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Abstract.

[Purpose] An understanding of pain is very important in the study of nanophysiotherapy. In this re-

view, we summarize the mechanisms of endothelin-1 (ET-1)- and mitogen-activated protein kinase (MAPK)-related
pain, and suggest their applications in pain physiotherapy. [Method] This review focuses on the signal transduction
of pain and its mechanisms. [Results] Our reviews show that mechanisms of ET-1- and MAPK-related pain exist.
[Conclusions] In this review article, we carefully discuss the signal transduction in ET-1- and MAPK-related pain
with reference to pain nanophysiotherapy from the perspective of nanoparticle-associated signal transduction.
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INTRODUCTION

Endothelin-1 (ET-1) belongs to a family of 21-amino acid
residue peptides is expressed, in different patterns, in vari-
ous tissues and cells! ? (Fig. 1A). ET-1 plays a role in con-
trolling muscle contraction, cell proliferation, and cell activ-
ity"> 2. It has been reported that the protein kinase C (PKC)
pathway, mitogen-activated protein kinases (MAPKs)
pathway, and myosin light chain kinase (MLCK)-activated
pathway contribute to ET-1-induced contraction' 2. In par-
ticular, DOCA-dependent hypertension is recognized as an
important component of MAPK-related ET-1V. ET-1 can be
released in response to chemical or physical stimuli, such as
in response to the vasoactive amine norepinephrine, hypox-
ic stimulation, and ischemia® . In normal physiology con-
ditions, ET-1 is expressed at a low level in plasma* . It was
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reported that the level of plasma ET-1 is increased in hyper-
tension and myocardial infarction and that it can be used as
a biomarker of cardiovascular disorders* ¥). Furthermore,
ET-1 plays a role in cell growth, apoptosis, muscle con-
traction, and inflammation through MAPK activations! 2,
These MAPKSs include extracellular signal-regulated pro-
tein kinase-1 and kinase-2 and the p38 mitogen-activated
protein. Studies have confirmed that these are related to
ET-1 in eukaryotic cells" 2. Meanwhile, studies have also
reported that the MAPK pathway plays an important part
in the mechanism of hyperalgesia and allodynia® 7. ET-1 is
produced and secreted from the dorsal root ganglion, spinal
cord, and peripheral nerves®. ET-1 acts as a pain inhibitor
in the central nervous system, whereas it can cause painful
sensitivity, as hyperalgesia and allodynia, in the peripheral
nerve system”~'). However, the mechanism underlying ET-
1- and MAPK-related pain is still unknown. The purpose of
this review was to elucidate the ET-1- and MAPK-related
pain mechanism and to contribute to future studies of pain
nanophysiotherapy from the perspective of nanoparticle-
associated signal transduction (Fig. 1B).
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Fig. 1. Schematic representation of mechanisms of endothelin-1-related pain in nanophys-
iotherapy.
ETs, endothelins; IL-1/-2; interleukin-1 and -2; Angll, angiotensin II; GF, growth
factor; ANP, atrial natriuretic peptide; BNP, brain natriuretic peptide; CNP, C-type
natriuretic peptide; NH,, amino group; COOH, carboxyl group; C, cysteine; S, ser-
ine; L, leucine; M, methionine; D, aspartic acid; K, lysine; E, glutamic acid; V, va-
line; Y, tyrosine; F, phenylalanine; H, histidine; I, isoleucine; W, tryptophan; ET-1,
endothelin-1; ET,R, subtype A of endothelin receptor; PKC, protein kinase C; Gq,
subtype q of trimeric GTP-binding protein; PIP,, phosphatidylinositol 4,5-bisphos-
phate; PLC, phospholipase C; DAG, diacylglycerol; IP;, inositol 1,4,5-triphosphate;
[Ca®");, intracellular or cytosolic Ca?"; Ik, delayed rectifier K* currents; TRPV1,
transient receptor potential cation channel subfamily V member 1 also known as the
the vanilloid receptor 1; UPMR, unique plasma membrane-bound receptor; TTX-R
Iy, tetrodotoxin-resistant voltage-gated Na* currents; MAPKSs, mitogen-activated

protein kinases.

1. Mechanisms of endothelin-1-related pain for nano-

physiotherapy

ET-1 is present in the brain, spinal cord, sympathetic
ganglia, and spinal ganglion in mammals, including hu-
mans, and it is thought to play a significant part in the pain
signaling system® 10 1213 ET-1 produces different reac-
tions in the central and peripheral nervous systems!® 11 13,
Injection of ET-1 into the periaqueductal gray area and the
spinal cord results in an antinociceptive effect, whereas in-
jection into the peripheral nervous system results in hyper-
algesia and pain reactions'® 'l 13- 19_ET-1 is also produced
in numerous cells, including inflammatory and cancer cells.
According to some reports, excessive levels of ET-1 are re-
leased following skin damage!> 9. ET-1 increases sensi-
tivity to harmful chemical stimuli such as capsaicin!'? 19,
Meanwhile, PKC induces the creation of action potential
in neuron of pain transmission'?~2?, ET-1 appears to be in-
volved in the activation of PKC?* 24 (Fig. 1B). The ET-1
receptor is activated during activation of the ET-1-induced
polymodal-C nociceptor?®. The catalytic response of the
trimeric guanosine triphosphate-binding protein by recep-
tor activation can activate phospholipase C> 29 (Fig. 1B).
Although phospholipase C shows tissue specificity, it pro-
motes an influx of extracellular Ca?" from a unique plasma
membrane-bound receptor and voltage-gated Ca?" channel
through the creation and activation of inositol 1,4,5-triphos-
phate? 27> 28 (Fig. 1B). The increased intracellular Ca®" in
response to the ET-1 stimulus transmits pain signals to the
primary sensory area, leading to amplification of tetrodo-
toxin-resistant voltage-gated Na* currents'® 129 (Fig. 1B).
Diacylglycerol induced by the activation of ET-1 also ac-

tivates PKC'8- 29, The activation mechanism is comprised
of a translocation process that inactivates PKC present in
the cytoplasm transfer to cell membrane? ' 39, However,
more study is necessary to elucidate the pain mechanism of
ET-1 using the transcutaneous electrical nerve stimulation
or interferential current treatment from the perspective of
nanoparticle-associated signal transduction (Fig. 1B).

2. Mitogen-activated protein kinases and pain mecha-

nisms _for nanophysiotherapy

There are two types of pain mechanisms that induce in-
flammation and hyperalgesia. The first is the signal trans-
mission pathway through adenylate cyclase (also called
adenylyl cyclase, which is a 12-transmembrane protein)-
linked protein kinase A, and the second is the transmission
pathway through phospholipase C-related PKC3'-33, Fur-
thermore, previous studies have reported that hyperalgesia
is involved in the MAPK signal pathway in addition to the
protein kinase A and PKC pathway” 34-39. Hyperalgesia
can be induced by three sources: an injection of substance
P into the dura mater, an instillation injection of capsaicin
in the large intestine, and the release of cytokines, such as
interleukin-1p7 34. However, the exact mechanism under-
lying allodynia is not known. It has been suggested that a
severed A-f fiber terminal regenerated by lamina of Rexed
IT or trans-synaptic degeneration in the spinal dorsal horn
may contribute to the development of allodynia’” 3%, Al-
lodynia induced by sympathetic nerve excitement has been
attributed to noradrenergic sprouting around the dorsal root
ganglion or nerve fibers in damaged peripheral nerves3® 40,
Other studies have reported that the peripheral nerve termi-



nal and an increase in the spontaneous discharge in dorsal
root ganglion cells create allodynia*!-42. In particular, stud-
ies have emphasized the importance of MAPK because the
MAPK pathway is involved in allodynia in the same way as
spinal nerve ligation® 4¥. More study is needed on MAPK-
related pain control using physical factors for pain control
from the perspective of nanophysiotherapy**~*7 (Fig. 1B).
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