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Abstract

Background: Brain Computer Interfaces (BCls) translate the activity of the nervous
system to a control signal which is interpretable for an external device. Using continu-
ous motor BCls, the user will be able to control a robotic arm or a disabled limb contin-
uously. In addition to decoding the target position, accurate decoding of force ampli-
tude is essential for designing BCl systems capable of performing fine movements like
grasping. In this study, we proposed a stack Long Short-Term Memory (LSTM) neural
network which was able to accurately predict the force amplitude applied by three
freely moving rats using their Local Field Potential (LFP) signal.

Results: The performance of the network was compared with the Partial Least Square
(PLS) method. The average coefficient of correlation (r) for three rats were 0.67 in PLS
and 0.73 in LSTM based network and the coefficient of determination (R?) were 0.45
and 0.54 for PLS and LSTM based network, respectively. The network was able to accu-
rately decode the force values without explicitly using time lags in the input features.
Additionally, the proposed method was able to predict zero-force values very accu-
rately due to benefiting from an output nonlinearity.

Conclusion: The proposed stack LSTM structure was able to predict applied force
from the LFP signal accurately. In addition to higher accuracy, these results were
achieved without explicitly using time lags in input features which can lead to more
accurate and faster BCl systems.
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Background

The advent of Brain Computer Interfaces (BCIs) holds the promise to restore movement
to disabled limbs or control an artificial effector [1, 2]. Various signal recording methods
with different level of invasiveness had been used in BCI systems; despite the high level
of invasiveness, the intracortical recordings have the highest movement-related informa-
tion and signal to noise ratio [3]. The intracortical neural data, usually spike time series
or firing rate of neurons, are used to continuously control the movement of the artificial
effector or stimulate the disabled limb. However, recording spikes over a long period can
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be challenging. The number of received spikes decreases over time and reduces the func-
tionality of the BCI system. Also, spikes are recorded at high sampling frequency, which
increases the complexity and cost of recording devices. Therefore, Local Field Potentials
(LFP) are used as a more stable and simpler source of information [4]. LFPs are low-fre-
quency voltage fluctuations that it is believed to be related to activities of postsynaptic
currents nearby the recording electrodes [5]. Many studies have shown that movement-
related parameters can be decoded using spectral features from multi-channel LFP sig-
nal [6, 7]. For instance, the continuous position of the hand in both 2D and 3D space
was decoded using LFP signals recorded from motor cortex area M1 [8]. However, many
daily activities, like grasping, require controlling the precise value of force applied to
an object. Therefore, it would be useful to be able to decode force-related information
from brain signals. Some studies [9-11] used the ECoG signal, recorded from move-
ment-related areas, to predict force amplitude. Among the few studies regarding force
decoding using LFP, Milecovic et al. [11] used 100 LFP channels to decode accurate force
applied to each finger during a grasping task. Khorasani et al. used merely 16 LFP chan-
nels (the same data used in this study) to decode force value applied by a freely moving
rat [12].

All neural data, including LFPs, are highly dynamic, nonlinear and have low signal
to noise ratio. These challenging characteristics of neural data compelled researcher to
use various signal processing and machine learning approaches to achieve higher per-
formance in decoding movement-related parameters from neural data. For instance,
Khorasani et al. proposed a novel adaptive artifact removal technique for enhancing
signal quality to achieve higher performance in BCI [13]. Foodeh et al. introduced the
minimum noise estimate (MNE) filter for removing artifacts from the recorded neu-
ral signals [14]. Marathe et al. modified common spatial patterns (CSP) technique for
feature extraction in continuous BCI systems [15]. Benz et al. proposed a novel feature
extraction schema via connectivity analysis in continuous BClIs [16]. Zhuang et al. con-
sidered the dynamic characteristics of BCI's output by applying a Kalman filter as the
decoder [8]. Zheng Li et al., and Simin Li et al., modified the unscented Kalman filter to
non-linearly estimate movement-related parameters [17, 18]. Shimoda et al. used partial
least squares (PLS) regression for decoding 3-D hand trajectories for dealing with high-
dimensionality of features space [19]. van Gerven et al. introduced sparse orthonormal-
ized PLS as an extension to the ordinary PLS, which can simultaneously perform feature
selection and regression [20].

Among all the complexities of designing a BCI decoding system, handling large dimen-
sionality of the feature space, learning the intrinsic dynamic of data, and finding the
possible nonlinear mapping between neural data and the target movement parameters
seems to be necessary for a successful BCI decoding model. In most of the cases, how-
ever, the proposed methods fail to address these challenges simultaneously. For instance,
many regression methods, like the family of linear methods, can neither find the intrin-
sic dynamic of data, nor the nonlinear mapping between the input and output. Thus, to
solve the problem of intrinsic dynamics, multiple prior time samples of data are added
to features. Nonetheless, the concern regarding nonlinear mapping persists, and add-
ing previous time samples also increases the dimensionality of feature space. Therefore,
it is natural to think of a nonlinear method in which the previous relevant features are
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Table 1 Correlation coefficient of LSTM network and PLS (10 lags), for all rats and 7 folds

r Rat 1 Rat 2 Rat 3
PLS LSTM PLS LSTM PLS LSTM

Fold 1 0.74 0.74 0.75 077 0.70 0.76

Fold 2 0.65 0.71 0.76 0.76 0.76 0.79

Fold 3 0.63 0.68 0.70 0.75 0.68 0.74

Fold 4 0.69 0.80 0.67 0.64 0.73 0.77

Fold 5 0.68 082 0.57 0.62 0.69 0.69

Fold 6 0.79 0.71 0.76 0.70 0.71 0.80

Fold 7 0.74 0.78 0.67 0.72 0.72 0.74
Average 0.74+0.05 0.74+0.05 0.69+0.06 0.70+0.05 0.71£0.02 0.75+0.03

automatically used for predicting the current target value. Recurrent neural networks
have the aforementioned characteristics.

Recurrent neural networks (RNNs) can learn the intrinsic dynamic of data. However,
due to gradient vanishing, the information from the past samples cannot easily reach
the current sample [21]. To solve this problem, new structures, including LSTM (Long
Short-Term Memory) and GRU (Gated Recurrent Units), were introduced [22]. Long
short-term memory networks have an extra path for transferring relevant information
from the previous sample to more recent ones. Unlike classical recurrent neural net-
works, LSTM is more robust to gradient vanishing and was considerably successful in
natural language processing and time series prediction. It is expected that these networks
can also be able to learn relevant information in neural data. For instance, Belo et al. [23]
used A GRU based structure for synthesizing multiple biological signals including Elec-
trocardiogram (ECG) and Electromyogram (EMQG) with the purpose of denoising, clas-
sification and generating (reproduction) of EMG and ECG signals. Also, in another case,
LSTM network was used to predict hand kinematics [24]. Unfortunately, unlike natural
language processing, there are few samples of data in BCI related datasets. Therefore,
LSTMs are prone to be overfitted to training data. Beside regularization, Dropout layers
proved to be useful in controlling overfitting problem [25]. In this study, an LSTM based
neural network is used to decode the force amplitude from the spectral features of LFP
data without directly using time lags in features. The results are compared with the Par-
tial Least Square (PLS) method.

Results

The network is evaluated using seven-fold cross-validation. In this method, data is
divided into 7 partitions, and each time, 6 partitions are used as train and the remain-
ing partition as test data. This process is repeated 7 times, and the final performance is
the average performance in all the 7 folds. The same train and test data are used in PLS
evaluation. The hyper-parameters of the LSTM network and the number of components

for PLS were optimized as explained in the method section for each fold.



Kashefi and Daliri BMIC Bioinformatics (2021) 22:26 Page 4 of 19

Table 2 Coefficient of determination for LSTM network and PLS (10 lags), for all rats and 7

folds
R? Rat 1 Rat 2 Rat 3

PLS LSTM PLS LSTM PLS LST™M
Fold 1 0.50 0.54 0.36 0.59 048 0.55
Fold 2 038 0.51 0.57 0.57 0.57 0.62
Fold 3 039 044 049 049 041 048
Fold 4 043 0.46 042 042 0.53 0.59
Fold 5 038 0.68 0.29 0.34 046 045
Fold6 0.53 045 0.54 0.57 0.50 062
Fold 7 048 0.58 0.35 049 0.50 0.52
Average 0.44+0.06 0524008 043+0.1 049+0.09 049+0.05 0.54+0.06

Prediction accuracy

The correlation coefficient (r) and coefficient of determination (R?) are reported for each
rat in all the iteration in Tables 1 and 2, respectively. In both Tables 1 and 2, the high-
est values are italic. In terms of correlation, the mean value for all 7-folds for ratl, rat 2
and rat 3 are 0.7 +0.05, 0.6 +0.06, 0.71 +0.02 for PLS with 10 time lags and 0.74 40.05,
0.70£0.05 and 0.75+0.03 for LSTM Network respectively. The statistical significance of
the results was tested using the Wilcoxon signed-rank test p<0.01. In terms of coefficient
of determination (R?), the mean value of 7 folds for rat 1, rat 2 and rat 3 are 0.44:+ 0.06,
0.434+0.1 and 0.49£0.05 for PLS and 0.5240.08, 0.49 +0.09 and 0.54 4 0.06 for LSTM
Network respectively with statistical significance p<0.05 (Wilcoxon signed-rank test).
These results indicate that the LSTM Network was able to predict the force value more
accurately. For additional evaluation of prediction accuracy, we also evaluated the net-
work with 7-times 7-folds cross-validation, and the significance of the results was evalu-
ated for each rat (see Additional file 1).

To have a better visualization of the predictions, three predictions with the highest
(R2) values are plotted in Fig. 1. The force value predicted by LSTM and PLS, and the
observed force values are compared. The blue line indicates the true force value, the red
and green lines are predictions made by PLS and LSTM, respectively. For each rat, the
folds with the highest decoding accuracy are plotted. As can be seen in Fig. 1, LSTM was
able to follow the true force value more accurately.

CAR filtering

In order to evaluate the effect of CAR filter, force values were predicted once with apply-
ing CAR filter on the LFP signal and once without CAR filter. The effect of CAR filter
was investigated for both PLS and LSTM Network and all rats. The results are shown in
Tables 3 and 4. The results show that using CAR filter improves the prediction accuracy
for both PLS and LSTM Network. This improvement was significant for both PLS and
LSTM (p <0.05 Wilcoxon signed-rank test for all rats and all folds combined).
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Fig. 1 Predicted force value for LSTM and PLS for three rats. The blue line indicates the true force value, the
red and the green lines are PLS and LSTM predictions respectively. a Rat 1: r=0.82 and R? = 0.68, b Rat 2:
r=0.77 andR? = 059, c Rat 3:r=080 and R’ = 0.62

Table 3 Correlation coefficient of LSTM network and PLS, with and without CAR filter

r Rat 1 Rat 2 Rat3
PLS LSTM PLS LSTM PLS LSTM
CAR filter 0.7£0.05 0.7440.05 0.69+£0.06 0.70£0.05 0.71£0.02 0.75£0.03
No CAR filter 0.6+0.02 0.70+0.04 0.58+0.04 0.684+0.04 0.684+0.02 0.7140.01

Table 4 Coefficient of determination for LSTM network and PLS, with and without CAR
filter

R? Rat 1 Rat 2 Rat 3
PLS LSTM PLS LSTM PLS LSTM
CAR filter 044+0.06 0.5240.08 043+0.1 049+0.09 049+0.05 0.54+0.06
No CAR filter 0.39+0.06 0424007 040+0.2 043+007 042+0.03 0.51+0.04

Contribution of time lags in PLS prediction

In order to investigate the effect of time lags in PLS prediction, PLS was evaluated
with different number of time lag. The best results were obtained by considering 10
time lags. In Fig. 2, the coefficient of determination (R?) for PLS predictions with a
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Fig. 2 Coefficient of Determination (R?) of PLS predictions for the different number of time lags. Values from
10 time lags prediction differ significantly from values with no time lag (p < 0.01 Wilcoxon signed-rank test)

0.180 1

0.175 4

0.170 A

0.165 A

0.160 1

Contribution

0.155 1

0.150

0.145 4

0.140 -

Rat 1
. 5(1-4) Wm0 (4-8)

e a(8-12)

Rat 2

. B (12-30)

ey (30-120)

Rat 3

s High y (120-200)

Fig. 3 Contribution of each Frequency band in LSTM prediction. The mean value of all 7 folds is illustrated.
Standard errors were negligible, therefore not shown

different number of time lags is illustrated. For rat 1 (R?) value of prediction significantly
decreases from 0.44+ 0.06 to 0.25 4 0.13; the same pattern is observed for the other rats.
In summary, values from 10 time lags prediction differ significantly from values with no
time lag (p <0.01 Wilcoxon signed-rank test), which indicates that there is relevant infor-

mation in previous samples.

Contribution of frequency bands

The contribution of each frequency band is calculated according to Eq. (16). The mean
values of contributions for all the 7 folds are illustrated in Fig. 3. The standard error val-

ues were negligible; therefore, not displayed. Figure 3 shows that higher frequency bands

have more contribution in predicting the force values.
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Fig. 5 Coefficient of Determination for three regression methods. PLS regression significantly outperformed
SVR and Random Forest (p<0.01)

Alternative recurrent cells

For all the above analyses, we used LSTM cells as the main recurrent block in the
network. However, other recurrent cells, like Simple RNN, and GRU, are also able to
remember relevant information across time sample. To compare these recurrent cells,
we trained and evaluated the same network structure with three types of recurrent
cell, i.e., Simple RNN, GRU, and LSTM. The LSTM-based network showed a higher
Coefficient of Determination (R2) for three rats (Fig. 4). The mean (R2) value for all
rats in LSTM-based network was significantly higher than GRU-based (p <0.05), and
Simple RNN-based (p <0.01) networks. (Wilcoxon signed-rank test for three 7 folds
and three rats).
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Alternative regression models

We used PLS as the main method of regression for comparing the proposed LSTM-
based neural network. Additionally, we compared PLS results with Support Vector
Regression (SVR) from the family of kernel methods, and Random Forest with boot-
strapping from ensembled learning methods. Figure 5 shows the Coefficient of Deter-
mination (R2) for predicted force value by Random Forest, SVR and PLS regression,
respectively. The feature extraction process, number of time lags, and validation were
similar for all the method. PLS regression had higher R2 value compared to Random
Forest (p<0.01) and SVR (p<0.01) method (Wilcoxon signed-rank test for three rats,
and 7 folds).

Discussion

Time lag features

Using multiple time lag features is a common practice in decoding neural data. However,
this time lags increase the dimensionality of the feature space dramatically. For instance, in
this study, 96 features were extracted from 6 frequency bands and 16 channels. The dimen-
sionality will increase to 960 only with 10 time lags. This increment will drastically increase
the possibility of over-fitting. LSTM based networks, owing to their intrinsic potential to
carry relevant information from previous samples, can recall useful information in previous
LFP sample to predict the current force observation without directly providing time lags in
features. Therefore, the LSTM network is less prone to over-fitting caused by a large num-
ber of features, and there is no need to optimize the number of lags in the initial feature
extracting process. On the other hand, as it can be seen in Fig. 2, the decoding performance
of PLS decreases with reducing the number of time lags.

Predicted force values

As it can be seen in Fig. 1, LSTM Network can predict zero force values, but PLS prediction
fluctuates around the zero values. PLS and other linear methods can only generate output
values that are a linear combination of the predictors. Therefore, the nonlinear characteris-
tics of the systems are always estimated with the closest linear model. On the other hand,
neural networks, in this case, LSTM Network, has nonlinear components (11) in its struc-
ture which can model the nonlinearity in the system. Furthermore, the activation function
of the output layer can be selected in a way that can improve decoding performance. For
instance, in this study, Rectified Linear Unit (ReLU) was deliberately chosen as the activa-
tion function of the last layer in the LSTM network. ReLU maps all negative values to zero
and acts as a simple line for positive values which makes it easier for the network to predict
zero force values.

Contribution of each frequency band

Figure 3 shows that higher frequency bands, 8 (12-30 Hz), y (30—120 Hz) and high-y (120—
200 Hz), had more contribution, for rat 2 and rat 3, in predicting the force values in LSTM
network. This significance of higher frequency bands in neural decoding was observed in
the previous study on the same data set [12].



Kashefi and Daliri BMIC Bioinformatics (2021) 22:26 Page 9 of 19

Alternative recurrent cells

We compared the proposed network structure with different recurrent cells. LSTM cell
showed the highest decoding accuracy (Fig. 4). Both GRU and LSTM are gated structures
and use a gating mechanism to remember (forget) relevant (irrelevant) information. How-
ever, higher accuracy of LSTM is probably because LSTM leverages an extra path for car-
rying information across the time sample. Simple RNN cell, as expected, had the lowest
decoding performance because of the well-known problem of vanishing gradient through
time.

Alternative regression methods

In addition to PLS, we examined the decoding performance of two other regression meth-
ods from different families of regression techniques. Both SVR and Random Forest showed
lower decoding performance compared to PLS (Fig. 5). The underperformance of SVR
and Random forest, we believe, is due to a large number of features and consequently,
over-fitting on the training data set. PLS, on the other hand, has an intrinsic mechanism
for mitigating a large number of features without requiring a separate feature selection or
dimensionality reduction.

Conclusion

In this study, we introduced an LSTM Network, which can learn both the nonlin-
earity and the intrinsic dynamics of data. The overall results show that there is rich
information in LFP signal for decoding fine movements like force, and the proposed
network can predict this continues movement accurately, which can be used in LFP-
based BCI systems.

Methods

Behavioral task

In this study, three Wistar rats — average weight between 200 and 300 g—were trained
to push a load cell (1 DOF) in order to receive a drop of water from a rotating lever
as a reward. The applied pressure between 0 and 0.15 N was linearly mapped to 0-90
degrees of rotation in the lever. The load cell was placed 10 cm above the setup floor,
and due to the negligible movement of the load cell, the position and orientation of
the forelimbs were stable while performing the task (Fig. 6). If the applied force on the
load cell exceeded the 0.15 N threshold, after a 1.5 s delay, the rat was rewarded. No
start or end cue was defined; therefore, the timing of each trial was spontaneous.

Structure of micro-arrays

A 4 x 4 micro-wire array with 500 um inner wire distance was constructed using 25
pm Platinum/Iridium teflone-covered wires (Microprobes Inc., Gaithersburg, USA)
with 500-800 K2 Impedance.

Implantation of micro-arrays

After training, the micro-array was implanted in the primary motor cortex (M1) of
three rats. The array was placed contralateral to their dominant hand. All three rats
performed the task with their right hands; therefore, the arrays were placed on the
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Fig. 6 The experimental setup. a Raw LFP signal of 16 channels and one arbitrary trial. b The force profile
recorded simultaneously with LPF shown in a. ¢ The experiment setup, the force applied to the sensor was
linearly mapped to the rotation of a lever. The rat was rewarded if the applied force reached 0.15 N. Neural

signal, and the applied force were recorded simultaneously

left hemisphere. The surgery starts with anesthetizing the animal by administrating
100 mg/kg Ketamine and 10 mg/kg xylazine. The depth of the anesthesia was deter-
mined by toe pinching and monitoring respiration rate. Then, an incision was made
in the head skin midline, and all the tissue was removed from the scalp in order to
make head bone accessible. Afterward, Bregma, Lambda and the proper craniotomy
positions were marked. One screw in the posterior of the lambda point and five other
screws were placed to connect the ground and secure the area respectively. Then,
the forelimb region of M1 was pinpointed using rat brain atlas. In the next step, the
center of the micro-array was implanted 1.6 mm anterior to Bregma, 2.6 mm lateral
to the midline, and 1.5 mm deep under the dura matter surface, covering all forelimb
area. Finally, the area was sealed with dental acrylic. In order to avoid infection and
assuage the pain, 0.2 mg/kg Meloxicam and 5 mg/kg Endrofloxacin for two days after
the surgery. More detailed information on the task and surgery can be found in [12].

Ethical considerations
All the rats belonged to the Neuroengineering and Neuroscience Research Labora-
tory of Iran University of Science and Technology, and the use of the animals in this
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study was approved and authorized by the local committee. After completion of the
study, the rats were euthanized by exposure to CO, and then, euthanasia was con-
firmed by continuing the gas exposure for 20 min after the respiratory arrest accord-
ing to NIH guidelines. For more information, see Ethics approval and consent to
participate section.

Data recording

Two weeks after the surgery, the rats were placed in the task setup. Then, the neural
and force data were recorded simultaneously. The implanted micro-array was connected
to the preamplifier of the recording device using the implanted connector. The initial
sampling rate was 10 kHz. The spikes were removed by filtering the signal between
300-3000 Hz and then manually thresholding for each channel. Then the LFP signal was
extracted by filtering the signal between 0.1 and 500 Hz and downsampling to 1000 Hz.
Regarding the force signal, there were negligible components above 5 Hz; therefore, the
force signal was filtered and then downsampled 10 samples per second. All of the fil-
tering processes were performed with a 4th order Butterworth filters both forward and
backward. As mentioned before, the rats were free to do the task anytime; 1 s before and
2 s after the 0.15 N threshold was considered as a trial.

Data preprocessing
The final shape of data for each trial is a matrix of 3000 by 16, representing time samples
(three seconds of data with a sampling rate of 1000 samples per second) and channels
respectively. There are 74, 79 and 80 successful trials for rat 1, rat 2 and rat 3 respectively.
The first step is to remove the noise by performing a CAR (Common Average Ref-
erence) filter on the data [26]. In using CAR, we assume that the noise is a common
component existing on all the channels. Therefore, by removing the mean of all chan-
nels from each channel, the common noise can be removed. Using CAR has shown
to improve the decoding performance in both methods. In the next step, the signal is
decomposed into 6 frequency band. The filter band consists of §(1- 4 Hz), 6(4-8 Hz), «

Raw LFP —>| CAR Filter |—>| Band Filter

l

Time Delay —-—| S-Golay Filter | <«— Absolute

:

[HES

e----00000

Fig. 7 Feature extraction pipeline
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(8-12 Hz), B (12-30 Hz), y (30—120 Hz) and high-y (120-200 Hz). Then, the absolute
value was calculated, and the signal was smoothed with a 3rd order Savitzky—Golay
filter with 150 sample window length. Using Savirzky—Golay improves the decoding
mainly because it preserves the local minima in the signal. Next, the data is centered
and normalized by subtracting the mean and dividing the signal by the standard devia-
tion. Finally, the signal is downsampled in order to equalize the number of force and LFP
samples. Now the dimension of feature space is (6 filter bands * 16 channels=96) for
each sample of data. In the end, for each trial, the neural data and the target force values
will be matrices of size (30, 96) and (30, 1), respectively. The feature extraction pipeline is

summarized in Fig. 7.

PLS-exclusive preprocessing step

In PLS, SVR, and Random Forest algorithm, for predicting the current time sample, in
addition to features for the current time sample, the features from previous time sam-
ples are included. In this study, 10 sample time lags were included in the prediction of
each time sample. Therefore, the dimensionality of data will increase to (10 lags * 6 filter
bands * 16 channels) 960.

PLS mode

The general model of PLS is shown in (1) and (2). X and Y are predictor matrix and
measurement vector, respectively. In this study X is a (n: number of samples, m: num-
ber of features) matrix containing features for all the time samples and y is a (n: num-
ber of samples, 1) vector for force values. The goal here is to predict y values using X.

X =T1PT +E (1)

Y =uQ” +F (2)

In PLS, unlike general linear models like Least Squares, instead of working directly
with X and Y, their latent variables are used. In our underlying model, T and U are
two n x [ matrices which are scores of X and Y respectively. P and Q are orthogonal
loading matrices with the size of m x [ and p x [ respectively. E and F are two i.i.d
Gaussian random variables.

Generally, PLS tries to explain the latent variable of Y with most variance, using
the latent variable of X that describes it (it refers to the latent variable of Y) the best.
Therefore, the model does not require feature selection and can reduce the possibil-
ity of over-fitting made by a large number of features, making it the ideal choice for
neural data.

In PLS regression problem, the final goal is to find a weight vector § and an inter-
cept Bo which linearly relates the predictors to the measured values as shown in (3).

y=XB+po (3)

There are many variants of PLS methods and solving approaches to find loading
and scoring matrices. In this study, we used PLS-1 method, which is a well-known
and wildly used method for solving the PLS regression problem for cases in which Y
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is a vector. PLS-1 finds columns of loading matrices one by one in a stepwise manner.
PLS-1 can be summarized in the following steps:

Step 1: Find an initial loading weights by finding the direction in which the covari-
ance between X and y maximized and name it w.

w=XTy (4)
Step 2: Find the first score column by projecting X onto w and name it ¢.

t=Xw

(5)
Step 3: Find the first loading vectors of X and y by projecting X and y on normalized
score vector ¢ found in step 2 and call them p and g, respectively.

t
=xT—
p tTt
¢ (6)
T
q=Yy T

Step 4: Remove all the information of the first score and loading vectors from X and
y.

Xoew = X — tp”
T 7)
Ynew =Y — tq
Step 5: Jump to step 1 and use Xy and yyew to find the next loading and score vectors.
Then, iterated / times for the desired number of components. Finally, concatenate all
the loading, score and loading weights. All the q values calculated in step 3 are scalars;
therefore, the concatenation of q values will lead to a vector Q.

W = [wi,wy,...,w]
T = [t1,t9,...,t]

P =[p1,p2...,pi]
Q=I[q1,92--->ql

(8)

Step 6: Calculate regression weights  and regression intercept Sy from the calculated
Matrices calculated in step 5.

B = W(PTW)_IQ
Bo=q1 —piB

)

In order to evaluate the performance of the PLS model, we used seven-fold cross-val-
idation. Furthermore, The number of the latent variables are selected based on Wold’s
criterion [27] shown in (10). PRESS represents the prediction error of the model when
first / components are used for prediction.

PRESS(I+ 1)

Rywora = TPRESS() (10)

Page 13 of 19
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C<f’2> Q P Q s Q ce
<t-1> <t> <t+2>
X X X
Fig. 8 Unfolded LSTM network. Three time steps of LSTM are unfolded. In each step, LSTM receives a new
input, last output and last carry and generates the next output and the next carry

Baibing et al. showed that using Wold’s criterion can improve the performance of the
model compared to other approaches which try to find the optimal number of compo-
nents [28]. To find the optimal number of components, we performed ten-fold cross-
validation over train data and considered the number of components optimum when
Ryy,14 reached 0.9. The best number of components are six, four and five components for

rat 1, rat 2 and rat 3, respectively.

LSTM model

Inspired by classical recurrent neural networks, Long Short-Term Memory networks
receive the data samples sequentially, and it uses the latest prediction for predicting the
next sample of data. Classical RNNs have a feedback loop which brings back the latest
outputs of the network in the input. This structure design leads to various problems such
as exploding or vanishing gradient during the training of the network. To address these
problems, LSTM networks share an extra parameter, cell state, between sequences that
gives them the ability to remember/forget important/irrelevant features of data in any
part of the sequence.

LSTM network can have various input and output structure layers. For instance,
LSTM can receive all the input samples and return one output at the end of receiving all
input samples, or it can yield an output for each input sample. In this work, as it can be
seen in Fig. 8, the network has one output for each input value in the sequence.

The formulation for the LSTM network can be seen in Egs. (11), (12), (13).

c = tanh(Wc {y(t71>,x<t)} ) (11)
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<t>
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t-1
y / / / J RN
<t>
Fig. 9 LSTM structure. Inputs, outputs and LSTM gates and their connections are illustrated

r,= sigmoid(wfu {y<t—1>, x(t)D
Iy = sigmoid(VVf [y<t_1)’x(t)D )

I, = sigmoid(Wo [y<t—1),x(t>D

cY=r,0C"+r,0CHY

(13)
y<t> =T,0 clt

x and y are one value of a sequence of input and output sample of data. W, W,
Wy and W, are carry, update, forgetting and output weights, respectively, which are
going to be learned during the training process and © stands for the element-wise
product. The LSTM algorithm can be summarized in the following steps. First, using
the current input sample and the previous output sample, a potential carry value, i.e.,
C', is calculated using (11). Then again using the last output and the current input,
the value of update, forget, and output gates are determined according to (12). These
gates can have values between 0 and 1. For instance, in the extreme case in which
I'y=1 and I'y=0, the network will fully forget the previous values and update the
carry with the new carry potential value according to (13). Then, using the update
and forget gates, the final carry value for the current step is calculated. Finally, the
estimated output is calculated by the dot product of the current carry value and the
output gate. In the original model, bias values are considered in the Egs. (11) and
(12), but in this study, the bias values were eliminated due to their negligible effect
on the results and reducing the trainable parameters of the model. Furthermore, the
output activation of Among different variants of LSTM structures, we used the vanilla
LSTM structure because it is shown that other structures do not show a significant
performance improvement in various tasks[29]. The summary of the LSTM structure
is shown in Fig. 9.
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Fig. 10 Network structure. The network consists of two LSTM layers and one fully connected neuron

Table 5 Hyper-parameters of the network and their possible values

Hyper-parameter Values

Layer 1 forward dropout {0,0.1,0.2,0.3,04, 0.5}

Layer 1 backward dropout {0,0.1,0.2,0.3,04,0.5}

Layer 2 forward dropout {0,0.1,0.2,0.3,04, 0.5}

Layer 2 backward dropout {0,0.1,0.2,0.3,04, 0.5}

Regularization value {0,0.1,0.2,0.3,04,0.5,0.6,0.7,0.8,0.9}
Learning rate {0.001, 0.0015, 0.002, ..., 0.003}

Batch size {5,10, 15, 20,30}

Number of epoch {30, 50, 70, 100, 120}

Network structure

The network structure used in this study is illustrated in Fig. 10. The network consists
of two LSTM layers that are connected to a single fully connect neuron. The first LSTM
layer has 30 units, and the overfitting in this layer is controlled by a dropout both in
the forward and recurrent path. Also, the layer has no bias term. Second LSTM layer
consists of 15 units with both forward and recurrent dropout. The output of the second
layer is fully connected to a single neuron with ‘ReLU” activation. The weights of the fully
connected neuron are regulated with L2-norm in order to mitigate over-fitting.

The network is optimized using Adam [30] optimizer, and we set §; = 0.9 and
B2 = 0.999 as recommended in [30]. Mean absolute error was selected as cost owing to
its robustness to noise. The number of epochs to train, learning rate, values for dropout
rates, batch size, and regularization value of fully connected layers are hyperparameters
of the network. Seven-fold cross-validation is used to evaluate the performance of the
network and the PLS method. We trained the neural network with individual trials, and
for PLS and other methods, training trials were concatenated. In each fold, 20% of train-
ing data is used for validation and selecting the optimum values for hyper-parameters.
We used a Bayesian Optimization toolbox, Hyperopt [31], for selecting the optimum
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values of hyper-parameters. The Bayesian optimizer selected the optimal combination
of values from the table of hyper-parameters (Table 5) that showed the best performance

on validation data.

Alternative method

In addition to PLS, we used SVR and Random Forest with bootstrapping to decode the
applied force from the LFP signal. The feature extraction and validation process for SVR
and Random Forest were identical to that of PLS. For SVR, we used RBF kernel with kernel

coefficient y = We selected the regularization parameter (C) base on fivefold

1
numfeatures’

cross-validation on training data. As for Random Forest, we consider the maximum num-
ber of 100 trees and the maximum number of features for the best split was selected to be

the square root of the number of features.

Performance criteria

Coefficient of correlation (r) and coefficient of determination (R2) were used to evaluate
the performance of the models. Coefficient of correlation shows the overall resemblance
between the observed and predicted values. On the other hand, the coefficient of deter-
mination can show how much of the variance in the observed data exist in the predicted
values. The formulation of (r) and (R?) are represented in (14) and (15) respectively.

Sy (i —7) (yi _ })
- 14
S =) (5’;’ —;)2 (14)

Dt (J’i _5’1‘)2
>t (J’i _5’)2

RP=1- (15)

In this formulation, y; is the ith sample of the target value and 7 is the mean of the tar-
get value. In the same manner, J; is the ith sample of predicted value and ¥ is the mean
value of the predicted value.

Contribution of each frequency band

The weights of the first LSTM layer contain information about the contribution of each
feature of neural data for predicting the force value. Therefore, according to (16), the
absolute values of weight related to each frequency band are added and then normalized
by the sum of the absolute values of all the weights. The contribution value was calcu-

lated and averaged for in all validation folds.

16
channel=1 ’ Wband,chcmnel|
Coand = 16 3

Zchannel:l band=1 } Whand,channel |
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Implementation

Neural network models were implemented in TensorFlow, using Keras API [32]. We
implemented the PLS model in Python 3.8 and used python machine learning API,
Scikit-learn [33] for SVR and Random Forest.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/512859-020-03953-0.

Additional file 1: 7-times seven-fold CV results. We present an extended version of Table 1 and Table 2. For each rat,
we performed 7-times seven-fold cross validation. Correlation Coefficient (r) and Coefficient of Determination (R%)
of FéLS and LSTM-based network are reported. For all rats, LSTM-based network shows significantly higher (r) and
(R?) values.
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