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The complex ecosystem in which tumor cells reside and interact, termed the tumor

microenvironment (TME), encompasses all cells and components associated with a

neoplasm that are not transformed cells. Interactions between tumor cells and the TME

are complex and fluid, with each facet coercing the other, largely, into promoting tumor

progression. While the TME in humans is relatively well-described, a compilation and

comparison of the TME in our canine counterparts has not yet been described. As is

the case in humans, dog tumors exhibit greater heterogeneity than what is appreciated

in laboratory animal models, although the current level of knowledge on similarities

and differences in the TME between dogs and humans, and the practical implications

of that information, require further investigation. This review summarizes some of the

complexities of the human and mouse TME and interjects with what is known in the dog,

relaying the information in the context of the temporo-spatial organization of the TME. To

the authors’ knowledge, the development of the TME over space and time has not been

widely discussed, and a comprehensive review of the canine TME has not been done.

The specific topics covered in this review include cellular invasion and interactions within

the TME, metabolic derangements in the TME and vascular invasion, and the involvement

of the TME in tumor spread and metastasis.

Keywords: tumor microenvironment, temporo-spatial organization, dog, canine, human

INTRODUCTION

Cancer, the uncontrolled proliferation of cells, is a significant cause of morbidity and mortality in
humans and their canine companions worldwide (1, 2). The process of neoplastic transformation
is similar amongst species and can most easily be conceptualized in the three steps of initiation,
promotion, and progression toward malignancy (3), although it is now apparent that these steps
are neither sequential nor obligate. In the seminal work by Hanahan and Weinberg (4), tumors
were introduced as complex heterotypic tissues where a non-transformed milieu influences the

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.01185
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.01185&domain=pdf&date_stamp=2019-11-07
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kannetti@umn.edu
mailto:modiano@umn.edu
https://doi.org/10.3389/fonc.2019.01185
https://www.frontiersin.org/articles/10.3389/fonc.2019.01185/full
http://loop.frontiersin.org/people/774820/overview
http://loop.frontiersin.org/people/406985/overview
http://loop.frontiersin.org/people/668668/overview
http://loop.frontiersin.org/people/173096/overview


Langsten et al. Comparative Approach to the Temporo-Spatial Organization of the TME

progression of transformed cells with which it co-exists in the
same space and time. This milieu, the tumor microenvironment
(TME), may be thought of as the ecosystem or community within
which neoplastic cells survive and reside. The genomic landscape
of the malignant cells and the composition and behavior of the
TME are shaped by intense selection that can be described as
prototypical Darwinian evolution in a microscopic scale. All
non-transformed cells that interact with tumor cells, including
inflammatory cells, endothelium, adipocytes, and fibroblasts,
among others, as well as the non-cellular components, including
structural scaffold surrounding the cells and the soluble factors
secreted by the tumor and non-tumor components, compose
the TME [Figure 1; (5)]. In a non-neoplastic environment, these
components have a vast range of functions, including forming the
interstitium that creates a scaffold for parenchyma to organize,
sequestering growth factors, supplying nutrients, draining waste
from tissue, and creating a competent immune system to protect
the body against invaders.

The interplay between the TME and tumor cells is paramount
in the progression and response to neoplastic growth. While our
understanding of the TME in dogs is rudimentary, there are the
similarities in tumor heterogeneity between dogs and humans
(Table 1), which are often not appreciated in laboratory animal

FIGURE 1 | A simplified schematic of the cellular and structural component of the tumor microenvironment, including adipocytes, fibroblasts, B and T lymphocytes,

macrophages, natural killer cells, neutrophils, blood and lymphatic vessels, and the extracellular matrix, all intermingled with transformed cancer cells (created with

Biorender.com).

models. Although the current level of knowledge on similarities
and differences in the TME between dogs and humans, and
the practical implications of that information require further
investigation. This review provides an overview of the complexity
observed in the human and mouse TME, interjects known
similarities and differences in the dog, and relays them in the
context of the temporo-spatial organization of the TME. In short,
the proposed temporo-spatial organization of the TME involves
neoplastic tells transforming, the transformation of adjacent
TME into a cancer associated phenotype, and vascular invasion,
potentially culminating in tumor cell spread and metastasis
(Figure 2). To the authors’ knowledge, this approach to the
organization and conceptualization of the TME, as well as a
review of the TME in the dog, have not been described before.
Discussions include cellular invasion and interactions within the
TME,metabolic derangements in the TME and vascular invasion,
and the involvement of the TME in tumor spread and metastasis.

CELLULAR INVASION AND
INTERACTIONS WITHIN THE TME

While the definition of “cancer stem cells” (CSCs; also called
tumor-initiating cells or tumor-propagating cells) is mostly
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TABLE 1 | Comparative features of the TME between dogs and humans.

Components of the

TME

Dog Human

Adipocytes Produce aromatase cytochrome P450, estrogen, and

progesterone which stimulates tumor development

Adipose-derived

mesenchymal stem cells

Suppress T cells through

TGFβ and adenosine

pathways

Suppress T cells through

indoleamine

2,3-dioxygenase (IDO)

pathway

Fibroblasts Unknown Matrix is capable of

inhibiting tumor cell spread

Cancer-associated

fibroblasts

Modulate gene expression of cancer cells

Soluble factors IL-8 receptors are upregulated on cancer cells, leads to

increase in angiogenesis and inflammation

Elevated Cox-2 levels in certain tumor types;

Cox-inhibitors utilized for anti-tumor effects

Lymphatics Density of lymphatic vessel is correlated with tumor

growth and metastasis

Immune cells Osteosarcoma can be separated into “hot” (active) and

“cold” (barren) tumors, in regards to inflammatory

response

Increased presence of

immune transcripts in

osteosarcoma is not

prognostically significant

Increased presence of

immune transcripts in

osteosarcoma is associated

with better prognosis

semantic, the importance of cells that retain or acquire stem-like
features in the tumor cannot be underestimated.Whether they be
few, as in traditional hierarchically-organized tumors, or many,
as in stochastically organized tumors, these cells contribute to
remodeling the TME (6).

Recent work characterized genome-wide gene expression
signatures in canine tumor models (hemangiosarcoma,
osteosarcoma, and glioblastoma) that were grouped according
to their hierarchical organization (7). Cell lines derived from
these three tumor types were cultured under non-adherent
low serum conditions that promote sphere formation and
enrich CSCs. The steady state gene expression associated
with CSC maintenance in tumors with high sphere-forming
efficiency (i.e., hierarchically organized with relatively few CSCs)
showed metabolic skewing toward fatty acid synthesis and
secretion of immunosuppressive cytokines. On the other hand,
tumors with low sphere-forming efficiency (i.e., stochastically
organized with many or most cells having CSC potential)
showed metabolic skewing toward fatty acid oxidation and
potential immunoevasion through upregulation of CD40. In
the incipient tumor, CSCs create reactive microenvironments
that support tumor growth (8), importantly, by producing
cytokines that leverage the innate properties of resident
macrophages to remodel the microenvironment. CSCs also
interact bidirectionally with myeloid cells, which can remain in
an incompletely differentiated state and become myeloid-derived
suppressor cells (MDSCs, a highly heterogeneous population
of cells that contributes to cancer stemness as well as to the
functional immunosuppressive barrier (9, 10).

Intriguingly, the CSC condition appears to be at least
partly under extrinsic control. Depletion of CSCs in cultured
canine and human cell lines leads to reprogramming of
differentiated cells to become CSCs, maintaining the population
in a steady state (11). The signals that regulate this process
are poorly understood, but they might involve dysregulated
expression of Snail family transcription factors Snail (SNAI1),
Slug (SNAI2), as well as TWIST1 and Zeb1 (12–14), perhaps
through epigenetic modification of their respective promoters
(15). These responses are tightly regulated by environmental
cues. For example, expression of SNAI2 and its targets, CDH1,
VIM, and JUP in hemangiosarcoma cells showed a biphasic
response to interkeukin-8 (IL-8), with small amounts of IL-8
favoring self-renewal and abundant IL-8 favoring expansion of
bulk (differentiated) tumor cells (8, 16).

The role of adipocytes in the TME has receivedmore attention
as evidence mounts for a link between obesity and cancer
risk in dogs and humans (17, 18). Adipocytes adjacent to
tumor cells, known as cancer-associated adipocytes (CAAs), are
recruited to be actively involved in tumor initiation, promotion,
and progression. The mechanism of CAA development is
unclear, but likely involves a bidirectional communication
stream that includes adipokines and extracellular vesicles,
among other factors. Adipokines, metabolically active substances
secreted by adipocytes to create a permissive TME, include
substances such as leptin, tumor necrosis factor-α (TNFα), C-
C Motif Chemokine Ligand 2 (CCL2), and adiponectin. A
concise review of adipokines in domestic animals was recently
published (19).

Adipocytes promote neoplastic development through a
variety of mechanisms, including supporting angiogenesis
(described later in this review), manipulating tumor cell
metabolism, and encouraging a pro-inflammatory state, leading
to the recruitment of macrophages. Adipocytes play an important
role in reprogramming tumor cell metabolism. For example,
ovarian cancer cells co-cultured with abdominal adipose cells
were shown to coerce neighboring adipocytes into supplying
free fatty acids, thereby providing substrates for sustained tumor
cell replication (20). The role of adipocytes in promoting
chronic inflammation has been the subject of numerous studies.
Adipocytes produce pro-inflammatory adipokines and cytokines
[including CCL2, interleukin-6 (IL-6), and TNFα], which
increase inflammation and metastatic risk, supporting tumor
survival (20, 21). In the case of mammary and breast carcinomas
in dogs and humans, respectively, adipocyte-derived aromatase
cytochrome P450, estrogen, and progesterone have been reported
to stimulate tumor development and enhance invasive potential
[Table 1; (22, 23)]. Finally, extracellular remodeling in tumors,
including increased collagen deposition by adipocytes, can lead
to adipocyte apoptosis and necrosis. Macrophages are then
recruited into the tumor due to the release of pro-inflammatory
damage-associated molecular patterns (DAMPs) from the dying
adipocytes (17).

Recently, attention has been given to the influence
of adipose-derived mesenchymal stem cells (ad-MSCs)
in tumor progression. The secretome of ad-MSCs is
incompletely understood but is thought to have overarching
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FIGURE 2 | A schematic of the proposed temporo-spatial organization of the TME. Cells must first undergo neoplastic transformation, allowing for the creation of a

permissive micro-ecological niche. Neighboring cells, including adipocytes, fibroblasts, and macrophages, among others, can adopt a cancer-associated phenotype,

with complex, pro-tumorigenic effects. Hypoxia induced by cell proliferation and metabolic changes encourage lymph and blood vessel invasion, increasing infiltration

by inflammatory cells. Furthermore, angiogenesis and lymphangiogenesis create increased opportunity for neoplastic cell spread and metastasis (created with

Biorender.com).

immunomodulatory and pro-angiogenic properties (24). The
immunomodulatory properties of these cells are dependent on
the inflammatory milieu in which the cells reside. Some of the
anti-inflammatory properties of human and dog MSCs seem to
differ mechanistically. Ad-MSC dependent T cell suppression
in humans is through the indoleamine 2,3-dioxygenase (IDO)
pathway, resulting in decreased T cell function through
tryptophan depletion (25). Alternatively, in dogs ad-MSCs most
likely decrease T cell activity through TGFβ and adenosine
pathways [Table 1; (26)]. While a solid body of knowledge
about the influence of adipocytes and ad-MSCs in human tumor
growth and progression has been developed in recent years,
the influence of these cells on the TME in dogs remains to
be elucidated.

In a non-cancer associated microenvironment, fibroblasts
play a major role in producing components of the extracellular
matrix (ECM) including fibrillar collagen, elastin, laminin,
fibronectin, and glycosaminoglycans (27). Fibroblasts are
critical in wound healing, inflammatory reactions, fibrosis,
promoting angiogenesis, and cancer progression. Tumors are
often conceptualized as a “wound that will not heal” with
abundant collagen deposition (28). In vitro studies using cell
lines from various species, although to the authors’ knowledge
not from dogs, have demonstrated that normal, non-cancer
associated fibroblasts and the matrix they produce are capable
of inhibiting the spread of tumor cells, a phenomenon termed
neighbor suppression (29–31). Since neighbor suppression

was first recognized by Stoker et al. (29), many theories have
developed around the molecular mechanisms influencing
this finding, including heterologous communication between
transformed and non-transformed cells through junctional
complexes and through soluble factors within the ECM (32, 33).
Neighbor suppression has not yet been recognized in canine
tumors (Table 1).

Cancer-associated fibroblasts (CAFs) are corrupted by the
neoplastic cells in their proximity and have drastically different
functions than their non-transformed counterparts. The origin
of CAFs is not entirely clear; many theories on their origin claim
CAFs originate from resident mesodermal precursors (34–38).
An influential paper by Erez et al. (39) demonstrated that the
transcription factor NFκB induces the CAF phenotype through
upregulation of pro-inflammatory genes. These findings suggest
a necessity for innate immune involvement in the education
of CAFs. Furthermore, epigenetic changes also play a role in
the development of CAFs. Albrengues et al. (36) demonstrated
that CAFs have constitutively activated JAK1/STAT3 signaling
pathways secondary to epigenetic changes. Histone acetylation
of STAT3 in CAFs by leukemia inhibitory factor (LIF) caused
subsequent activation of DNMT3b (a DNA methyltransferase).
This in turn led to decreased SHP-1 expression with subsequent
sustained activation of JAK1. Interestingly, inhibition of DNMTs
caused CAFs to convert to a non-cancer associated fibroblast
phenotype (36). CAFs have diverse phenotypes without unique
markers, although phenotypic similarities to myofibroblasts,
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including reduced caveolin-1 (CAV-1) expression and increased
expression of α-SMA, vimentin, fibroblast-activating protein,
and MCT-4 (40, 41) have been described. Additionally, CAFs
have been shown to increase tumor cell growth, motility,
and local invasion through ECM remodeling and cytokine
release (37, 42, 43). In both humans and dogs, CAFs modulate
gene expression of cancer cells (44, 45). However, it is
difficult to compare their transcriptional programs across
species, as experimental protocols and genes of interest differ
between published studies. Functionally, CAFs differ from
normal fibroblasts in the products and quantities of enzymes
that they produce. For example, in both canine mammary
carcinoma and human breast carcinoma CAFs exhibit increased
aromatase activity, which is associated with hormone-driven
tumor progression (46, 47).

Mesenchymal stem cells (MSCs), also known as
undifferentiated fibroblasts or mesenchymal stromal cells,
are another important component of the TME. These cells are
phenotypically plastic cells that originate from the mesoderm
(48). MSCs home from bone marrow, spleen and other locations
to sites of injury and inflammation, including tumors (49). The
role of MSCs in the TME are numerous; one of the better-studied
functions is their influence in changing the immune landscape
(for more information, see the section on metabolism, vascular
invasion, and immune cells within the TME).

Tumor-associated ECM is markedly different from ECM in a
non-pathologic milieu. As an active driver of tumor progression,
tumor-associated ECM is reorganized, directing tumor cell
migration and promoting local invasion along collagen fibers
(50, 51). Furthermore, tumor-associated ECM is associated with
increased pro-inflammatory cytokines, promotes angiogenesis,
and factors that increase fibroblast proliferation (52). As all
components of the TME are simultaneously interacting with one
another and tumor cells, it stands to reason that by encouraging
inflammation, tumor-associated ECM likely contributes to the
production of CAFs. Collagen is one of the most abundant
components of the ECM and is known to exhibit tumor-
associated collagen signatures. Differences in collagen density,
width, length, and straightness, as well as reorganization of the
boundary between tumor and stroma, are some of the collagen
signatures appreciated (53, 54). In dogs and humans, collagen
signatures are important prognostic indicators in mammary and
breast carcinoma (53, 54). For example, in a study analyzing
characteristics of mammary carcinoma in dogs, tumor-associated
ECM had upregulated collagen1α1, α-SMA, fibroblast activation
protein (FAP), platelet-derived growth factor (PDGF)-β, and
paradoxically, CAV-1 (55).

Interactions between tumor cells, stromal cells, and the ECM
are heterogeneous and tumor-specific. However, fragmentation
of hyaluronic acid, which is pro-inflammatory, and deposition
of tenascin-C seem to occur in most tumor types (56–58). The
hyaluronic acid receptor, CD44, is expressed by most tumor
and stromal cells, but the highest levels are seen in CSCs
(6). In addition to HA, the ECM is composed of collagens,
elastins, laminins, fibrinogen, and tissue-specific proteoglycans.
The stoichiometry and topology of these components regulates
adhesion (for example, by interaction with cell surface integrins)

and stiffness of the ECM. Tumor cells and inflammatory cells
secrete proteases that degrade the ECM, and proteins and
proteoglycans to remodel it. The interactions of the ECM with
integrins, mechanoreceptors, and signaling proteins that activate
contractility, such as focal adhesion kinase, modulate cellular
motility, proliferation and survival (59–61). The interactions
are bidirectional, as the cytoskeleton “pushes back” into the
ECM, maintaining integrins and focal adhesions in a state of
isometric tension. Increased tension also activates the small G
protein Rho and its target Rho-associated kinase (ROCK), which
controls myosin light chain phosphorylation. The ECM in most
tumors is several orders of magnitude stiffer than their normal
tissue counterparts, making it permissive for cell migration
and ultimately, metastasis (59). There are myriad studies
documenting the importance of ROCKs in tumor progression,
but a noteworthy study showed that ROCK inhibitors were able
to push chemoresistant mouse osteosarcoma cells away from a
malignant phenotype and into terminal adipocyte differentiation
(62). Perhaps more interestingly, cells that escaped terminal
differentiation in the presence of ROCK inhibitors regained
sensitivity to chemotherapy and could be eliminated by treatment
with doxorubicin (62).

The extensive heterogeneity and adaptation of the tumor
niche is partly dependent on intercellular communication.
Malignant cells co-opt developmental programs of intercellular
communication to create and maintain a niche with unique
properties that promote growth and survival (6). Intercellular
communication involves a multitude of interactions mediated by
cell-to-cell contacts and soluble mediators. Cell-to-cell contacts
include adhesion molecules, stable ligand-receptor interactions,
and promiscuous, transient to stable interactions between
cell surface proteins, glycans, and lipids (63, 64). Emerging
evidence also suggests that cells can communicate in the local
environment by exchanging genetic and biochemical mediators
through tunneling nanotubes (65, 66). Soluble mediators
of communication include hormones, cytokines, chemokines,
lipids, and microvesicles (67–70). Cells also interact with their
external environment through pressure receptors and bymolding
the ECM (59, 71–73).

Soluble mediators of communication have been relatively
well-described in humans, although there is little information
available as to the impact of the stroma and soluble factors in
dogs. Kim et al. (8) showed that IL-8, a cytokine produced by
fibroblasts, neoplastic cells, and other cell types, supports tumor
progression by modulating the TME in canine hemangiosarcoma
into a more “reactive” state; increasing the propensity toward
inflammation, fibrosis, and coagulation. Intriguingly, IL-8
blockade reduced tumor cell survival and engraftment in a
xenograft model of canine hemangiosarcoma, indicating this
cytokine may be necessary to establish the initial niche for this
disease (8). Similar findings have been reported in humans, with
tumor cells of various tumor types upregulating IL-8 production
and IL-8 receptors on cancer cells as well as other cells types with
increases in angiogenesis and inflammation within those tissues
[Table 1; (74, 75)]. The implications and utilization of soluble
factors in cancer treatment is a topic that in recent years has
begun to gain traction as an important area for investigation.
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Intercellular interactions are also critical to establish and
maintain the tumor immunosuppressive barrier, by excluding
or incapacitating host immune cells. For example, expression
of pro-apoptotic molecules, such as FasL can target infiltrating
effector T cells in the tumor environment, while sparing
apoptosis resistant tumor cells, CAFs, and cancer-associated
endothelial cells. For more information on immune cells within
the TME, please see the next section on metabolism, vascular
invasion, and immune cells within the TME.

METABOLISM, VASCULAR INVASION, AND
IMMUNE CELLS WITHIN THE TME

Formation of blood vessels is an absolute requirement for tumor
growth, survival, and progression. Without access to oxygen and
nutrients supplied by the blood, tumor growth is restricted to
an ∼1–3mm diameter mass ex vivo and ∼100–500 microns in
vivo (76–78). It stands to reason that the aspects of the TME
reviewed might precede angiogenesis, lymphangiogenesis, and
immune invasion due to the size of the tumor where these
processes occur. Tumor neovascularization is a complex and
multifaceted process driven by tissue hypoxia, defined as tissue
with oxygen concentrations below 10mmHg, which is a common
feature of solid tumors (79, 80). Below this threshold, cells
upregulate a host of adaptive proteins; a response mostly driven
by the heterodimeric transcription factor, hypoxia-inducible
factor (HIF-1) (81). In normoxic conditions, prolyl hydroxylases
(which have oxygen dependent enzymatic activity), hydroxylate
proline residues in the oxygen degradation domain of HIF-
1α. The von Hippel-Lindau (VHL) complex is then able to
recognize HIF-1α for subsequent proteasomal degradation (81).
Under hypoxic conditions, VHL itself undergoes proteasomal
degradation, leading to stabilization of HIF-1α and subsequent
binding to its constitutively regulated partner, HIF-1β (82). Once
this occurs, the HIF-1α/HIF-1β heterodimer enters the nucleus
and binds to hypoxia-regulated-elements (HREs) of hundreds
of genes (83). Binding targets of HIF-1 are in part controlled
by epigenetic changes that promote active chromatin states
at HIF binding sites (84). The impacts of HIF-1 binding are
numerous, from reducing oxygen consumption to increasing
angiogenesis through regulation of vascular endothelial growth
factor (VEGF), the angiopoietin-1 regulated tyrosine kinase
receptor TIE2 (also known as TEK), and angiopoietin, among
others (83, 85).

VEGF is a potent growth factor influencing vascular
permeability and angiogenesis (86). VEGF-A is one of the best-
characterized forces in the development of new vessels and
binds to VEGF receptors-1 and -2 (VEGFR-1 and VEGFR-
2). VEGF-A can be secreted along with other pro-angiogenic
factors by numerous cell types, including adipocytes, within
the TME (87). VEGFR-1 and VEGFR-2 are both receptor
tyrosine kinases that contain a split tyrosine-kinase domain,
although they function differently within the TME (88).
VEGFR-2 is upregulated in endothelial cells of newly forming
blood vessels within tumors and is commonly implicated
in neovascularization. A recent study demonstrated that the

FIGURE 3 | Schematic of the interaction between tumor cells and endothelial

cells, including the associated recruitment of inflammatory cells by

endothelium. Through hypoxia, HIF-1 is upregulated, increasing PDGF, FGF,

TGFβ, and VEGF-A expression. VEGF-A binds to its receptors, VEGFR-1 and

VEGFR-2, leading to angiogenesis (through VEGFR-2 signaling), immune cell

invasion (through VEGFR-1 signaling), and promotion of

epithelial-mesenchymal transition (EMT) in tumor cells (created with

Biorender.com).

α4β1-integrin is capable of VEGFR2 binding and activation,
presenting a novel potential target for therapy (89). Alternatively,
VEGFR-1 has relatively weak pro-angiogenic properties and can
recruit and activate tumor-associated macrophages (TAMs) and
myeloid cells, promoting tumor cell metastasis and proliferation
[Figure 3; (90)]. Little is known about the dynamic balance
between VEGFR-2 and VEGFR-1 in tumors of dogs, but there
is one report suggesting that heritable traits or the breed
background might influence the expression and function of
these receptors in vascular sarcomas (91). A second major
regulator of angiogenesis is Tie-2. In the presence of active
Tie-2 signaling, the vasculature remains in a mature state
surrounded by pericytes (92). Angiopoietin 2 (ANGPT2), an
angiopoietin 1 competitive antagonist and HIF-1 target gene,
binds to endothelial cells, preventing Tie-2 signaling. This causes
the vasculature to become less mature with fewer pericytes (93).
This microvasculature is then primed for maximum response
to VEGF.

Cyclo-oxygenase 2 (Cox-2), which is involved in the
formation of some types of prostaglandin production, has been
shown to increase expression of VEGF-A mRNA in tumors,
thus having pro-angiogenic properties (94). The mechanism by
which Cox-2 increases VEGF-A expression in tumors likely
involves p38 mitogen activated protein kinase (MAPK) and
Janus kinase (JNK) pathways. These pathways are integral in
the transcriptional and post-transcriptional regulation of VEGF-
A (95, 96). Elevated Cox-2 levels have been reported in canine
and human prostatic carcinoma, transitional cell carcinoma,
and squamous cell carcinoma, among others [Table 1; (97–
102)]. As such, anti-Cox-2 therapies, including non-steroidal
anti-inflammatory drugs (NSAIDs) which inhibit the production
of Cox-2, have been the subject of anti-cancer initiatives.
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In dogs with urothelial cell carcinoma, treatment with the
NSAIDs piroxicam and deracoxib have shown promising clinical
results, including decreasing tumor volume and increasing
apoptosis of neoplastic cells (103, 104). Similarly, NSAIDs have
been used for their anti-tumor effects in humans, such as
a chemopreventative agent for colorectal cancer and certain
subtypes of breast cancer (105, 106). Another promising anti-
tumor therapy that leverages increased Cox-2 expression in
tumors utilizes conditionally replicative oncolytic adenoviruses.
To overcome the traditionally poor infectivity of these viruses,
an oncolytic adenovirus with Cox-2 promoter-based targeting
control mechanisms was designed. This viral therapy is specific
to Cox-2 positive cells with the potential to specifically target a
variety of Cox-2 positive tumors, thereby increasing efficacy and
safety of this potential therapy (107, 108).

The clinical implications of HIF-1 and VEGF expression and
regulation have been the subjects of recent investigation. Moeller
et al. (109) were the first to demonstrate that radiotherapy
upregulates HIF-1 protein levels, even at a time when the tumor
is re-oxygenated. The mechanism for this effect was shown to be
related to two factors: (1) release of HIF-1 mediated transcripts
of HIF-1 stored in stress granules during hypoxia, and (2) an
increase in oxidative stress after radiotherapy, preventing the
activity of prolyl hydroxylases to prime HIF-1α for degradation.
As a follow on, Li et al. (110) demonstrated that infiltration
of macrophages into irradiated tumors stabilized HIF-1 via a
nitric oxide mediated mechanism. Other cytotoxic treatments
have been shown to increase HIF-1α levels via mechanisms
involving oxidative stress. Doxorubicin can upregulate HIF-1α
levels in aerobic tumor cells by stimulating inducible nitric
oxide synthase (iNOS) activity (111). Hyperthermia increases the
activity of NADPH-oxidase in tumor cells, thereby stabilizing
HIF-1α. There are multiple potential consequences of chronic
HIF-1 transcriptional upregulation, but of central importance
is the upregulation of VEGF. As part of a clinical trial
conducted in dogs with soft tissue sarcomas, treated with
fractionated hyperthermia and radiotherapy, Chi et al. (112)
examined the hypothesis that there would be an increase
in HIF-1 mediated transcripts and associated physiologic
modification early in the course of treatment. Tumor tissues
were removed prior to, and 24 h after, radiotherapy and
the first hyperthermia treatment. Tissues were examined for
changes in gene expression and, concomitantly, the apparent
diffusion constant of water of these tumors was measured
using magnetic resonance imaging (ADC-MRI; a biomarker
of hyperpermeability). Unsupervised gene expression analysis
showed two main groupings, distinguished by whether ADC-
MRI increased (indicating increased water content) or remained
unchanged. Among several HIF-1 regulated genes observed in
the subgroup that showed increased ADC, VEGF upregulation
was one of the most predominant (113). Thus, this canine clinical
study supported pre-clinical results; that the combination of
hyperthermia and radiotherapy increases HIF-1 transcriptional
activity. The fact that ADC only increased in a fraction of tumors,
suggests that ADC may be a viable biomarker for understanding
how the physiologic microenvironment responds to cytotoxic
therapy. An important future direction of these observations

includes ascertaining whether changes in ADC are associated
with treatment outcome.

Hypoxia affects innate and adaptive immune function
in multiple and complex ways (114). Macrophage response
to hypoxia is multifaceted and relies on the presence and
concentration of cytokines and other immune cells. TAMs, which
are believed to arise from the resident macrophage pool, have
been categorized as “M0” (uncommitted), “M1” (pro-immune),
and “M2” (pro-angiogenic and immunosuppressive) (115–
117). However, both resident and recruited macrophages are
remarkably plastic and can revert among these phenotypes, with
all three co-existing in different stages of tumor development
and progression. M2 TAMs tend to accumulate in hypoxic
regions due to hypoxia-mediated chemokine expression by
both tumor and stromal cells (116, 118). The presence of
macrophages in hypoxic regions promotes immunosuppressive
functions, including release of immunosuppressive cytokines
such as TGFβ, recruitment of regulatory T cells (Tregs), and
binding of programmed death-1 (PD-1) receptor on cytotoxic T-
cells by the HIF-1 target, programmed death ligand-1 (PD-L1)
(118, 119). Additionally, hypoxia inhibits the adaptive immune
system by downregulating T-cell motility and upregulating
the HIF-1 targets SDF-1 and its ligand CXCR4, thereby
stimulating intratumoral recruitment of immunosuppressive
MDSCs (120–122). Hypoxia disturbs the balance between
effector T cells and Tregs, tipping the balance toward the
latter (123).

In the absence of oxygen, cells are obligated to use glycolysis
to produce ATP. Reprogramming energy metabolism is regarded
as a hallmark of cancer, as described by Hananhan andWeinberg
(124). The “Warburg Effect,” the unique process of tumor cells
utilizing aerobic glycolysis, was first described by Warburg
(125). Lactate is the product of both aerobic and anaerobic
glycolysis (126). The relative predominance of hypoxia in tumors,
therefore, is a major contributor to the production of lactate. In
addition, the relative inefficiency in solute transport by tumor
vasculature leads to accumulation of lactate to substantially
elevated levels. Concentrations of lactate can range from normal
levels of 1–2mM to as high as 15–40mM in both pre-clinical and
human clinical samples (127, 128).

Lactic acid is a major component that fuels metabolic
symbiosis between the aerobic and hypoxic tumor compartments
(129). Lactate produced by hypoxic tumor cells is transported by
passive monocarboxylic acid transporters (MCTs), which enable
lactate to be excreted by cells that produce it and to be taken up
by aerobic cells where in high concentrations, is back converted
to pyruvate, where it enters the tricarboxylic acid (TCA) cycle to
produce alanine and glutamate (126, 130). The affinity of aerobic
tumor cells for lactate is 10 times higher than glucose, indicating
that aerobic tumor cells preferentially use lactate (130). If the
ability of aerobic tumor cells to use lactate is blocked, the cells
will switch to utilizing glucose, thereby depleting local glucose
concentrations. Excess glucose present in aerobic tumor regions
can diffuse to hypoxic regions, where the glucose is catabolized
to lactate (129). Since hypoxic tumor cells are reliant on glucose,
even though some can use glutamine in its stead, this can lead to
death of the cell (129, 131).
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Utilization of lactate has also been described in tumor-
associated fibroblasts, which have low expression of CAV-1, an
inhibitor of myofibroblast differentiation (132). An informative
study showed that tumor-associated myofibroblasts could use
aerobic glycolysis to produce lactate. Lactate was then used
by aerobic tumor cells to fuel the TCA cycle through its
conversion to pyruvate. The authors termed this symbiosis
the “Reverse Warburg Effect” because the myofibroblasts were
responsible for aerobic glycolysis instead of the tumor cells (132).
Lactate can also stimulate the stabilization of HIF-1α in aerobic
tumor and endothelial cells (133). Like aerobic tumor cells,
endothelial cells uptake lactate (133). The conversion of lactate
to pyruvate interferes with the activity of the prolyl hydroxylases
responsible for HIF-1α degradation. In the presence of elevated
pyruvate, HIF-1α levels, and consequently VEGF levels increase,
which promotes angiogenesis. The negative influence of lactate
on cancer prognosis in humans is most likely attributed to
downstream stabilization of HIF-1α in tumor and stromal cells
(134). Lora-Michiels et al. (135) demonstrated that in 39 dogs
with soft tissue sarcoma, those with relatively low pH tumors
were associated with shorter progression free interval and overall
survival than dogs with higher tumor pH. Extracellular pH,
which is simpler to measure, can be used as a surrogate of lactate,
since transport of lactate across a cell membrane via the MCT
transporters includes a hydrogen ion (135). High lactate levels
and associated extracellular acidosis also contribute to immune
suppression (136).

Once tumor-associated blood vessels are formed, they
are structurally and epigenetically abnormal, which facilitates
metastatic spread. These vessels tend to be irregularly dilated
and tortuous with increased permeability, decreased pericyte
numbers, and abnormal deposition of collagen type IV in
the basement membrane. Endothelial cell adhesion molecules,
such as selectins and integrins are required for leukocyte
transmigration into tissues (137, 138). It has been reported that
these adhesion molecules are often absent in tumor microvessels,
thereby reducing the ability of immune cells to gain access into
tumors (137, 139). The downregulation of adhesion molecules is
regulated by VEGF (139) and can be reversed by blocking VEGF
or by altering IL-6 trans-signaling (138). Thus, the first line of
defense that tumors use to inhibit immune surveillance is the
blockade of transmigration of immune cells. Furthermore, there
is substantial signaling between endothelial cells and tumor cells,
especially CSCs, which have a tendency to seek out or create
vascular niches (140). Several signaling pathways, including
Sonic Hedgehog, and Notch, to name a few, emanate from
endothelial cells and promote acquisition of CSC properties
and proliferation within vascular niches (141). In the tumor
microenvironment, it is likely that the balance between these
pro and anti-inflammatory mediators dictates the extent of
leukocyte-endothelial cell interactions that occur naturally and
in response to therapy. Modulation of these interactions is likely
essential for optimization of immunotherapy.

Like neoangiogenesis, lymphangiogenesis can act as an
important gateway to tumor metastasis. The density of lymphatic
vessels within a tumor has been correlated with tumor growth
and metastasis in both dogs and humans [Table 1; (142–145)].

Mechanistic control of lymphangiogenesis is complex, involving
a multitude of factors including many of the same factors
described in tumor-associated neovascularization. Two of the
major mechanisms controlling lymphangiogenesis are well-
described. One is dependent on VEGF-C and VEGF-D produced
by both tumor cells and TAMs, which bind VEGFR-3 on
lymphatic endothelial cells (LECs) (146). The other is the
SRY-related HMG-box (SOX18) pathway through prospero
homeobox-1 activation (147, 148). Lymphangiogenic factors not
only increase the number of lymphatic vessels within solid
tumors, but also are capable of enlarging the diameter of the
lymphatic vessels, increasing tumor cell metastasis to local lymph
nodes (149). Furthermore, VEGF-C secreted by tumor cells
can promote lymphangiogenesis within draining lymph nodes,
increasing the number and diameter of lymphatic vessels thereby
increasing the overall metastatic potential of the tumor (150).
Although little is known about tumor cell entry into lymphatic
vessels, multiple studies have demonstrated that cancer cells can
express CC-chemokine receptor 7 (CCR7), which lymphocytes
use to home to lymph nodes via CCL21 binding, in a sense,
hijacking the lymphatic system to gain entry to lymphatic vessels
and lymph nodes (151). LECs have additionally been implicated
in immunomodulation within the TME, including multifaceted
mechanisms to promote immune evasion. These include local
deletional tolerance of CD8+ T cells, inhibition of dendritic
cell maturation leading to decreased effector T cell activity, and
tumor antigen trapping and retainment to archive for antigen-
presenting cells (152–154).

In their landmark update of the Hallmarks of Cancer in
2011 (124), Hanahan and Weinberg called tumor-promoting
inflammation an enabling characteristic of cancer. Inflammation
is critical for the formation and maintenance of the tumor
niche. It persists throughout the existence of the tumor, through
therapy, remission, stabilization of disease, and relapse, and it is
foundational in creating the metastatic niche. In its steady state,
inflammation in the TME can promote or inhibit the capacity
of innate and adaptive immune cells to infiltrate the tumor
stroma and eliminate the tumor cells. However, the inflammatory
TME is highly dynamic (155), characterized by a recurring cycle
that established an evolutionary arms race at microscopic scale.
Whether the balance tips toward immunosuppression or toward
productive anti-tumor immunity is a critical determinant in the
ultimate rate of tumor progression and patient outcomes.

Thousands of studies have examined the composition of
the TME in humans and animals. Most studies focused on
one or a few features in isolation, such as infiltration by
immunosuppressive elements like Tregs or by tumoricidal NK
cells or cytolytic T cells. For example, increased CD4+:CD8+
T cell ratios were correlated with decreased survival in dogs
with mammary carcinomas (156), and enrichment of Foxp3+
regulatory T cells within tumors was associated with tumor
progression in mammary and testicular cancers (157, 158). As
another example, the immunomodulatory properties of MSCs
follow licensing by inflammatory cytokines such as interferon-
γ (IFNγ) and TNFα (159, 160). Licensed MSCs are resistant
to apoptosis, and thus impervious to immune attack. In both
syngeneic and xenograft models, MSCs reorganize the TME,
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excluding T cells, macrophages, and other host effector cells,
tilting the balance away from tumor host control and toward
tumor progression (161, 162). MSCs are also able to inhibit T
cell proliferation and inhibit natural killer (NK) cell function
through soluble factors, and cell-cell communication (163–
165). Paradoxically, these cells can inhibit TNFα and IFNγ

which are initially necessary for licensing or “tumor-mediated
education,” while also increasing IL-10, an immunosuppressive
cytokine (164). In dogs, MSCs induced from skin fibroblasts have
shown similar immunomodulatory effects to naturally sourced
MSCs (166).

Recent advances in next generation sequencing and
bioinformatics, as well as the availability of high-quality
samples that comprise The Cancer Genome Atlas (TCGA), made
it possible to divide the immune landscape of human tumors into
six distinct steady states or subtypes (167). Thorsson et al. based
these subtypes on their respective transcriptional programs
(Table 2), which in turn allowed them to establish the predicted
cellular composition for each tumor (167). While these subtypes
are probably not static, their dominance at any given type in any
given tumor is prognostically significant. It should be noted that
there was extensive overlap among genes, and therefore among
predicted cell types comprising these subtypes, underscoring the
futility of trying to understand the relationship between cancer
and the immune system without the benefit of comprehensive
information. For this reason, the extensive literature describing
unique components of the immune TME will not be further
summarized in this review. Emerging technologies such as single
cell sequencing (168, 169) and highly multiplexed 3-dimensional
optical imaging (170, 171), individually and combined, will
bring about the next transformation in the understanding of the
immune landscape of cancer.

Recent advances in sequencing technology and bioinformatics
(172) are being applied to studies of canine immuno-oncology.
Specifically, genome-wide gene expression profiles using RNA-
Seq transcriptomic data can be utilized to estimate the abundance

TABLE 2 | Immune subtypes of cancer.

Mφ:Lymph

ratio*

TH1:Th2

ratio

Proliferation Intratumoral

heterogeneity

Other

Wound healing Balanced Low High High

IFNγ dominant Lowest Lowest High Highest Highest

M1 and

highest

CD8T cells

Inflammatory Balanced High Low Lowest Highest

Th17

Lymphocyte

depleted

High Minimal

Th

Moderate Moderate

Immunologically

quiet

Highest Minimal

Th

Low Low Highest

M2

TGFβ dominant High Balanced Moderate Moderate Highest

TGFβ

signature

*Mφ:Lymph ratio, macrophage to lymphocyte ratio.

of distinct subsets of immune infiltrate in the tumor tissues and
to examine the features of the inflammatory response (167, 173,
174). Scott et al. (175) showed that, even though osteosarcomas
are immunologically “cold” (barren) tumors, RNA sequencing
was sufficiently sensitive to detect transcripts (Table 1). This
points to the presence of immune cellular infiltrates that
allow stratification of spontaneous osteosarcomas of humans
and dogs into immunologically “hot” and “cold” tumors. The
transcriptional programs associated with immune cells were
remarkably well-conserved across tumors from both species and
did not show specificity regarding cell type or upregulation
of specific molecules, such as those associated with immune
checkpoints.While the increased presence of immune transcripts
in tumors was associated with significantly better prognosis in
human patients, such relationship was absent in dogs (Table 1).
This observation is especially paradoxical when considering
the reproducible success of experimental immunotherapies in
canine osteosarcoma models (176), and even though the basis
for it is not yet understood, it raises an important cautionary
note in the application of canine osteosarcoma as a model for
immunotherapy of human osteosarcoma.

Gorden et al. (177) showed that spontaneous canine
hemangiosarcomas can be classified into three distinct molecular
subtypes. Preliminary data suggest that these tumors in virtually
all dogs that achieved durable remissions after conventional
therapy show enrichment of immune gene signatures. Other
groups have reported the immune characteristics of canine
gliomas (178) and canine malignant melanoma (179), both
showing similar patterns of immune infiltration to those reported
for bone and vascular sarcomas.

It is widely accepted that macrophages play a major role
in molding the TME, making them attractive targets for
tumor therapy. Myeloid antigen presenting cells (APCs), and
especially dendritic cells, control the initial steps in the cancer-
immunity cycle, engulfing tumor cells and tumor debris and
presenting it to T cells in the draining lymph nodes (155).
Since tumors are derived from “self,” immune recognition can
be compromised, and this process can lead to tolerance (155,
180). Immune recognition and activation, however, is aided by
genomic instability. Tumors show a direct relationship between
mutational burden and immune infiltration, and this relationship
extends to the observed response to immunotherapies (167,
181, 182). After immune recognition, T cells must traffic to the
tumor, extravasate and infiltrate the tumor stroma, recognize
the cancer cells, and selectively kill them (155). Each of these
steps creates opportunities for the tumor to inhibit or evade
the immune response—and concomitantly, a potential step for
therapeutic intervention.

Immune recognition of the tumor intensifies the selective
pressures that drive tumor evolution through the process
of immunoediting (183). T cells can potentially eliminate
the majority of cells in a tumor that display particular
mutations. The T cell receptor repertoire in tumors is becoming
increasingly well-understood, following conventional roles of
clonal evolution. In virally induced tumors, such as those
associated with Epstein Barr virus, narrowing of the repertoire
through strong selection for foreign viral epitopes is associated
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with worse prognosis (184). This observation extends to tumors
without viral etiologies, where tumor epitopes promote selection
of a narrow diversity of clones. Greater clonal heterogeneity
is associated with a more favorable prognosis in multiple
tumor types (185–187). Lymphocyte clonal diversity and the
potential to modulate it therapeutically in canine osteosarcoma
has been examined. Preliminary results document feasibility
and show variation in the diversity of the T cell repertoire
across different tumors (188). However, the influence of
clonal diversity on outcomes for dogs with cancer remains to
be determined.

The elimination phase of immunoediting gives way to an
equilibrium phase where the immune system appears to control
the tumor. However, editing is not static, and the process
eventually favors outgrowth of resistant tumor cells that “edit”
the epitopes recognized by the immune system. Editing can occur
through downregulation of major histocompatibility complex
(MHC) proteins, upregulation of proteins that resist T cell
activation and killing, acquisition of the ability to kill activated
T cells or resist T-cell induced apoptosis, or alteration of
target epitopes by further mutation or epigenetic regulation
(183). The host is able to respond to these immune evasive
mechanisms, for example by deploying NK cells that recognize
tumor (and other) cells that downregulate MHC (180, 189).
However, most cases progress to the third phase of escape
(183). The immune system has evolved over millions of years
to defend hosts against lethal pathogens, with the function
of cancer immunosurveillance probably arising as a secondary
benefit (190). Cancer is rare before reproductive age and even
into young adulthood, and so robust anti-tumor immunity is
unlikely to create sufficiently large selective pressure to favor
individual survival.

Some common steps in the evolution of the immune
microenvironment of cancer has led to the development of
highly effective immunotherapies. Immune checkpoint blockade
using antibodies that interfere with binding of cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) to CD80 and CD86,
or with binding of PD-1 to PD-L1 and PD-L2, are the first
therapies directed against the TME that have been effective at
achieving meaningful cancer control. Durable remissions in as
many as 50% of patients with advanced cutaneous melanoma,
various types of tobacco-related malignancies, gastrointestinal
tumors, and certain blood cancers have been achieved via
these therapies (182, 191–193). The best responses cluster in
tumors (or tumor types) with high mutational burden and
robust immune infiltration (182). Multitudes of other immune-
enhancing therapies that can modulate the TME, and especially
that can shift the inflammatory response toward T helper-1 (Th1)
programs are under development, alone or in combination with
immune checkpoint blockade. These include Toll-like receptor
(TLR) agonists, oncolytic viruses, VEGF inhibitors that promote
blood vessel normalization and improve T cell trafficking
to tumors, among others (194). Indeed, the first chimeric
antigen receptor redirected T cells (CAR T cells) directed
against mesothelin, a protein expressed exclusively in the TME,
have completed early phase clinical trials (ClinicalTrials.gov
Identifier: NCT01583686).

Spontaneous canine cancers provide a rich resource to
understand both conserved and species-specific mechanisms
that create and maintain the tumor immune landscape.
Dogs can teach us much about therapeutic immune system
manipulation in the context of cancer, including the potential
to alter the TME to enhance immune responses. There are
numerous published studies on the subject, including using
pharmacologic intratumoral delivery of vectors encoding FasL
(195), a variety of tumor vaccine approaches that activate
molecular pattern receptors (196–198), applications of CAR-T
cell immunotherapies (199), and others (200, 201). That being
said, these data must be interpreted with due caution. It should
be recognized that the canine and human immune systems are
separated by millions of years of evolution and were adapted to
distinct pathogens in distinct environments until both species
collided into shared social structures about 20,000 years ago
(202), that became more intimate over the past three to five
decades (203). The timeline of the canine-human relationship is
rather short, and the strong influence of artificial selection will
inevitably diminish the role of immunosurveillance in adaptive
evolution for both species.

INVOLVEMENT OF THE TME IN TUMOR
INVASION AND METASTASIS

The components of the TME work in concert through epigenetic
and functional means to promote tumor cell invasion and
metastasis. Although metastasis can occur at any point in space
and time during the course of tumor evolution, the cellular,
structural, and molecular components of the TME are able to
enhance numerous pro-tumorigenic activities, which in turn
facilitate invasion and enhance the metastatic potential of tumor
cells. The organization of the primary tumor niche requires
significant alterations to the normal extracellular environment.
Molecular interactions are highly specific to different tumors and
can vary substantially even within tumor types; but the general
features include “loosening” of stable cell-cell adhesion, loss of
cell polarity, and reorganization of the cytoskeleton, as well as
stiffening of the extracellular matrix, which enhances motility,
facilitates invasion, and enables the metastatic phenotype (59, 71,
73). Collectively, these alterations are linked to the “epithelial
to mesenchymal transition” (EMT). EMT is characterized
by genetic and epigenetic changes that alter expression of
genes encoding cadherins, occludins, claudins, integrins, and
a multitude of other adhesion and cell surface proteins, as
well as cytokines, extracellular proteases, and many others.
Reduced expression of epithelial (E) cadherin (CDH1) with
a concomitant increase in neuronal (N) cadherin (CDH2) is
among the most well-studied features of EMT (12, 15, 64).
Loss of E-cadherin, which is widely conserved in epithelial
tumors across species, is an indicator of more aggressive
behavior and poor prognosis for a multitude of human as
well as canine (204, 205) tumors. Tumor cells themselves
can enhance EMT potential; for example VEGF-A produced
by tumor cells, in contrast to VEGF-A produced by the
TME, has been shown to promote EMT (206). Regardless,
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the influence of the TME on EMT should not be overlooked.
For example, collagen type I in the adjacent ECM has been
implicated in promoting EMT through numerous mechanisms,
including upregulation of NFκB, Snail, and lymphoid enhancer-
binding factor-1 (LEF-1) in tumor cells. These factors promote
a mesenchymal phenotype with subsequent cell migration
[Figure 4; (207)]. Other pro-EMT transcripts, such as TWIST1,
are expressed in higher concentration in tumor cells adjacent
to collagen dense stroma (208). Additionally, intercellular
interactions establish a pro-inflammatory environment where
autocrine and paracrine loops, such as those mediated by
interactions between colony-stimulating factor-1 (CSF-1) and its
receptor in CSCs and TAMs, support the EMT transcriptional
programs (209).

Changes in cell-to-cell contacts in sarcomas have been less
well-studied, almost certainly due to the rarity of these tumors
in humans. The concept of EMT in sarcomas presents a
paradox: some, but not all sarcomas exhibit aggressive, rapidly
metastatic phenotypes, and cells in these tumors undergo
phenotypic changes that resemble EMT. Yet, all sarcoma cells
possess a mesenchymal phenotype. This has given rise to
a more nuanced vision of EMT, and the reverse process
called mesenchymal to epithelial transition (MET), where the
transcriptional and epigenetic mechanisms that regulate these
transitions give rise to metastable phenotypes that are adaptive
(12). In other words, cells acquire these phenotypes in response
to environmental cues, as well as to natural selection on a
microscopic scale.

Emerging evidence suggests that exosomes are critically
important mediators that mold the distant or metastatic

tumor niche in blood-derived and solid tumors. Exosomes
are formed by inward budding of early endosome membranes
by the endosomal sorting complex required for the transport
(ESCRT) complex. Mature endosomes, also known as multi-
vesicular bodies (MVBs) fuse with plasma membranes releasing
exosomes vesicles to the extracellular space. Exosomes circulate
systemically and can bind to and merge with other cells, creating
a mechanism for horizontal transfer of activated oncoproteins,
oncogenic DNA, and oncogenic and regulatory microRNAs
(210). For example, CAAs and ad-MSCs, a developmentally
plastic cell type that can be derived from, or differentiate to
adipocytes within the TME, can produce extracellular vesicles
(211, 212). To the authors’ knowledge, there are no reports
characterizing the role of CAAs in dogs; however, extracellular
vesicles from human adipocytes have been shown to enhance
tumor cell invasiveness by providing substrates for increased
fatty acid oxidation in the tumor cells (211). Tumor exosomes
carry biologically active molecules; thus, they can reprogram
the activity of cells locally, as well as at distant sites, in
essence “conditioning” these sites for metastatic tumor growth.
Exosomes contribute to the formation of each component of
the primary tumor niche, including the metabolic, immune,
hypoxic, and infiltrating regions (68, 213). However, their role
in metastatic conditioning makes them attractive targets for
diagnosis and therapy. Early data in the field of exosome biology
and metastasis showed that secreted exosomes could condition
regional lymph nodes to create a favorable metastatic niche
for melanoma cells (214). These results have been extensively
reproduced in multiple experimental tumor systems, extending
to other niches such as liver and lungs (213). Strategies to

FIGURE 4 | Role of collagen type 1 in the tumor microenvironment and in epithelial-mesenchymal transition (EMT). Collagen type 1 leads to the upregulation of

numerous factors that promote EMT, promoting invasion, and metastasis (created with Biorender.com).
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leverage the capacity and specificity of exosomes to home
to the metastatic niche are under development as means
to improve delivery and activity of drugs that can delay
or arrest metastasis. Perhaps most promising is the use of
exosomes in early detection and targeted chemoprevention.
Canine osteosarcoma was instrumental in the development of
an innovative discovery platform to distinguish RNA signatures
in serum exosomes originating, respectively from tumor and
host cells (215, 216). While this work is still in the early stages,
there is potential that these signatures can be used in rationally
designed screening programs aimed at detecting changes in the
TME in the earliest stages of tumor formation. Novel therapies
may be developed that are able to arrest the development of
tumors before they form, creating a completely new outlook on
cancer prevention.

SUMMARY

Cancers are complex and dynamic multicellular tissues;
multiple distinct events contribute to initiation, promotion,
and progression. Ultimately, these events converge into more
rigid molecular programs and create recognizable histological
tumor phenotypes that are widely conserved across species.
Tumor formation is a tightly orchestrated process, molded by
selection to support growth and survival of a clonal population
of immortalized cells. This review has demonstrated the
complexity and intricacies of the TME in the human and
mouse, and established, to the best of the author’s abilities, the
same complexities within the dog. While there is much room
for growth in the understanding of the TME in the dog, the
current knowledge base in conjunction with the information
known about the TME in humans and mice, provides a
solid foothold for the development of further basic and
clinical endeavors.
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