

https://doi.org/10.1371/journal.pone.0217246.t003
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using a bilateral filter to remove some natural artifacts. Moreover, the stereoscopic images

are produced using DIBR. Experimental results show the superiority of the proposed novel

approach to generate 3D scene from single 2D blur/noisy image. Since the proposed system

generates efficient results therefore the future research will focus on using the proposed system

as hand crafted feature for the deep learning algorithm.

Table 4. Holes percentage using block size 8x8 and block size 16x16 tested dataset [37].

Holes Percentage Using Block size 8x8 Holes Percentage Using Block size 16x16

Image Zhuo et al. [12] Yang et al. [26] Proposed Method Zhuo et al. [12] Yang et al. [26] Proposed Method

LI RI RI RI LI RI LI RI LI RI LI RI

1 0.011 0.011 0.023 0.023 0.007 0.007 0.011 0.011 0.023 0.023 0.005 0.005

2 0.010 0.010 0.025 0.025 0.008 0.008 0.010 0.010 0.025 0.025 0.005 0.005

3 0.010 0.010 0.030 0.031 0.019 0.019 0.010 0.017 0.030 0.031 0.009 0.009

4 0.010 0.010 0.025 0.025 0.002 0.002 0.011 0.011 0.027 0.027 0.003 0.003

5 0.015 0.015 0.058 0.058 0.001 0.001 0.016 0.016 0.059 0.060 0.002 0.002

6 0.014 0.014 0.017 0.017 0.007 0.007 0.014 0.014 0.017 0.017 0.007 0.007

7 0.012 0.012 0.018 0.018 0.009 0.009 0.012 0.012 0.018 0.018 0.009 0.009

8 0.015 0.015 0.050 0.049 0.022 0.022 0.016 0.015 0.050 0.049 0.022 0.022

9 0.010 0.010 0.034 0.034 0.005 0.005 0.015 0.015 0.038 0.038 0.006 0.006

https://doi.org/10.1371/journal.pone.0217246.t004

Table 5. Holes percentage using block size 8x8 and block size 16x16 tested dataset [38].

Holes Percentage Using Block size 8x8 Holes Percentage Using Block size 16x16

Image Zhuo et al. [12] Yang et al. [26] Proposed Method Zhuo et al. [12] Yang et al. [26] Proposed Method

LI RI RI RI LI RI LI RI LI RI LI RI

1 0.010 0.012 0.018 0.018 0.009 0.009 0.010 0.012 0.018 0.018 0.009 0.009

2 0.012 0.012 0.034 0.035 0.010 0.010 0.012 0.012 0.034 0.035 0.010 0.010

3 0.011 0.011 0.011 0.011 0.005 0.005 0.011 0.011 0.011 0.011 0.005 0.005

4 0.023 0.023 0.014 0.014 0.010 0.010 0.015 0.015 0.014 0.014 0.010 0.010

5 0.010 0.010 0.012 0.012 0.006 0.007 0.010 0.010 0.012 0.012 0.006 0.007

6 0.015 0.015 0.014 0.014 0.010 0.010 0.015 0.015 0.014 0.014 0.010 0.010

7 0.013 0.013 0.013 0.013 0.005 0.005 0.013 0.013 0.013 0.013 0.005 0.005

8 0.026 0.026 0.018 0.018 0.009 0.009 0.026 0.026 0.018 0.018 0.009 0.009

9 0.009 0.009 0.016 0.016 0.005 0.005 0.009 0.009 0.016 0.016 0.005 0.005

https://doi.org/10.1371/journal.pone.0217246.t005

Fig 16. Holes percentage of occluded area.

https://doi.org/10.1371/journal.pone.0217246.g016
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