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Background. Viral load (VL) monitoring for patients receiving antiretroviral therapy (ART) is recommended worldwide. 
However, the costs of frequent monitoring are a barrier to implementation in resource-limited settings. The extent to which person-
alized monitoring frequencies may be cost-effective is unknown.

Methods. We created a simulation model parameterized using person-level longitudinal data to assess the benefits of flexible 
monitoring frequencies. Our data-driven model tracked human immunodeficiency virus (HIV)–infected individuals for 10 years 
following ART initiation. We optimized the interval between viral load tests as a function of patients’ age, gender, education, dura-
tion since ART initiation, adherence behavior, and the cost-effectiveness threshold. We compared the cost-effectiveness of the per-
sonalized monitoring strategies to fixed monitoring intervals every 1, 3, 6, 12, and 24 months.

Results. Shorter fixed VL monitoring intervals yielded increasing benefits (6.034 to 6.221 discounted quality-adjusted life-years 
[QALYs] per patient with monitoring every 24 to 1 month over 10 years, respectively, standard error = 0.005 QALY), at increasing 
average costs: US$3445 (annual monitoring) to US$5393 (monthly monitoring) per patient, respectively (standard error = US$3.7). 
The adaptive policy optimized for low-income contexts achieved 6.142 average QALYs at a cost of US$3524, similar to the fixed 
12-month policy (6.135 QALYs, US$3518). The adaptive policy optimized for middle-income resource settings yields 0.008 fewer 
QALYs per person, but saves US$204 compared to monitoring every 3 months.

Conclusions. The benefits from implementing adaptive vs fixed VL monitoring policies increase with the availability of resources. 
In low- and middle-income countries, adaptive policies achieve similar outcomes to simpler, fixed-interval policies.
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Routine human immunodeficiency virus (HIV) RNA (viral load 
[VL]) monitoring is recommended for all patients receiving 
antiretroviral therapy (ART) by the World Health Organization 
(WHO) and many national HIV care guidelines [1, 2]. Using VL 
monitoring to improve patients’ likelihood of virologic suppres-
sion benefits patients as well as individuals at risk of HIV infec-
tion [1]. Personal benefits include the timely detection of loss of 
virologic control, which may improve ART choices. Population 
benefits include the identification of HIV transmission risk, 
which may lead to public health interventions [3]. Due to its 
relatively high cost, VL testing is often foregone or conducted 

infrequently in patients receiving ART in low-resource settings, 
even though clinical and immunological monitoring are poorly 
predictive of virologic failure [4]. Because HIV-infected patients 
benefit from ART initiation even at high CD4 cell counts, rou-
tine VL monitoring is increasingly recognized as a critical part 
of ART programs [5]. The lifelong need for ART implies that the 
costs of VL monitoring make up an important portion of over-
all costs of care, estimated at 15%–20% of total cost of care in 
low-income contexts [6, 7]. However, there is limited evidence 
to guide VL monitoring frequency, especially differentiated care 
interventions [2, 8–10]. As a result, mathematical models have 
been influential, alongside expert opinion, in addressing issues 
related to the benefits and cost-effectiveness of VL monitoring 
[11, 12].

In this analysis we examine an understudied paradigm for 
VL testing: adaptive monitoring, wherein the frequency of test-
ing depends on personal patient characteristics. We develop 
and implement a mathematical model that uses parameters 
derived from person-level data to personalize decisions for 
timing of VL monitoring. In identifying the optimal interval 
for monitoring, our analysis takes into account the patient’s 
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demographics, clinical history, and self-reported adherence 
behavior. In addition, we perform a cost-effectiveness analysis 
to inform the optimal monitoring interval in different resource 
contexts. We also develop a decision support tool that calcu-
lates the optimal monitoring interval given a few basic patient 
characteristics.

METHODS

Overview

We designed and developed a stochastic simulation model 
that captures HIV disease progression and transmission in 
order to evaluate alternative VL monitoring strategies. The 
model tracked patient demographics, CD4 cell counts, indi-
vidual adherence to ART, and presence of virologic failure (a 
schematic is presented in Figure  1). The model was used to 
optimize monitoring strategies at different cost-effectiveness 
(CE) thresholds (CETs). We use the CET to indicate the upper 
bound of societal resources that are considered affordable to 
gain 1 quality-adjusted life-year (QALY). This threshold varies 
with the resource context—low-income countries have a lower 
CET than middle-income countries—and in this analysis we 
use the gross domestic product (GPD) per capita in 2013 as a 
benchmark.

Model Population

We simulated a population of 100 000 individuals that was age-, 
education-, and gender-matched to Uganda’s 2011 nationally 
representative Demographic and Health Survey over a 10-year 
time horizon [13]. At baseline, the mean age among HIV-
infected individuals was 36  years old, 61% were women, and 
25% completed primary school education. The initial CD4 
count had an average of 310 cells/µL.

Adherence, Failure, and CD4 Cell Count Modeling

We used data from the Swiss HIV Cohort Study (SHCS) to esti-
mate the risk of virologic failure in different HIV risk groups. We 
used the SHCS because it contained detailed, longitudinal infor-
mation on adherence, virologic failure, and CD4 cell counts. 
While patients in the SHCS live with HIV in a different envi-
ronment from low-resource countries, we considered the use of 
the SHCS acceptable for our primary model population if the 
events under study could be considered context-independent.  
We used SHCS to assess the risk of virologic failure given 
self-reported adherence status, and the implications of failure 
for CD4 cell change. We analyzed longitudinal data from 5251 
ART-naive SHCS patients (95 414 patient visits). Detailed infor-
mation on the SHCS is provided elsewhere [14].

We used a mixed-effects logistic regression model fitted to 
the SHCS self-reported adherence data to model a patient’s 
current adherence status (a binary outcome), as a logit func-
tion of previous adherence status, age, gender, education, and 
time since last measurement. Self-reported nonadherence was 
defined as having missed >2 doses in the month previous to 
a biannual SHCS cohort visit and was measured in the SHCS 
data with a 2-item questionnaire that has been shown to predict 
virologic failure, presence of viral resistance, and progression of 
HIV disease [15–17].

Virologic failure in the SHCS data was defined as (i) 2 con-
secutive measurements of a VL >200 copies/mL, (ii) 1 VL 
measurement >1000 copies/mL, or (iii) not reaching virologic 
suppression within 6 months of either ART initiation or regi-
men change. For patients on first-line therapy who were not in 
virologic failure in the previous month, we estimated the prob-
ability of failure at any month (binary outcome) as a logit func-
tion of current adherence status, time on ART, age, gender, and 

Figure 1. Variables tracked monthly and their dependencies. Abbreviation: ART, antiretroviral therapy.
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time between measurements, and used the predicted probabili-
ties to parameterize the simulation model. For patients on sec-
ond-line therapy, we use a fixed monthly probability of failure, 
which does not depend on individual patient characteristics. 
We also estimated the probability of spontaneous resuppres-
sion after the first occurrence of virologic failure in the SHCS 
data, depending on current adherence status. We assumed that 
if patients do not resuppress within a month, then they remain 
in virologic failure until a switch in regimen occurs.

We estimated CD4 cell count changes using quantile regres-
sion models fitted to SHCS data to capture the distribution of 
the data, and estimated the monthly change in CD4 cell count 
as a function of previous CD4 cell count, time since ART initia-
tion, CD4 cells at ART initiation, age, and gender.

HIV Disease, Treatment, and Monitoring

We used data from Uganda to estimate age- and gender-specific 
mortality by CD4 cell counts. Model parameters are shown in 
Supplementary Tables 1–5 [18, 19]. We track our simulated cohort 
starting at the first month of ART initiation. All patients receive 
1 VL measurement at 6 months on ART [2]. Afterward, patients 
are monitored according to the policy we evaluate, or upon devel-
opment of an AIDS-defining opportunistic infection (OI). CD4 
cell–specific OI rates are adjusted in calibration to match OI rates 
reported in clinical data from Uganda [1, 20]. We use WHO life 
tables to estimate age- and gender-specific mortality.

In our simulation model, if virologic failure is detected during 
monitoring on first-line therapy, patients return for a follow-up 
VL test in the next month. If virologic failure is still present 
(spontaneous resuppression has not occurred), the patient is 
switched to second-line therapy. We did not model regimen 
switching for patients on second-line ART, and assumed annual 
VL monitoring for all patients on second-line therapy regard-
less of failure status.

Outcomes

Our principal outcomes are QALYs lived by patients and 
HIV-specific costs. We used QALY weights based on CD4 cell 
count [21, 22]. We tracked monthly costs based on the patient’s 
ART regimen, administration of VL measurement, and CD4 
cell count (<250 cells/µL or not; Supplementary Tables 3 and 
4) [23–26].

Estimating Transmitted HIV Infections

We estimate the number of secondary HIV infections in the com-
munity as a function of the number of individuals in virologic 
failure in the population simulated [27]. We track the number of 
patient-months spent in failure during the time horizon of our 
simulation, and calculate the number of secondary infections as 
a function of the average number of partners, HIV prevalence 
(ie, the probability that a partner is HIV-infected), probability 
of HIV transmission per sex act for patients in failure, and the 

average number of sex acts per month, all parameterized using 
data from Uganda [28–31]. We then also estimate the loss in 
QALYs and gain in costs per secondary infection generated 
assuming that the newly infected individual would be placed on 
ART and subject to the same monitoring policy, and adjust the 
costs and QALYs resulting from our simulation according to 
these estimates. We discount costs and QALYs by 3% per year 
[32]. We report the average total discounted costs and QALYs 
per patient over the 10-year time horizon.

Monitoring Policies

We simulate fixed and adaptive VL monitoring strategies. In 
the 5 fixed strategies, patients are monitored every 1, 3, 6, 12, 
or 24 months. The adaptive strategies use the fact that patients 
have differing risk of failure. We use the model to search for 
monitoring policies that better reflect a patient’s optimal mon-
itoring frequency based on patient characteristics. As a sim-
ple example, a patient who reports being nonadherent should 
have VL monitoring sooner than a similar patient reporting 
good adherence, even if both patients appear to be currently 
suppressed.

We use a stochastic optimization approach where, given 
patient characteristics (time since ART initiation, current 
adherence status, age, sex, and education level), we optimize 
the time until the next VL test by maximizing the average net 
monetary benefit (NMB), where NMB = QALYs × CET– costs. 
A  key feature in determining an adaptive policy is the CE 
threshold. By varying the CET value, we recover a continuum 
of adaptive strategies, the costs and QALYs of which should 
define the cost-effectiveness frontier as each adaptive policy is 
optimized to provide the most benefit at a given cost per QALY. 
For this analysis, we show findings for CET of US$572/QALY 
(Uganda’s GDP per capita in 2013), and 3, 10, 30, 50, and 100 
times Uganda’s per-capita GDP, where we note that $57 200 
per QALY is similar to the GDP per capita in Organisation for 
Economic Co-operation and Development countries.

RESULTS

Model Calibration/Validation

We calibrated our model to data from a randomized clini-
cal trial of HIV laboratory monitoring strategies conducted 
in Uganda and Zimbabwe [1]. In the trial, 3321 ART-naive 
patients with CD4 counts <200 cells/µL at ART initiation were 
randomized to 2 monitoring arms: laboratory and clinical mon-
itoring. Our model closely matches several key quantities from 
the trial such as 5-year mortality, OI-free survival, and percent-
age of patients with CD4 cell counts >200 cells/µL (for details, 
see Supplementary Appendix).

Adaptive Monitoring

A few themes emerge from our analysis. First, optimal VL 
monitoring frequency is higher in contexts with higher CE 
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thresholds. For example, we estimate that a 35-year-old woman 
who has been on ART for 2 years and who reports being adher-
ent would optimally have her next VL test in 12  months in 
Uganda, and in 6 months in contexts with CE threshold similar 
to South Africa. Second, nonadherent patients should generally 
be monitored at shorter intervals than adherent patients.

Third, as time since ART initiation increases without loss of 
virologic control, patients should be monitored less and less 
frequently. Our model suggests that the 35-year-old woman in 
the example above should optimally be monitored in 14 months 
after 4 years on ART in Uganda. Figure 2 shows an example of 
adaptive policy where we hold gender, age, and education level 
constant and vary the CET and the adherence status. The figure 
plots the optimized VL monitoring interval vs the time since 
ART initiation and shows the lengthening monitoring intervals 
with increasing time on ART, for adherent patients, and at lower 
CE thresholds.

Cost-effectiveness and Sensitivity Analyses

The adaptive policies evaluated were generally on the cost-ef-
fectiveness frontier, achieving the highest QALYs at their 
respective costs. Monitoring at fixed intervals of 24 months is 
the least costly VL monitoring strategy we evaluated ($3445 on 
average per patient in total costs, standard error [SE]  =  $3.7, 
discounted over 10 years), but also yields the smallest number 
of QALYs (6.034, SE = 0.005). The adaptive policy optimized 
for the Ugandan resource context (CET = Ugandan GDP per 
capita) is cost-effective with an incremental cost-effective-
ness ratio (ICER) of $491/QALY relative to monitoring every 
24 months. Furthermore, monitoring every 24 months resulted 
in an additional 2 months average time spent in virologic failure 
per patient during the simulated 10-year horizon compared to 
the optimized adaptive policy at Uganda’s GDP per capita.

If decision makers are willing to spend up to 3 times Uganda’s 
GDP per capita, then using the adaptive policy optimized for 
that CET provides the highest benefits (6.142 QALYs), ICER of 
$1311/QALY compared to the first adaptive policy. However, 
the fixed 12-month interval monitoring policy yields similar 
outcomes to the adaptive policy optimized for a CET of 3 times 
Ugandan GDP per capita (6.135 QALYs at a cost of $3518), 
ICER of 1485 ($/QALY) compared to the adaptive policy for 
Ugandan GDP per capita. The adaptive policies optimized 
for 10, 50, and 100 times Uganda’s GDP per capita are on the 
cost-effectiveness frontier, dominating the fixed-interval mon-
itoring policies of monitoring every 3  months and 6  months. 
The costs and QALYs achieved by all policies are summarized 
in Tables 1 and 2 and in Figure 3.

Health Outcomes—Virologic Failure and Transmission Outcomes

The average cumulative number of months that a patient 
spends in failure is shown in Figure  4. Compared to fixed-  
interval policies, adaptive policies incur similar or fewer months 
in virologic failure on average, and therefore generate fewer sec-
ondary infections on average per patient on ART. All 6 adaptive 
policies we simulated incurred fewer months in failure than the 
fixed-interval policy that monitors every 24  months, and the 
adaptive policies for the 3 highest CET values (30, 50, and 100 
times Uganda’s GDP per capita) resulted in fewer months spent 
in failure than the 6-month fixed-interval policy. Despite cost-
ing on average $204 less per patient, the adaptive policy opti-
mized for a CET of 30 times Ugandan GDP per capita achieves 
similar averages of months spent in failure and secondary 
infections (2.7 and 0.144, respectively, over 10 years simulated) 
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Figure 2. Example of adaptive policy: male, age 15–20 years, primary education 
or less. Abbreviations: ART, antiretroviral therapy; GDP, gross domestic product.

Table  1. Average Per-Person Costs and Quality-Adjusted Life-years of 
Fixed-Interval Monitoring Policies

Frequency Mean QALY Mean Cost, US$ SE QALY SE Cost, US$

1 month 6.221 5393 0.005 4.1

3 months 6.198 4017 0.005 3.4

6 months 6.173 3678 0.005 3.5

12 months 6.135 3518 0.005 3.7

24 months 6.034 3445 0.005 3.8

Abbreviations: QALY, quality-adjusted life-years; SE, standard error; US, United States.

Table  2. Average Per-Person Costs and Quality-Adjusted Life-years of 
Adaptive Monitoring Policies

CET, US$ Mean QALY Mean Cost, US$ SE QALY SE Cost, US$

572 6.111 3483 0.005 3.7

1716 6.142 3524 0.005 3.6

5720 6.176 3632 0.005 3.5

17 160 6.190 3812 0.005 3.5

28 600 6.207 3945 0.005 3.4

57 200 6.214 4213 0.005 3.4

Abbreviations: CET, cost-effectiveness threshold; QALY, quality-adjusted life-year; SE, stan-
dard error; US, United States.
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Figure 3. Cost-effectiveness plot. Adaptive “X” = adaptive policy optimized for a cost-effectiveness threshold = X times the gross domestic product per capita of Uganda 
(US$572). Abbreviation: QALY, quality-adjusted life-year.

Figure 4. Average cumulative number of months spent in virologic failure. Abbreviations: CET, cost-effectiveness threshold; CI, confidence interval; GDP, gross domestic 
product. Abbreviation: VL, viral load
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and only 0.008 QALYs fewer than the fixed-interval policy that 
monitors every 3 months.

DISCUSSION

We model the important clinical and public health deci-
sion [33] of how to tailor VL monitoring intervals of HIV 
patients on ART to individual patient characteristics, adher-
ence behavior, and disease dynamics, and we evaluate the cost-  
effectiveness of such adaptive intervals relative to fixed-interval  
monitoring policies. We find that adaptive policies outperform 
fixed-interval monitoring policies, by margins that are small 
in low-resource settings but potentially large in high- resource 
settings. Our analysis suggests that in contexts such as Uganda, 
monitoring at fixed 12-month intervals performs closely to the 
adaptive monitoring policies that define the cost-effectiveness  
frontier. Due to its simplicity, the former policy may be a good 
alternative to implement in resource-limited settings. In higher- 
resource contexts, however, adaptive monitoring policies could 
lead to significant cost savings. In settings with GDP per capita 
of $15 000—$50 000, we estimate that $200–$1100 could be saved 
for each patient on ART by using adaptive monitoring policies 
instead of fixed 1- to 3-month monitoring policies.

The optimal monitoring frequency depends crucially on 
the amount of resources available in the respective setting. For 
this reason, we embed a CET in our algorithm when optimiz-
ing for adaptive monitoring policies, which we then vary to 
recover adaptive policies in a range of settings. Policies that 
monitor more frequently tend to achieve high QALYs but also 
incur more costs, and therefore perform better at high CETs. 
The small performance margin of adaptive policies at low CETs 
compared to fixed-interval policies can be explained by the fact 
that the long monitoring intervals imposed by the resource 
constraints translate to a loss in accuracy when predicting indi-
vidualized risks over long time horizons. On the other hand, at 
higher CET values, monitoring intervals are generally smaller 
,and individualized (differentiated) monitoring policies can 
better take advantage of short-term discrepancies in the risk of 
failure for different patients.

In developing our simulation model, we use SHCS data—
representing a diverse population of HIV-infected individuals 
with low loss of follow-up [14]—to model patient self-reported 
adherence, VL failure, and CD4 cell dynamics. Analyzing this 
data also allowed us to optimize for adaptive policies that 
depend on patient characteristics, time on ART, and, impor-
tantly, on self-reported adherence. We find that patients who 
report nonadherence behaviors are at an increased risk of VL 
failure, in accordance with existing studies [15–17, 34–36], and 
therefore monitoring policies should test them more frequently. 
Similarly, our analysis of SHCS data found that the risk of VL 
failure decreases after the initial 6  months on ART, and thus 
adaptive monitoring intervals tend to become larger the longer 
the patients have been on treatment. Our study also confirms 

previous findings that monitoring VL every 12  months pro-
vides a reasonably cost-effective VL monitoring policy [37], but 
extends the analysis to find other adaptive monitoring policies 
that outperform fixed-interval policies at various expenditure 
levels.

Our analysis has several limitations. First, we use data from 
a resource-rich setting (Switzerland) to inform a model for 
resource-limited settings such as Uganda. Specifically, we use 
the Swiss data to estimate nonadherence given sociodemo-
graphic factors such as age and education, to estimate failure 
from first-line therapy given nonadherence, and CD4 chances 
given failure status. Generalizing the probability of nonadher-
ence from Switzerland to resource-limited countries is the most 
tenuous assumption, while the others tend to be more intrin-
sic to HIV and thus may be similar between populations. For 
this reason, we test the sensitivity of our model to assumptions 
about nonadherence, and we simulate a clinical trial performed 
in Uganda [1] to check that key outcomes such as mortality and 
CD4 cell progression match historical values (Supplementary 
Appendix). Finally, our simulation model does not explicitly 
model HIV transmission or changes in adherence behavior 
arising from varying monitoring intervals. Our model does 
track, however, the number of months that each simulated 
patient spends in virologic failure, which allows estimation of 
the number of secondary infections from each policy using a 
well-known result [28].

Our study can inform decisions about when to test the VL 
of HIV-infected patients. We provide a decision support tool 
(menet.umn.edu/~negoescu/downloads.html) that returns a 
monitoring interval as a function of patient age, gender, educa-
tion, time since ART initiation, adherence, and resource setting. 
Our analysis highlights the important role played by patient 
adherence and time since ART as well as the resource context in 
determining the frequency of virologic monitoring.
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