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Abstract
Background  Remnant cholesterol (remnant-C) contributes to atherosclerotic cardiovascular disease (ASCVD), 
particularly in individuals with impaired glucose metabolism. Patients with impaired glucose metabolism and ASCVD 
remain at significant residual risk after coronary artery bypass grafting (CABG). However, the role of remnant-C in this 
population has not yet been investigated.

Methods  Adult patients with prediabetes or diabetes undergoing isolated CABG were consecutively enrolled in a 
longitudinal cohort between 2013 and 2018. The impact of remnant-C on short-term and long-term outcomes after 
CABG was evaluated. The short-term outcomes included major perioperative complications. The long-term outcomes 
were major adverse cardiovascular and cerebrovascular events (MACCEs). Remnant-C was analyzed as both a categorical 
and continuous variable. Logistic regression, Cox regression, and restricted cubic spline analyses were performed with 
multivariate adjustments.

Results  In terms of perioperative outcomes, patients with elevated remnant-C had a higher incidence of acute kidney 
injury (AKI) stage 2/3 (high vs. low remnant-C: 3.2% vs. 2.4%; OR: 1.404, 95% CI 1.080–1.824). Each 1-standard deviation 
(SD) increase in remnant-C was associated with a 16.6% higher risk of AKI stage 2/3 (OR: 1.160, 95% CI 1.067–1.260). Long-
term outcomes were assessed after a median follow-up of 3.2 years, during which 1,251 patients (9.3%) experienced 
MACCEs. Each 1-SD increase in remnant-C was associated with a 6.6% higher risk of MACCEs (HR: 1.066, 95% CI 1.012–
1.124), a 7.1% higher risk of all-cause death (HR: 1.071, 95% CI 1.008–1.209), and an 11.2% higher risk of myocardial 
infarction (HR: 1.112, 95% CI 1.011–1.222). These associations remained consistent when remnant-C was treated as a 
categorical variable. Importantly, the association between remnant-C and MACCEs was independent of LDL-C levels; 
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Background
The global prevalence of diabetes is steadily increasing, 
with over 600 million people projected to have type 2 
diabetes and a similar number expected to develop predi-
abetes by 2045 [1]. A significant proportion of these indi-
viduals also suffer from atherosclerotic cardiovascular 
disease (ASCVD), the leading cause of mortality in this 
population [2]. Compared to ASCVD patients with nor-
mal glucose metabolism, those with diabetes or prediabe-
tes typically present with dyslipidemia characterized by 
elevated plasma triglycerides [contained in very low-den-
sity lipoproteins, intermediate-density lipoproteins, and 
in chylomicron remnants; collectively known as triglyc-
eride-rich lipoproteins (TRLs)], low high-density lipo-
protein cholesterol (HDL-C), and increased small, dense 
low-density lipoproteins (LDL) particles [3, 4]. These 

lipid abnormalities are strongly associated with poor 
ASCVD outcomes, even when LDL cholesterol (LDL-C) 
levels are substantially lowered or optimized according to 
current guidelines [5–8]. Remnant cholesterol (remnant-
C) is the cholesterol content of TRLs [4]. Unlike triglyc-
erides (TGs) in TRLs, which can be metabolized by most 
cells, remnant-C accumulates in arterial walls, playing 
a crucial role in the development of atherosclerosis [3, 
4, 9]. Previous studies have shown that remnant-C lev-
els are significantly elevated in patients with diabetes or 
prediabetes [10], and this elevation is associated with an 
increased risk of major adverse cardiac and cerebrovas-
cular events (MACCEs) in both primary and secondary 
prevention of ASCVD [5, 6, 11].

Patients with impaired glucose metabolism exhibit a 
higher prevalence, extent, and severity of obstructive 

higher remnant-C levels were associated with increased MACCE risk regardless of whether LDL-C was ≤ 2.6 mmol/L or 
> 2.6 mmol/L. Subgroup analysis indicated that this risk was more pronounced in insulin-treated patients.

Conclusions  Remnant-C is associated with AKI and MACCEs in patients with diabetes or prediabetes undergoing CABG. 
The MACCE risk associated with remnant-C is independent of LDL-C and is more pronounced in insulin-treated patients.

Graphical Abstract  Remnant cholesterol (Remnant-C) may be an important risk factor for patients with impaired 
glucose metabolism undergoing coronary artery bypass grafting (CABG), however its role remains unknown. In our 
study, 13,426 CABG patients with prediabetes or diabetes were enrolled from a large longitudinal cohort to assess the 
impact of remnant-C on both perioperative and long-term outcomes. We found that higher remnant-C levels were 
significantly associated with an increased risk of acute kidney injury (AKI) perioperatively, as well as long-term adverse 
outcomes, including major adverse cardiovascular and cerebrovascular events (MACCEs), independent of LDL-C levels. 
HR, hazard ratio; CI, confidence interval; SD, Standard deviation; remnant-C, remnant cholesterol; MACCEs, major adverse 
cardiovascular and cerebrovascular events; CABG, coronary artery bypass grafting.
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coronary artery disease (CAD) compared to those with 
normal glucose metabolism [12]. For these individuals, 
coronary artery bypass grafting (CABG) remains a cru-
cial treatment option [8]. Despite advancements in surgi-
cal techniques, perioperative care, and pharmacotherapy, 
patients with impaired glucose metabolism continue to 
experience significant residual cardiovascular risk after 
CABG. In the SYNTAX trial, the 5-year rate of MACCE 
in patients with diabetes was 29% [13]. In ODYSSEY 
OUTCOMES, even with LDL-C levels targeted between 
25 and 50  mg/dL, patients randomized to alirocumab 
with a history of CABG still had a 4-point MACCE rate 
of 24.5% [14]. Remnant-C, a significant source of resid-
ual risk, may contribute to poor outcomes in this patient 
population [3, 9]. However, no studies have yet explored 
the prognostic implications of remnant-C in patients 
with diabetes or prediabetes undergoing CABG. Thus, 
we aimed to evaluate the association between remnant-
C and prognosis in a large prospective cohort of these 
patients. Novel RNA-silencing therapies have shown 
promise in effectively lowering remnant-C levels [15]. 
Our findings may offer valuable insights into the poten-
tial clinical applications of these therapies.

Methods
Study population
The data used in the study were from a large prospec-
tive registry-based cohort at Fuwai Hospital, National 
Center for Cardiovascular Diseases in Beijing (Clini-
calTrials.gov number, NCT02400125), as described in 
previous studies [16, 17]. All consecutive adult patients 
with diabetes or prediabetes who underwent isolated 
primary CABG between January 1, 2013, and Decem-
ber 31, 2018 were considered for the analysis. Patients 
with missing data on remnant-C or those lost to follow-
up were excluded. According to the American Diabetes 
Association guidelines, prediabetes was defined as the 
5.7% ≤ HbA1c < 6.5%, or 5.6 mmol/L ≤ fasting plasma glu-
cose (FPG) < 7.0  mmol/L. Diabetes was defined as any 
one of the following: FPG ≥ 7.0  mmol/L, HbA1c ≥ 6.5%, 
with self-reported physician diagnosed diabetes, and use 
of anti-diabetic medications [18]. Data on demographic 
characteristics, laboratory tests, surgical procedures and 
medications were extracted from the registry further sup-
plemented with electronic medical records. All data were 
collected according to definitions of the Society of Tho-
racic Surgeons National Adult Cardiac Database ​(​​​h​t​t​p​:​/​/​
w​w​w​.​s​t​s​.​o​r​g​/​​​​​) [16, 17]. Patients were followed up through 
scheduled outpatient visits or telephone calls by trained 
cardiovascular research nurses as part of standard insti-
tutional protocols. If adverse events were reported dur-
ing the follow-up period, patients were asked to provide 
medical records for further verification. The accuracy and 
completeness of these data were confirmed and ensured 

through multiple procedures described previously [16, 
17]. This study was approved by the institutional review 
board at Fuwai Hospital, and the requirement for written 
informed consent was waived.

Laboratory measurement
Blood laboratory analyses were performed on patients 
in an overnight fasting state within 24  h of admission. 
Glucose concentrations were measured using the enzy-
matic hexokinase method, and glycated hemoglobin 
A1c (HbA1c) levels were detected with a Tosoh Auto-
mated Glycohemoglobin Analyzer HLC-723G8. The 
concentrations of total cholesterol (TC), TG, LDL-C, 
and HDL-C were directly assessed via the Hitachi 7150 
automatic biochemistry analyzer. Of them, LDL-C and 
HDL-C were determined by homogeneous method. 
Remnant-C levels were calculated as follows: Remnant-
C (mmol/L) = TC − HDL-C − LDL-C(18). High remnant-
C levels were defined as ≥ 0.8 mmol/L, following clinical 
practice guidelines and consensus statements on choles-
terol management [19, 20]. Moreover, multiple observa-
tional studies have corroborated that remnant-C levels 
exceeding approximately 0.8  mmol/L markedly increase 
the risk of MACCEs [5, 6].

Clinical management
Patients were managed in accordance with clinical prac-
tice guidelines, and all CABG procedures adhering to 
standardized techniques (Supplemental Method S1). The 
internal thoracic artery was preferred for the revascular-
ization of the left anterior descending artery whenever 
feasible. The choice of cardiopulmonary bypass was made 
by the principal surgeon based on the patient's condition. 
Postoperative secondary prevention medications were 
recommended for all eligible patients, in accordance 
with the most current guidelines available at the time of 
recruitment (the 2013 European Society of Cardiology 
guidelines or the 2015 American Heart Association sci-
entific statement) [21, 22].

Outcomes
The primary outcome was the first occurrence of MAC-
CEs, defined as a composite of all-cause death, myocar-
dial infarction (MI), cerebrovascular accident and repeat 
revascularization. Secondary outcomes included the 
individual components of this composite, as well as peri-
operative outcomes. Perioperative outcomes consisted of 
in-hospital death, cardiac death, perioperative myocar-
dial infarction, cerebrovascular accident, acute kidney 
injury (AKI) stage 2/3, as defined by the Kidney Disease: 
Improving Global Outcomes (KDIGO) criteria [23], and 
reoperation. Detailed definitions of the outcome com-
ponents are provided in Supplemental Method S2. All 
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outcome measures were pre-specified, rigorously veri-
fied, and adjudicated by independent clinicians.

Statistical analysis
Normally distributed continuous data are expressed as 
mean ± standard deviation (SD), while non-normally 
distributed continuous data are expressed as median 
(interquartile range). Categorical data are expressed as 
numbers (percentages). Continuous variables were com-
pared using Welch’s t test or Wilcoxon rank-sum test, 
while categorical variables were analyzed using the chi-
square test.

The impact of remnant-C on outcomes was assessed 
both as a categorical and a continuous variable. For the 
categorical analysis, patients were stratified into two 
groups based on remnant-C levels: low and high, using 
a threshold value of 0.8  mmol/L as mentioned above. 
When analyzed as a continuous variable, the effect of 
remnant-C was evaluated per SD, and a p-value for trend 
was calculated. Multivariate logistic regression models 
were employed to compare perioperative outcomes. The 
Kaplan–Meier curves, log-rank tests and adjusted Cox 
proportional hazards regression model were utilized to 
compare long-term prognosis. Both categorical and con-
tinuous analyses of remnant-C were performed to assess 
its differential effects. Variables deemed clinically signifi-
cant or those with p-values below 0.1 in the univariate 
regression model were included in the multivariate Cox 
or logistic regression models, with the exception of those 
excluded due to collinearity.

A restricted cubic spline transformation of remnant-
C was used to evaluate nonlinear associations between 
remnant-C and outcomes by segmenting the variable and 
fitting cubic polynomials within each segment, with the 
significance of nonlinearity assessed using a likelihood 

ratio test. Additionally, pre-specified subgroup analyses 
for primary outcomes were performed using multivari-
able survival models, stratified by key clinical variables. 
Interaction effects were evaluated by including inter-
action terms in the multivariable models to assess the 
heterogeneity of treatment effects across subgroups. 
Confounders that were included in spline plots and sub-
group analyses are the same as those in the main analysis.

A discordance analysis was conducted to identify 
whether the risk associated with remnant-C was indepen-
dent of LDL-C levels. An LDL-C threshold of 2.6 mmol/L 
was used, as it aligned with the secondary prevention 
guidelines for post-CABG patients available at the time 
of patient recruitment [22]. Discordant groups were clas-
sified as low remnant-C/high LDL-C and high remnant-
C/low LDL-C, while concordant groups included low 
remnant-C/low LDL-C and high remnant-C/high LDL-
C. Multivariable Cox regression models were employed 
to assess the associations between these four groups and 
the occurrence of MACCEs, adjusting for the same con-
founders as in the primary analysis.

Statistical analysis was performed via R 4.2.1 (R Devel-
opment Core Team) software.

Results
Remnant-C distribution and baseline characteristics of the 
study population
A total of 13,426 patients were included (Supple-
mental Fig. S1). The median remnant-C level was 
0.5  mmol/L (interquartile range, 0.34–0.71  mmol/L), 
and 2516 (18.7%) were identified as high remnant-C level 
(> 0.8  mmol/L) (Fig.  1). The baseline characteristics of 
these patients (mean age, 61.4 ± 8.4  years; men, 76.2%; 
diabetes, 61.6%; prediabetes, 38.4%; on-pump, 46.6%; 
mean number of grafts, 3.2 ± 1.0; and the use of left 

Fig. 1  The distribution of remnant cholesterol in the cohort. Remnant-C, remnant cholesterol
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Variables All patients (n = 13,426) Remnant Cholesterol, mmol/L P
 ≤ 0.8 (n = 10,910)  > 0.8 (n = 2516)

Demographics
Age, years 61.4 ± 8.4 61.8 ± 8.3 59.7 ± 8.6 < 0.001
Male 10,215 (76.1) 8398 (77.0) 1817 (72.2) < 0.001
BMI, kg/m2 26.0 ± 3.1 25.9 ± 3.1 26.4 ± 3.1 < 0.001
Comorbidity status
Smoking 7569 (56.4) 6140 (56.3) 1429 (56.8) 0.637
Type 2 diabetes 8247 (61.4) 6637 (60.8) 1610 (64) 0.003
Prediabetes 5179 (38.6) 4273 (39.2) 906 (36)
Insulin-treated diabetes 1530 (11.4) 1243 (11.4) 287 (11.4) 0.984
Hypertension 8863 (66.0) 7140 (65.4) 1723 (68.5) 0.004
Hyperlipidemia 9651 (71.9) 7780 (71.3) 1871 (74.4) 0.002
PAD 1565 (11.7) 1296 (11.9) 269 (10.7) 0.094
COPD 171 (1.3) 140 (1.3) 31 (1.2) 0.837
CKD 144 (1.1) 107 (1) 37 (1.5) 0.032
CVE 1976 (14.7) 1645 (15.1) 331 (13.2) 0.014
NYHA class III/IV 4225 (31.5) 3506 (32.1) 719 (28.6) < 0.001
Previous PCI 759 (5.7) 600 (5.5) 159 (6.3) 0.180
Clinical parameters
HbA1C, % 6.4 (5.9, 7.5) 6.4 (5.9, 7.4) 6.6 (6.0, 7.7) < 0.001
FBG, mmol/L 6.4 (5.4, 8.2) 6.3 (5.4, 8.2) 6.6 (5.6, 8.6) < 0.001
Total cholesterol, mmol/L 3.7 ± 1.2 3.5 ± 1.1 4.4 ± 1.4 < 0.001
Remant-C, mmol/L 0.5 (0.3, 0.7) 0.4 (0.3, 0.6) 1.0 (0.9, 1.2) < 0.001
LDL-C, mmol/L 2.2 ± 1.0 2.1 ± 1.0 2.4 ± 1.2 < 0.001
HDL-C, mmol/L 0.9 ± 0.3 1.0 ± 0.3 0.8 ± 0.3 < 0.001
Non HDL, mmol/L 2.7 ± 1.1 2.5 ± 1.0 3.6 ± 1.3 < 0.001
Triglycerides, mmol/L 1.4 (1.0, 2.0) 1.3 (1.0, 1.7) 2.6 (2.0, 3.3) < 0.001
Hs-CRP, mg/L 1.6 (0.8, 3.3) 1.5 (0.8, 3.1) 2.0 (1.1, 4.0) < 0.001
Serum creatinine, µmol/L 80.3 ± 18.6 80.0 ± 18.0 81.7 ± 20.7 0.014
eGFR, mL/min/1.73 m2 ∗  89.3 ± 15.4 89.4 ± 15.2 88.9 ± 16.1 0.057
AST, IU/L 20.0 (16.0, 26.0) 20.0 (16.0, 26.0) 20.0 (16.0, 27.0) 0.195
NT-proBNP, ng/L 146.4 (63.2, 404.7) 149.3 (64.0, 404.6) 134.2 (58.2, 404.2) 0.145
LVEF, % 60.4 ± 8.4 60.4 ± 8.3 60.0 ± 8.8 0.027
Procedure characteristics
EuroSCORE 1.7 ± 1.7 1.7 ± 1.8 1.6 ± 1.7 < 0.001
On pump 6253 (46.6) 5089(46.6) 1164 (46.3) 0.746
IABP use 117 ( 0.9) 100 (0.9) 17 (0.7) 0.241
No. of grafts 3.2 ± 1.0 3.2 ± 1.0 3.1 ± 1.0 0.003
No. of arterial grafts 1.0 ± 0.4 1.0 ± 0.4 1.0 ± 0.4 0.174
No. of vein grafts 2.2 ± 1.0 2.3 ± 1.0 2.2 ± 1.0 < 0.001
LIMA graft 12,625 (94.0) 10,266(94.1) 2359 (93.7) 0.550
LM 2631 (19.6) 2145 (19.7) 486 (19.3) 0.695
TVD 11,006 (82.0) 8965 (82.2) 2041 (81.1) 0.216
Discharge medication
Statin 10,965 (81.7) 8961 (82.1) 2004 (79.7) 0.004
Non-statin 110 ( 0.8) 94 (0.9) 16 (0.6) 0.258
Aspirin 13,108 (97.6) 10,646 (97.6) 2462 (97.9) 0.416

Table 1  Baseline characteristics of the cohort by remnant cholesterol level
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internal mammary artery graft, 93.9%) are summarized 
in Table 1. Compared with the low remnant-C group, the 
high remnant-C group was younger, had a higher propor-
tion of women and had higher BMI. Diabetes, hyperten-
sion, hyperlipidemia, and chronic kidney disease (CKD) 
were more prevalent in the high remnant-C group. New 
York Heart Association class III/IV and cerebrovascular 
events were more common in the low remnant-C group. 
Patients in the high remnant-C group demonstrated a 
higher level of HbA1C, fasting blood glucose, TG, TC, 
and LDL-C.

Baseline remnant-C levels and perioperative outcomes
The overall in-hospital mortality rate was 0.2%. High rem-
nant-C was associated with an increased risk of AKI stage 
2/3 (high remnant-C group vs. low remnant-C group: 
3.2% versus 2.4%, adjusted odds ratio [aOR]: 1.404, 95% 
CI 1.080–1.824, P = 0.011; remnant-C per SD increase: 
aOR: 1.160, 95% CI 1.067–1.260, P for trend = 0.001) 
(Table 2). In multivariate adjusted restricted cubic spline 
plots, the risks of AKI stage 2/3 were positively associated 
with remnant-C level (P for nonlinearity = 0.922) (Fig. 2). 
Subgroup analyses in pre-diabetic and diabetic patients 

separately showed that remnant-C was significantly asso-
ciated with AKI stage 2/3 in both groups (Supplemental 
Table S1 and Supplemental Fig. S2). No significant dif-
ferences were observed in other perioperative outcomes 
before or after multivariate adjustment (Table 2).

Baseline remnant-C levels and long-term outcomes
During a median follow-up of 3.2  years, 1251 patients 
(9.3%) developed MACCEs. As shown in Table  3 and 
Fig. 3, high remnant-C was associated with an increased 
risk of MACCEs. Similarly, the risk of all-cause death, 
MI and repeat revascularization also increased with 
increasing remnant-C. Compared to patients with rem-
nant-C levels < 0.8  mmol/L, those with remnant-C lev-
els > 0.8  mmol/L exhibited a significantly higher risk 
of MACCEs (adjusted hazard ratio [aHR]: 1.259, 95% 
CI 1.098–1.445, P = 0.001), all-cause death (aHR: 1.353, 
95% CI 1.066–1.718, P = 0.013), MI (aHR: 1.431, 95% CI 
1.089–1.881, P = 0.010), and repeat revascularization 
(aHR: 1.426, 95% CI 1.053–1.93, P = 0.022) after adjust-
ing for multiple variables (Table  3 and Fig.  3). When 
remnant-C was analyzed as a continuous variable, a 1-SD 
increase in remnant-C was associated with a 6.6% higher 

Table 2  Perioperative outcome
Outcomes All patients 

(n = 13,426)
Remnan-C, mmol/L Crude OR (95% CI)

P valve
Adjusted OR (95% CI)
P valve

Adjusted OR (95% CI)
Per SD increase P for 
trend

 ≤ 0.8 
(n = 10,910)

 > 0.8 
(n = 2516)

In-hospital death 39 (0.2%) 33 (0.3%) 6 (0.2%) 0.788 (0.330–1.882)
0.592

0.983 (0.366–2.638)
0.973

0.877 (0.527–1.459)
0.613

Cardiac Death 24 (0.1%) 20 (0.1%) 4 (0.1%) 0.830 (0.318–2.162)
0.702

1.352 (0.398–4.586)
0.629

0.835 (0.138–5.069)
0.845

Perioperative MI 284 (2.1%) 230 (2.1%) 54 (2.1%) 1.018 (0.755–1.374)
0.905

0.934 (0.741–1.363)
0.975

1.024 (0.913–1.149)
0.687

CVA 44 (0.3%) 31 (0.2%) 13 (0.5%) 1.823 (0.952–3.488)
0.070

1.891 (0.975–3.666)
0.071

1.081 (0.835–1.400)
0.553

AKI stage 2/3 352 (2.7%) 271 (2.4%) 81 (3.2%) 1.306 (1.015–1.680)
0.038

1.404 (1.080–1.824)
0.011

1.160 (1.067–1.260)
0.001

Reoperation 182 (1.3%) 153 (1.3%) 29 (1.1%) 0.820 (0.550–1.222)
0.330

0.879 (0.586–1.321)
0.536

0.837 (0.526–1.332)
0.452

Values are n (%). Adjusted covariates including age, sex, BMI, smoking, hypertension, hyperlipidemia, diabetes, insulin-treated diabetes, PAD, AF, COPD, CVE, CKD, 
NYHA class III/IV, LVEF, HbA1C, FPG, LDL-C, Hs-CRP, Serum creatinine, EuroSCORE, On pump, LM, TVD (Abbreviations as in Table 1)

MI, myocardial infarction; AKI, acute kidney injury; CVA, cerebrovascular accident; OR, odds ratio; CI, confidence interval

Variables All patients (n = 13,426) Remnant Cholesterol, mmol/L P
 ≤ 0.8 (n = 10,910)  > 0.8 (n = 2516)

β-Blocker 12,521 (93.3) 10,175 (93.3) 2346 (93.2) 0.971
ACEI/ARB 1530(11.4) 1215 (11.1) 315(12.5) 0.053
Data are presented as mean ± SD or as n (%). P value were obtained by using the chi—square test or Welch's t test. BMI, body mass index; PAD, peripheral artery 
disease; COPD, chronic obstructive pulmonary disease; AF, atrial fibrillation; CKD, chronic kidney disease; CVE, cerebrovascular event; PCI, percutaneous coronary 
intervention; FBG, fasting blood glucose; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; Remnant-C, remnant cholesterol; 
AST, aspartate aminotransferase; eGFR, estimated glomerular filtration rate; NT-proBNP, N-terminal pro-B-type natriuretic peptide; hs-CRP, high-sensitivity C-reactive 
protein; NYHA, New York Heart Association; LVEF, left ventricular ejection fraction; EuroSCORE, European System for Cardiac Operative Risk Evaluation; IABP, intra—
aortic balloon pump; LIMA, left internal mammary artery; LM, left main disease; TVD, three-vessel disease; CCB, calcium‐channel blocker; ACEI, angiotensin-converting 
enzyme inhibitor; and ARB, angiotensin receptor blocker

*Calculated with the Chronic Kidney Disease–Epidemiology Collaboration creatinine equation

Table 1  (continued) 
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risk of MACCEs (aHR: 1.066, 95% CI 1.008–1.209, P for 
trend = 0.017), a 7.1% higher risk of all-cause death (aHR: 
1.071, 95% CI 1.008–1.209, P for trend = 0.041), and an 
11.2% higher risk of MI (aHR: 1.112, 95% CI 1.008–1.209, 
P for trend = 0.029) after multivariable adjustments 
(Table 3). In multivariate adjusted restricted cubic spline 
plots, the risks of MACCEs were positively associated 
with remnant-C level (P for nonlinearity = 0.2) (Fig. 4).

Subgroup analysis
The association between remnant-C and MAC-
CEs remained consistent across most predefined 
subgroups. Subgroup analyses of prediabetic and 
diabetic patients separately showed no significant inter-
action between remnant-C and glucose metabolic 

status (P for interaction = 0.304) (Fig. 5), with RCS anal-
ysis in both groups revealing a positive, nonlinear asso-
ciation between remnant-C and MACCEs (Supplemental 
Fig. S3). However, a significant interaction between rem-
nant-C and insulin treatment status was observed. Rem-
nant-C was associated with a higher risk of MACCEs 
in insulin-treated patients (aHR: 1.764, 95% CI 1.256–
4.478), while this effect was less evident in those not on 
insulin (aHR: 1.178, 95% CI 1.013–1.369, P for interac-
tion = 0.041) (Fig. 5).

Contribution of remnant-C to residual lipid risk by LDL-C 
level
We performed a discordance analysis to examine the 
relative risk of MACCEs in discordant and concordant 

Table 3  Long-term outcomes
Outcomes All patients 

(n = 13,426)
Remnant-C, mmol/L Crude HR (95% CI)

P valve
Adjusted HR (95% CI)
P valve

Adjusted HR (95% CI)
Per SD increase P for 
trend

≤ 0.8 
(n = 10,910)

> 0.8 
(n = 2516)

MACCEs 1251 (9.3%) 987 (9.0%) 264 (10.5%) 1.168 (1.019–1.338)
0.025

1.259 (1.098–1.445)
0.001

1.066 (1.012–1.124)
0.017

All-cause death 427 (3.2%) 338 (3.1%) 89 (3.5%) 1.140 (0.972–1.439)
0.273

1.353 (1.066–1.718)
0.013

1.071 (1.008–1.209)
0.041

MI 286 (2.1%) 216 (2.0%) 70 (2.8%) 1.411 (1.078–1.848)
0.012

1.431 (1.089–1.881)
0.010

1.112 (1.011–1.222)
0.029

CVA 613 (4.6%) 491 (4.5%) 122 (4.8%) 1.074 (0.881–1.311)
0.480

1.124 (0.919–1.374)
0.254

1.045 (0.968–1.129)
0.259

Repeat 
revascularisation

232 (1.7%) 175 (1.6%) 57 (2.3%) 1.415 (1.050–1.909)
0.023

1.426 (1.053–1.930)
0.022

1.097 (0.985–1.222)
0.091

Values are n (%). Adjusted covariates including age, sex, BMI, smoking, hypertension, hyperlipidemia, diabetes, insulin-treated diabetes, PAD, AF, COPD, CVE, CKD, 
NYHA class III/IV, LVEF, HbA1C, FPG, LDL-C, Hs-CRP, Serum creatinine, EuroSCORE, On pump, LM, TVD, and prescription of β-Blocker, aspirin, statin and ACEI/ARB at 
discharge (Abbreviations as in Table 1).

MACCEs, major adverse cardiac and cerebrovascular events; MI, myocardial infarction; CVA, cerebrovascular accident; HR, hazard ratio; CI, confidence interval.

Fig. 2  Restricted cubic spline plot for AKI stage 2/3 by remnant-C levels. The background histogram (blue) represents the proportion of the density distri-
bution of remnant cholesterol in the study population. The solid red line indicates the estimated adjusted odds ratio, while the red dashed lines represent 
the 95% confidence interval. The horizontal gray dashed line indicates a odds ratio of 1.0. Adjusted covariates including age, sex, BMI, smoking, hyperten-
sion, hyperlipidemia, diabetes, insulin-treated diabetes, PAD, AF, COPD, CVE, CKD, NYHA class III/IV, LVEF, HbA1C, FPG, LDL-C, Hs-CRP, Serum creatinine, 
EuroSCORE, On pump, LM, TVD (Abbreviations as in Table 1). OR, odds ratio; CI, confidence interval; remnant-C, remnant cholesterol
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groups of remnant-C and LDL-C. Consistent with the 
secondary prevention guidelines for post-CABG patients 
available at the time of patient recruitment [22], high 
LDL-C was defined as > 2.6 mmol/L. The results indicated 
that individuals with remnant-C levels ≥ 0.8 mmol/L were 
at a higher risk for MACCEs, regardless of whether their 
LDL-C levels were concordantly high (aHR: 1.476, 95% CI 
1.181–1.843, P = 0.001) or discordantly low (aHR: 1.200, 
95% CI 1.017–1.415, P = 0.031). Conversely, when LDL-C 
levels were high but remnant-C levels were < 0.8 mmol/L, 
the risk of MACCEs was not significant (aHR: 1.082, 95% 
CI 0.923–1.267, P = 0.331). These findings suggest that 
remnant-C is an independent predictor of MACCEs in 
patients with diabetes or prediabetes undergoing CABG, 
regardless of LDL-C levels (Fig. 6).

Sensitivity analysis
We performed a sensitivity analysis by dividing remnant-
C into four quartiles to assess its association with the 
outcomes. The results confirmed that the highest RC 

quartile was significantly associated with an increased 
risk of AKI stage 2/3 and MACCE compared to the low-
est quartile (Supplemental Tables S2 and S3). These find-
ings support the robustness of our results.

Discussion
This large-scale cohort study is the first to demonstrate 
an association between elevated remnant-C and poor 
outcomes in patients with diabetes or prediabetes under-
going CABG. In the short term, elevated remnant-C was 
associated with an increased risk of perioperative AKI 
stage 2/3. Over the long term, elevated remnant-C was 
associated with a higher risk of MACCEs, all-cause mor-
tality, MI, and repeat revascularization, and this asso-
ciation was more pronounced in insulin-treated patients 
compared to those not on insulin therapy. Furthermore, 
remnant-C is independently associated with MACCEs, 
regardless of LDL-C levels.

LDL-C is a well-established risk factor for ASCVD and 
a key target for both primary and secondary prevention. 

Fig. 3  Cumulative incidence of long-term outcomes. The Kaplan–Meier method was used to plot cumulative incidence curves. The red line indicates the 
high remnant-C group, and the blue line indicates the low remnant-C group. Adjusted covariates including age, sex, BMI, smoking, hypertension, hyper-
lipidemia, diabetes, insulin-treated diabetes, PAD, AF, COPD, CVE, CKD, NYHA class III/IV, LVEF, HbA1C, FPG, LDL-C, Hs-CRP, Serum creatinine, EuroSCORE, 
On pump, LM, TVD, and prescription of β-Blocker, aspirin, statin and ACEI/ARB at discharge (Abbreviations as in Table 1). HR, hazard ratio; CI, confidence 
interval; remnant-C, remnant cholesterol; MACCEs, major adverse cardiovascular and cerebrovascular events
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However, despite significant reductions in LDL-C, recur-
rent ASCVD events still occur in patients [8, 14]. Rem-
nant-C has been shown to have a strong pro-atherogenic 
effect and may be an important contributor to this 
residual risk [4]. In individuals with impaired glucose 
metabolism, elevated remnant-C levels are observed, 
while LDL-C levels remain relatively normal [10]. A study 
found that elevated levels of remnant cholesterol are 
associated with poor glycemic control in individuals with 
diabetes, as assessed by continuous glucose monitoring 
devices [24]. Therefore, The residual risk associated with 
remnant-C in this population deserves special attention. 
Studies indicate that insulin resistance and pro-inflam-
matory states, prevalent in individuals with prediabetes 
or diabetes, not only promote remnant-C production 
but also amplify its cardiovascular impact [25, 26]. For 
CAD patients with impaired glucose metabolism, CABG 
is a key treatment, especially for those with multi-vessel 
disease [8, 13]. However, patients with diabetes or pre-
diabetes undergoing CABG are at high ASCVD risk due 
to postoperative residual risk and underappreciated risk 
factors, which contribute to higher rates of both short- 
and long-term adverse events [27]. Notably, no studies 
have yet investigated the association between remnant-C 
and adverse outcomes in patients with impaired glucose 
metabolism undergoing CABG. This study is the first to 
explore this issue.

In the perioperative outcomes of this large longitu-
dinal cohort of 13,426 patients undergoing CABG, we 

found that baseline remnant-C levels were significantly 
associated with AKI stages 2/3. Each 1-SD (0.4 mmol/L) 
increase in remnant-C was associated with a 16.6% 
increased risk of AKI after multivariate adjustment. 
This novel finding, for the first time, establishes a link 
between remnant-C and AKI after CABG. Prior stud-
ies have mainly focused on the impact of dyslipidemia 
on CKD. The Atherosclerosis Risk in Communities 
study showed that low HDL, high LDL-C, and elevated 
TG are linked to an increased risk of CKD [28], consis-
tent with findings from large Mendelian randomization 
studies [29]. Additionally, in patients with diabetes, mul-
tiple epidemiological studies have confirmed that typi-
cal dyslipidemia strongly correlates with the incidence 
and progression of CKD [30]. However, few studies have 
investigated the relationship between blood lipids and 
perioperative AKI, with only limited observational evi-
dence suggesting a modest association between HDL-C 
and AKI following both cardiac and non-cardiac sur-
geries [31, 32]. AKI is the most common major compli-
cation of cardiac surgery, occurring more frequently in 
patients with impaired glucose metabolism compared 
to those with normal glucose levels [33, 34]. Moreover, 
given the strong association between AKI, especially 
stages 2/3, and adverse outcomes, the management of 
AKI in cardiac surgery is a critical concern [34]. Our 
study demonstrates that remnant-C is associated with the 
occurrence of AKI Stage 2/3 in patients with diabetes or 
prediabetes undergoing CABG. This finding highlights 

Fig. 4  Restricted cubic spline plot for MACCEs by remnant-C levels. The background histogram (blue) represents the proportion of the density distribu-
tion of remnant cholesterol in the study population. The solid red line indicates the estimated adjusted hazard ratio, while the red dashed lines represent 
the 95% confidence interval. The horizontal gray dashed line indicates a hazard ratio of 1.0. Adjusted covariates including age, sex, BMI, smoking, hyper-
tension, hyperlipidemia, diabetes, insulin-treated diabetes, PAD, AF, COPD, CVE, CKD, NYHA class III/IV, LVEF, HbA1C, FPG, LDL-C, Hs-CRP, Serum creatinine, 
EuroSCORE, On pump, LM, TVD, and prescription of β-Blocker, aspirin, statin and ACEI/ARB at discharge (Abbreviations as in Table 1). HR, hazard ratio; CI, 
confidence interval; remnant-C, remnant cholesterol; MACCEs, major adverse cardiovascular and cerebrovascular events
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the potential for remnant-C as a novel biomarker for 
early identification, risk stratification, and targeted clini-
cal intervention. However, the mechanisms underly-
ing the association between remnant-C and AKI remain 
unclear. Several hypotheses offer insights into poten-
tial pathways. First, the lipid nephrotoxicity hypothesis, 
which links dyslipidemia to CKD, suggests that persis-
tent hyperlipidemia leads not only to atherosclerosis but 
also to glomerular arteriosclerosis [35]. Furthermore, the 
gradual accumulation of various circulating lipoproteins 
in the basement membrane and mesangial cells damages 
podocytes, mesangial cells, and renal tubular structures, 

promoting CKD progression [35]. Notably, in the context 
of impaired glucose metabolism, the renal microvascula-
ture shows a unique susceptibility to dyslipidemia, which 
may be a key mechanism of renal injury [36]. Impaired 
glucose metabolism is often associated with insulin resis-
tance and a pro-inflammatory state [25], both of which 
contribute to endothelial dysfunction. This dysfunction 
increases the permeability of renal microvasculature, 
promotes inflammation and oxidative stress, and alters 
renal microcirculatory hemodynamics [36, 37]. More-
over, in patients with impaired glucose metabolism, the 
elevated levels of various lipoproteins and lipids [38], 

Fig. 5  Subgroup analysis of MACCEs. Values are n (%). Adjusted covariates including age, sex, BMI, smoking, hypertension, hyperlipidemia, diabetes, 
insulin-treated diabetes, PAD, AF, COPD, CVE, CKD, NYHA class III/IV, LVEF, HbA1C, FPG, LDL-C, Hs-CRP, Serum creatinine, EuroSCORE, On pump, LM, TVD, 
and prescription of β-Blocker, aspirin, statin and ACEI/ARB at discharge (Abbreviations as in Table 1). LDL-C, low-density lipoprotein cholesterol; EuroSCORE, 
European System for Cardiac Operative Risk Evaluation; CPB, cardiopulmonary bypass; HR, hazard ratio; CI, confidence interval
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particularly TRLs, further exacerbates inflammation 
and damage to the renal microvasculature, thus wors-
ening glomerular injury and tubular-interstitial fibrosis, 
which ultimately accelerates the progression of kidney 
injury [36–38]. Meanwhile, the mechanisms related to 
remnant-C and cardiovascular events include the eleva-
tion of inflammatory cytokine levels, increased systemic 
oxidative stress, induction of endothelial dysfunction, 
and disruption of immune regulation [3, 4, 9, 25]. These 
mechanisms may also be involved in the development of 
AKI. In clinical practice, perioperative remnant-C/TG 
are often overlooked by physicians. Given our results, it 
is essential to further investigate the role of remnant-C 
in AKI after CABG, as well as to explore the underlying 
mechanisms.

Our study also revealed that elevated remnant-C has an 
impact on long-term clinical outcomes in patients with 
diabetes or prediabetes undergoing CABG. For each SD 
increase (0.4  mmol/L) in remnant-C, the risk of MAC-
CEs increased by 6.6%, with corresponding increases 
of 7.1% in all-cause death and 11.2% in MI risk. Impor-
tantly, in this high-risk ASCVD group of patients with 
impaired glucose metabolism, remnant-C was identified 
as the primary cholesterol component driving MAC-
CEs following CABG. Regardless of whether LDL-C lev-
els were ≤ 2.6  mmol/L, patients with remnant-C levels 
≥ 0.8  mmol/L had a higher risk of MACCEs, suggesting 
that remnant-C can predict cardiovascular outcomes 
independently of LDL-C levels. These findings support 
the consideration of remnant-C as both a clinical pre-
dictor and therapeutic target in patients with prediabe-
tes and diabetes undergoing CABG. Current guidelines 
recommend long-term statin therapy for patients after 
CABG without contraindications [8]. However, the 
effect of statins on remnant-C is limited. A national lon-
gitudinal cohort study, involving approximately 2 mil-
lion patients with diabetes, found that the association 

between remnant-C and cardiovascular disease was 
even stronger in those on statin therapy than in those 
not using statins [39]. A recent study suggest that lower-
ing remnant-C by 0.8  mmol/L in secondary prevention 
can reduce the risk of recurrent MACCEs by 20% [11]. 
Based on these data, we reasonably postulate that treat-
ment of residual risk, measured as remnant-C, was likely 
more beneficial than further reduction of LDL-C levels in 
patients with impaired glucose metabolism after CABG 
who are already receiving appropriate doses of statins. In 
fact, the effects of LDL-lowering drugs such as statins, 
ezetimibe and PCSK9 inhibitors on remnant-C levels 
are usually modest, while fibrates, commonly used in 
clinical practice to lower TG/TRL/remnant-C, have more 
profound effects [25]. In the PROMINENT trial [40], 
pemafibrate significantly reduced TG levels by 26.2% and 
remnant-C levels by 25.6% in patients with diabetes, but 
these changes did not translate into a reduction in MAC-
CEs. Further analysis revealed that pemafibrate did not 
truly reduce remnant-C, but instead promoted its con-
version to LDL-C rather than hepatic clearance. Conse-
quently, pemafibrate-mediated reductions in remnant-C 
were accompanied by a 12.3% increase in LDL-C levels 
in this study [40]. Ongoing trials involving novel agents, 
such as RNA-based therapies targeting apolipoprotein 
C-III, angiopoietin-like protein 3 (ANGPTL3) inhibi-
tors, protein-level interventions targeting ANGPTL3, 
and gene-editing therapies like CRISPR-Cas-mediated 
ANGPTL3 modification, are expected to improve the 
clearance of remnant-C rather than converting it to LDL 
particles, thereby reducing the atherogenic effects of 
remnant-C [15, 41, 42]. Moreover, selecting the appropri-
ate patient population for remnant-C-lowering therapies 
is essential. Theoretically, patients with higher residual 
risk driven by remnant-C are more likely to benefit from 
these therapies. In our study, we specifically focused on 
patients with diabetes or prediabetes undergoing CABG, 

Fig. 6  Discordance analyses of remnant-C and LDL-C levels. The four groups, from top to bottom, are: Low LDL-C and Low Remnant-C group (serving as 
the baseline for comparison); Low LDL-C and High Remnant-C group (focusing on the effect of elevated remnant cholesterol in the context of low LDL-C 
levels); High LDL-C and Low Remnant-C group (focusing on the effect of elevated LDL-C in the context of low remnant cholesterol levels); High LDL-C 
and High Remnant-C group (focusing on the combined effect of both elevated LDL-C and remnant cholesterol levels on cardiovascular risk. Adjusted 
covariates including age, sex, BMI, smoking, hypertension, hyperlipidemia, diabetes, insulin-treated diabetes, PAD, AF, COPD, CVE, CKD, NYHA class III/IV, 
LVEF, HbA1C, FPG, Hs-CRP, Serum creatinine, EuroSCORE, On pump, LM, TVD, and prescription of β-Blocker, aspirin, statin and ACEI/ARB at discharge (Ab-
breviations as in Table 1). HR, hazard ratio; CI, confidence interval. LDL-C, low-density lipoprotein cholesterol
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who represent a group with particularly high residual 
cardiovascular risk [13, 14, 27]. Therefore, our findings 
provide valuable insights into the selection of patient 
groups for remnant-C-lowering therapies.

In addition to the primary findings, our subgroup anal-
ysis revealed an interesting observation: the association 
between remnant-C and MACCEs was more pronounced 
in patients receiving insulin therapy compared to those 
not on insulin. Insulin-treated patients often have a lon-
ger duration of diabetes and more severe insulin resis-
tance [43, 44]. Additionally, exogenous insulin acts as a 
pro-inflammatory agent, potentially exacerbating inflam-
matory responses through multiple mechanisms [44, 
45]. This heightened insulin resistance and inflammatory 
state may amplify the effects of remnant-C on cardiovas-
cular risk [25, 44]. In particular, exogenous insulin may 
enhance immune responses associated with inflamma-
tion and overstimulate hormonal signaling pathways, 
which could increase the uptake of remnant-C by macro-
phages in arterial walls, thereby accelerating the progres-
sion of atherosclerosis [45, 46]. This finding emphasizes 
the importance of paying more attention to the subgroup 
of insulin-treated patients with diabetes undergoing 
CABG, as these patients may be more vulnerable to the 
adverse effects of remnant-C.

The strengths of this study are as follows: it is based on 
a large-scale, well-validated longitudinal cohort with com-
plete follow-up, and adequate adjustment for confounding 
factors, which together contribute to the robustness of the 
findings. Moreover, LDL-C was directly measured via the 
homogeneous method rather than estimated via the Frie-
dewald equation. Both HDL-C and TC were also directly 
measured. Consequently, the remnant-C level, calculated 
as TC − HDL-C − LDL-C, provided a more accurate esti-
mation. However, this study has several limitations. First, 
epidemiological and genomic studies have confirmed eth-
nic and regional variations in lipid profiles and associated 
cardiovascular risks [47, 48]. Given that this study is based 
on a Chinese population, the generalizability of its findings 
to other regions and ethnicities may be limited. Second, 
during long-term follow-up, remnant-C levels may fluctu-
ate over time, but these fluctuations are difficult to track. 
Third, although we adjusted for known major covariates, 
the potential of residual or unmeasured confounding fac-
tors remained. Data on unmeasured confounders, such 
as patient lifestyle behaviors (e.g., diet, physical activity, 
alcohol consumption) and adherence to prescribed treat-
ments, were not available during the follow-up period. 
These factors may contribute to cumulative exposure and 
variability in remnant-C levels, potentially influencing 
the observed associations between remnant-C and out-
comes [49]. It is well established that socioeconomic sta-
tus is closely related to the management, complications, 
and prognosis of diabetes, and it may also influence the 

observed associations in our study. Additionally, the lack 
of data on the duration of diabetes and its related compli-
cations further limits the comprehensiveness of our mul-
tivariate model, which may affect the interpretation of 
the results, particularly in the subgroup analysis involving 
insulin treatment. Finally, due to the inherent limitations 
of the observational study design, although we employed 
various statistical methods (e.g., restricted cubic splines, 
logistic regression, and Cox models) to ensure the reliabil-
ity of the results, we acknowledge that confounding factors 
cannot be fully eliminated. Therefore, a causal relationship 
between remnant-C and MACCEs cannot be definitively 
established due to the potential influence of confounding 
and reverse causation.
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