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Abstract.	 [Purpose] An understanding of pain is very important in the study of nanophysiotherapy. In this re-
view, we summarize the mechanisms of endothelin-1 (ET-1)- and mitogen-activated protein kinase (MAPK)-related 
pain, and suggest their applications in pain physiotherapy. [Method] This review focuses on the signal transduction 
of pain and its mechanisms. [Results] Our reviews show that mechanisms of ET-1- and MAPK-related pain exist. 
[Conclusions] In this review article, we carefully discuss the signal transduction in ET-1- and MAPK-related pain 
with reference to pain nanophysiotherapy from the perspective of nanoparticle-associated signal transduction.
Key words:	 Endothelin-1, Pain, Signal transduction

(This article was submitted Oct. 15, 2013, and was accepted Nov. 30, 2013)

INTRODUCTION

Endothelin-1 (ET-1) belongs to a family of 21-amino acid 
residue peptides is expressed, in different patterns, in vari-
ous tissues and cells1, 2) (Fig. 1A). ET-1 plays a role in con-
trolling muscle contraction, cell proliferation, and cell activ-
ity1, 2). It has been reported that the protein kinase C (PKC) 
pathway, mitogen-activated protein kinases (MAPKs) 
pathway, and myosin light chain kinase (MLCK)-activated 
pathway contribute to ET-1-induced contraction1, 2). In par-
ticular, DOCA-dependent hypertension is recognized as an 
important component of MAPK-related ET-11). ET-1 can be 
released in response to chemical or physical stimuli, such as 
in response to the vasoactive amine norepinephrine, hypox-
ic stimulation, and ischemia2, 3). In normal physiology con-
ditions, ET-1 is expressed at a low level in plasma4, 5). It was 

reported that the level of plasma ET-1 is increased in hyper-
tension and myocardial infarction and that it can be used as 
a biomarker of cardiovascular disorders4, 5). Furthermore, 
ET-1 plays a role in cell growth, apoptosis, muscle con-
traction, and inflammation through MAPK activations1, 2). 
These MAPKs include extracellular signal-regulated pro-
tein kinase-1 and kinase-2 and the p38 mitogen-activated 
protein. Studies have confirmed that these are related to 
ET-1 in eukaryotic cells1, 2). Meanwhile, studies have also 
reported that the MAPK pathway plays an important part 
in the mechanism of hyperalgesia and allodynia6, 7). ET-1 is 
produced and secreted from the dorsal root ganglion, spinal 
cord, and peripheral nerves8). ET-1 acts as a pain inhibitor 
in the central nervous system, whereas it can cause painful 
sensitivity, as hyperalgesia and allodynia, in the peripheral 
nerve system9–11). However, the mechanism underlying ET-
1- and MAPK-related pain is still unknown. The purpose of 
this review was to elucidate the ET-1- and MAPK-related 
pain mechanism and to contribute to future studies of pain 
nanophysiotherapy from the perspective of nanoparticle-
associated signal transduction (Fig. 1B).
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1. Mechanisms of endothelin-1-related pain for nano-
physiotherapy

ET-1 is present in the brain, spinal cord, sympathetic 
ganglia, and spinal ganglion in mammals, including hu-
mans, and it is thought to play a significant part in the pain 
signaling system8, 10, 12, 13). ET-1 produces different reac-
tions in the central and peripheral nervous systems10, 11, 13). 
Injection of ET-1 into the periaqueductal gray area and the 
spinal cord results in an antinociceptive effect, whereas in-
jection into the peripheral nervous system results in hyper-
algesia and pain reactions10, 11, 13, 14). ET-1 is also produced 
in numerous cells, including inflammatory and cancer cells. 
According to some reports, excessive levels of ET-1 are re-
leased following skin damage15, 16). ET-1 increases sensi-
tivity to harmful chemical stimuli such as capsaicin17, 18). 
Meanwhile, PKC induces the creation of action potential 
in neuron of pain transmission19–22). ET-1 appears to be in-
volved in the activation of PKC23, 24) (Fig. 1B). The ET-1 
receptor is activated during activation of the ET-1-induced 
polymodal-C nociceptor25). The catalytic response of the 
trimeric guanosine triphosphate-binding protein by recep-
tor activation can activate phospholipase C2, 26) (Fig. 1B). 
Although phospholipase C shows tissue specificity, it pro-
motes an influx of extracellular Ca2+ from a unique plasma 
membrane-bound receptor and voltage-gated Ca2+ channel 
through the creation and activation of inositol 1,4,5-triphos-
phate2, 27, 28) (Fig. 1B). The increased intracellular Ca2+ in 
response to the ET-1 stimulus transmits pain signals to the 
primary sensory area, leading to amplification of tetrodo-
toxin-resistant voltage-gated Na+ currents10, 16, 29) (Fig. 1B). 
Diacylglycerol induced by the activation of ET-1 also ac-

tivates PKC18, 29). The activation mechanism is comprised 
of a translocation process that inactivates PKC present in 
the cytoplasm transfer to cell membrane2, 18, 30). However, 
more study is necessary to elucidate the pain mechanism of 
ET-1 using the transcutaneous electrical nerve stimulation 
or interferential current treatment from the perspective of 
nanoparticle-associated signal transduction (Fig. 1B).

2. Mitogen-activated protein kinases and pain mecha-
nisms for nanophysiotherapy

There are two types of pain mechanisms that induce in-
flammation and hyperalgesia. The first is the signal trans-
mission pathway through adenylate cyclase (also called 
adenylyl cyclase, which is a 12-transmembrane protein)-
linked protein kinase A, and the second is the transmission 
pathway through phospholipase C-related PKC31–33). Fur-
thermore, previous studies have reported that hyperalgesia 
is involved in the MAPK signal pathway in addition to the 
protein kinase A and PKC pathway7, 34–36). Hyperalgesia 
can be induced by three sources: an injection of substance 
P into the dura mater, an instillation injection of capsaicin 
in the large intestine, and the release of cytokines, such as 
interleukin-1β7, 34). However, the exact mechanism under-
lying allodynia is not known. It has been suggested that a 
severed A-β fiber terminal regenerated by lamina of Rexed 
II or trans-synaptic degeneration in the spinal dorsal horn 
may contribute to the development of allodynia37, 38). Al-
lodynia induced by sympathetic nerve excitement has been 
attributed to noradrenergic sprouting around the dorsal root 
ganglion or nerve fibers in damaged peripheral nerves39, 40). 
Other studies have reported that the peripheral nerve termi-

Fig. 1.	 Schematic representation of mechanisms of endothelin-1-related pain in nanophys-
iotherapy.

ETs, endothelins; IL-1/-2; interleukin-1 and -2; AngII, angiotensin II; GF, growth 
factor; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; CNP, C-type 
natriuretic peptide; NH2, amino group; COOH, carboxyl group; C, cysteine; S, ser-
ine; L, leucine; M, methionine; D, aspartic acid; K, lysine; E, glutamic acid; V, va-
line; Y, tyrosine; F, phenylalanine; H, histidine; I, isoleucine; W, tryptophan; ET-1, 
endothelin-1; ETAR, subtype A of endothelin receptor; PKC, protein kinase C; Gq, 
subtype q of trimeric GTP-binding protein; PIP2, phosphatidylinositol 4,5-bisphos-
phate; PLC, phospholipase C; DAG, diacylglycerol; IP3, inositol 1,4,5-triphosphate; 
[Ca2+]i, intracellular or cytosolic Ca2+; Ik, delayed rectifier K+ currents; TRPV1, 
transient receptor potential cation channel subfamily V member 1 also known as the 
the vanilloid receptor 1; UPMR, unique plasma membrane-bound receptor; TTX-R 
INa, tetrodotoxin-resistant voltage-gated Na+ currents; MAPKs, mitogen-activated 
protein kinases.
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nal and an increase in the spontaneous discharge in dorsal 
root ganglion cells create allodynia41, 42). In particular, stud-
ies have emphasized the importance of MAPK because the 
MAPK pathway is involved in allodynia in the same way as 
spinal nerve ligation6, 43). More study is needed on MAPK-
related pain control using physical factors for pain control 
from the perspective of nanophysiotherapy44–47) (Fig. 1B).
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