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Abstract

Understanding which transportation modes people use is critical for smart cities and plan-

ners to better serve their citizens. We show that using information from pervasive Wi-Fi

access points and Bluetooth devices can enhance GPS and geographic information to

improve transportation detection on smartphones. Wi-Fi information also improves the iden-

tification of transportation mode and helps conserve battery since it is already collected by

most mobile phones. Our approach uses a machine learning approach to determine the

mode from pre-prepocessed data. This approach yields an overall accuracy of 89% and

average F1 score of 83% for inferring the three grouped modes of self-powered, car-based,

and public transportation. When broken out by individual modes, Wi-Fi features improve

detection accuracy of bus trips, train travel, and driving compared to GPS features alone

and can substitute for GIS features without decreasing performance. Our results suggest

that Wi-Fi and Bluetooth can be useful in urban transportation research, for example by

improving mobile travel surveys and urban sensing applications.

1 Introduction

Transportation departments and urban researchers have long aimed to model transportation

behavior, measure how people traverse time and space, and understand the factors that predict

travel-related decisions [1]. World-wide threats such as global warming, planning level prob-

lems such as sprawl, transportation system issues such as congestion, and environmental

health concerns such as pollution are all connected to peoples’ mode choices, especially the use

of automobiles [2–5]. The link between the ways we get around and the costs these actions cre-

ate has recently compelled cities to promote self-powered mobility options such as walking

and biking [6] and develop more sustainable forms of transportation including public transit,

such as bus and rail [7]. However, cities frequently lack the tools to evaluate these initiatives
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and often resort to simple surveys and manual traffic counts which are resource intensive and

only capture momentary behavior. At the same time, technological advances have furnished

citizens, researchers and infrastructures with new mobile instruments, such as smartphones

and activity trackers, to monitor and respond to human behavior [8–10]. These applications

include the use of geospatial data to help people navigate through the environment and decide

which modes of transit to take [11], track human health and behavior such as personal fitness

[12–14], record personal exposures to hazards and environmental toxins [15–18], track indi-

vidual impacts on the environment [19], and use location based services [20–22]. Inaccuracies

in such predictions can cause people to lose their way, introduce noise into exposure estimates,

and compromise the promise of ‘smart’ infrastructure [23].

In previous research, a variety of built-in smartphone sensors have been used to estimate

the transportation mode of mobile individuals, with studies most commonly relying on GPS

and accelerometer data [24]. Other studies have leveraged the physical environment around

users by using contextual clues from geographic information systems (GIS), e.g. railroad net-

work information, to help distinguish between modes with similar velocities and accelerations

[25]. Other research has emphasized the potential utility of magnetometer, barometer and

other remote sensor technologies. [26]. Recent transportation inference approaches, however,

do not widely use a now ubiquitous layer of context: Wi-Fi and Bluetooth traces.

In this paper, we describe a classification system based on Wi-Fi and Bluetooth signals, in

conjunction with individual location data and geospatial context information, to improve

inferences of transportation behavior. We distinguish among self-powered transportation vs.

use of car vs. public transport usage as transportation modes. Our main contribution is to

extend the previous work [19] by using the presence of network names (i.e. service set identifi-

ers, abbreviated SSIDs) broadcasted exclusively by Wi-Fi routers placed on public transporta-

tion vehicles. We make two additional contributions, (i) inferring location through presence

of detected Wi-Fi routers, and (ii) deriving additional features to help with identification of

transportation mode from the presence and churn of nearby Wi-Fi and Bluetooth devices. We

show that combining our novel features with user location data in a machine learning model

improves upon methods based on location data alone. To inspect how our model scales to a

larger population, we apply it to a mobility dataset of trips from over 800 individuals collected

over two years and evaluate descriptive measures. Based on our results, we discuss advantages

of using Wi-Fi scans for transportation inference, including low power consumption and

accessible semantic information about a user’s exposure to public transportation modes. Like-

wise, we discuss the empirical limitations of our research and recommend that future studies

investigate the efficacy of Wi-Fi features across other geographic contexts and alongside other

sensor information such as accelerometry.

The paper proceeds as follows. In Section 2 we review existing research on transportation

mode detection. Section 3 contains an overview of our approach for inferring transportation

method from pre-processed data. Section 4 describes the procedure for data collection, the

underlying hardware and software used, as well as the pre-processing of raw data from Wi-Fi,

Bluetooth and location measures. In Section 5 we train, test, and evaluate a random forest clas-

sifier using real life labelled data. Finally, we conclude the paper in Section 6.

2 Related work

Past research on travel patterns has investigated various recording technologies and classifica-

tion methods to infer people’s mobility behaviors and transportation modes. In this first sec-

tion we provide a brief overview of existing methods to identify individual transportation

behaviors and areas where location data as well as Wi-Fi and Bluetooth traces, along with
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contextual information about the transportation network and urban structure, can contribute

to trip classification.

Early transportation research was often conducted by national agencies and used phone-

based interviews, mail-in surveys, or travel diaries to estimate transportation patterns. These

self-report methods are subject to respondent fatigue, incompleteness, inaccuracies, recency

effects, and under-reporting of brief or compound trips that are less easily remembered [27–

29]. Adding to concerns about the viability of travel surveys, declining response rates have

long been observed [30, 31].

Limitations of travel surveys and the advent of smartphones have prompted researchers

to utilize mobile phones in transportation research. By extracting information from mobile

phones researchers can improve the ecological validity of transportation models [32]. Com-

pared to other methods of measuring human mobility that capture information about a single

mode of transportation, continuously collected mobile phone data can record traces of an indi-

vidual’s travel trajectories over multiple days and across multiple modes of transportation [33];

see recent reviews in refs. [34, 35]. Some researchers have used cell tower networks and end

point localization over time to infer transportation mode. However, access to cell tower infor-

mation is limited by many APIs which only report the currently connected tower or often

none at all [36]. In Refs. [37, 38], signals from cell tower trilateration were used to estimate

device positions and identify the home location of mobile phone users. These location esti-

mates, however, lacked spatial precision with an uncertainty of around 320 m—inadequate for

detecting, for example, short trips within a neighborhood.

Previous research on mobility inference has employed GPS signals to extract features such

as average and maximal speed during transportation in order to predict both stop locations

and transportation modes [39–41]. Unfortunately, the accuracy of GPS diminishes substan-

tially in an indoor setting [42]. In Ref. [43] it was found that GPS alone was inadequate for

registering most train and tram trips in urban environments in the Netherlands. Researchers

exclusively relying on GPS to infer urban travel behavior have also had to discard large por-

tions of the data to contend with poor GPS reception due to signal deflection off of tall build-

ings and imprecise pedestrian localization due to slow movements obscured by these

deflections [44]. Given that a growing majority of the human population lives in urban areas

[45] and spend a majority of their time indoors, GPS alone provides insufficient information

to infer localized transportation and dwelling behavior without additional processing of routes

or complementary sensors [46].

Several studies have augmented GPS traces with contextual GIS information about relevant

adjacencies, including proximity to public transportation stops and networks to help classify

mobility data with mode of transportation [47, 48]. Ref. [25] found that including contextual

transit network features such as the distance from a user’s measured location to rail lines, bus

stops and real-time bus locations markedly improves the precision of detecting motorized car

and bus modes as well as biking. Without such contextual information, these modes are com-

monly confused since speeds can be similar regardless of whether someone is biking, driving,

or taking a bus, especially in cities during periods of peak congestion. These combined location

data-contextual information approaches rely on high frequency GPS sampling and a constant

stream of external GIS information processed on a central server which can be both computa-

tionally and battery intensive for everyday mobile sensing applications and location based ser-

vices [49]. Other research has established the high quality of infrastructure data available from

the Google Maps API [50]. The API has been leveraged as a data source for road networks [25]

and recently to distinguish biking paths from roads for driving [51].

Here we show that the accuracy of transportation mode prediction can be further

increased by complementing other mobile sensing methods with crowdsourced Wi-Fi scan
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information about a smartphone’s surrounding access points (APs). Utilizing Wi-Fi provides

access to several new features such as the longest visible router, change in the number of visi-

ble routers, and variation in signal strength of routers [19, 36]. Ref. [42] used the received

signal strength (RSSI) of Wi-Fi AP scans and a geolocation service based on these scans to

detect dwelling behaviors more accurately than with GPS alone, but did not classify mobile

transportation states. Conversely, [52] used the variance in Wi-Fi RSSI measurements to

infer whether people were moving but did not attempt to classify specific modes of urban

transport between buildings. Ref. [53] combined cell tower information and Wi-Fi to distin-

guish between stationary, walking, and driving modes with 88% accuracy but excluded the

often confused modes of bus, bike, and other forms of public transportation that frequently

exhibit similar travel speeds as driving [54]. Important earlier work in this context concludes

that Wi-Fi based RSSI features alone work well for coarse grained transportation classifica-

tion between still and mobile modes, but struggle to distinguish fine grained differences

between modes with similar speeds [24]. See Table 1 for an overview of model accuracy of

existing work using Wi-Fi for mode classification. Furthermore, others point out that Wi-Fi

RSSI approaches have only been demonstrated with high scanning frequencies of at least

once every three seconds [55]. It is therefore unclear whether these results extend to the low

scanning frequencies adopted by most mobile phones. Finally, while the previous Wi-Fi

based studies collected data through active solicitation of consenting mobile phone users,

recent research has explored whether population-level dwelling and coarse mobility activity

can be inferred passively using Wi-Fi probe or smart card data [56–60]. However, most

mobile phones now randomize their MAC addresses to protect privacy, limiting the viability

of Wi-Fi probe solutions to reliably track individual-level transportation decisions over time

[61]. Similarly, although smart cards and other big data sources like taxi use [62, 63] provide

macro-level information about specific transit types, they do not account for individual-level

behaviors beyond the participating modes [64, 65].

Here we argue, however, that previous mobility studies have yet to fully utilize the informa-

tion contained in the SSIDs of Wi-Fi access points scanned from mobile devices. For example

SSIDs can directly reveal the mode of transportation, e.g. buses in the Greater Copenhagen

area have free Wi-Fi access points on board named “Bedrebustur” which translates to “A

better bus trip” (see Fig 1). Similarly, all local trains in Copenhagen contain Wi-Fi access

points with the SSID “Stog Wifi”. A similar naming convention is used in inter-city trains run-

ning between regions. Additionally, researchers outside of the transportation community have

shown that mobile Wi-Fi traces can be used in conjunction with concurrent mobile GPS sig-

nals to create a crowdsourced map of Wi-Fi router locations [66]. Since the Android mobile

operating system already schedules regular Wi-Fi scans, this additional information can be

paired with mobile GPS data to increase the number of location samples without imparting

additional cost to the battery [67].

Similar to Wi-Fi sensors, accelerometers are also ubiquitous in most smart phones and

require less energy to operate than GPS [68]. Although accelerometer-based classification has

become a fixture in major phone operating systems (see for instance the Android OS

Table 1. An overview of related research on Wi-Fi based transportation detection.

Reference Sensors Modes Users Time Accuracy

[52] Wi-Fi Moving, Still 2 12 hrs 92pct

[19] Wi-Fi, GSM Walk, Motor, Still 2 13 hrs 83pct

[24] Wi-Fi, GPS Walk, Run, Bike, Motor, Still 16 120 hrs 79pct

https://doi.org/10.1371/journal.pone.0234003.t001
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implementation [69]), and has advanced the state-of-the-art of standalone location based ser-

vices and transportation classification methods [68, 70], it neither provides semantic clues

about public transportation modes nor spatial information without the concurrent use of GPS.

Hence, the Wi-Fi based approach taken in this paper is tailored towards transportation science

applications where either further discrimination between public and other modes is desired or

accelerometer data is unavailable. A portion of the data in this paper (see Results section 5.2)

originates from a large-scale mobile phone-based data collection undertaken as a part of the

Copenhagen Networks Project [71, 72]. The data collector app employed in this project

recorded sparse mobile sensor data from GPS and existing Wi-Fi scans but did not collect high

frequency accelerometer data to conserve battery life.

3 Methods

The collected data has been authorized by Danish Data Protection Agency, with #2012-41-

0664. In terms of privacy all participants have provided full consent for use of their data for

research purposes. For the first dataset, used for training the model, oral consent was provided

Fig 1. Mobile travel diary app and results of a Wi-Fi scan. (A) The in-situ travel diary used by participants to record their transportation mode decisions while

they were on the move. (B) An example of how the Wi-Fi SSIDs associated with certain modes of public transportation can be readily collected by crowdsourced

Wi-Fi scans from mobile phones.

https://doi.org/10.1371/journal.pone.0234003.g001
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to also share the data. We obtained written consent from participants in the Copenhagen Net-

works Study. At any time a student could exit the study and request to have their data deleted.

To infer the mode of transportation we constructed models to classify users’ transportation

mode. The models were estimated and evaluated on annotated travel journey data using pre-

processed data from smartphone sensors (see the next section for a description of the data).

The models were estimated jointly after data collection on a computer.

We built the models for classification using a supervised machine learning approach. The

models we explore here were selected among common supervised machine learning models

for classification problems. We note that other more powerful methods, e.g. variations of artifi-

cial neural networks, might yield improved performance but also require longer time for esti-

mation [73] and do not permit us to interpret features.

Our modelling approach consists of two overall steps: i) model building and ii) measuring

model performance. The model building phase included both selecting the optimal hyperpara-

meter(s) and estimating the classifier (i.e. classification model). The pipeline for model build-

ing consisted of five steps outlined below. Each of these steps was estimated on the dataset for

training the model and never in the data for validating the model.

1. Load pre-processed data

2. Impute missing values using the mean of non-missing values.

3. Standardize the data (zero mean, unit standard deviation).

4. Perform Recursive Elimination of Features (RFE) using the classification model. This pro-

cess consists of removing the least relevant feature one at a time until the desired number of

features was reached (i.e. as specified by the hyperparameters). Thus, the hyperparameters

in this step are: number of features to keep during RFE and classification model’s hyper-

parameters used during RFE.

5. Re-estimate the classifier after RFE. The hyperparameters in this step are the classification

model’s hyperparameters that remain after RFE. See S1 Appendix for an overview of all

hyperparameters.

We limited the number of classification models to three: i) random forest (RF) [74]; ii)

multinomial logistic regression (LR) as pioneered by McFadden [1]; and iii) support vector

machine (SVM) for classification with a linear kernel [75]. This choice of widely-adopted mod-

els is consistent with the prior literature [25, 76]. We used versions of these models imple-

mented in the scikit-learn package (version 0.20) for Python [77, 78].

We specify RF as the primary model in our analysis. The implementation of RF is

based on Classification and Regression Trees (CART) [79]. RF relies on estimating multiple

decision trees on different, random bootstrap samples of the data. Each decision tree

attempts to split the data using features into subsets that contain a high share of a certain

transportation mode [79]. The procedure of combining the trees is known as bagging and

often raises the performance by relying on multiple models, rather than a single [79]. Fur-

ther description of our models along with their hyperparameters can be found in the S1

Appendix.

The supervised machine learning models were estimated on subsets of the data (“training

data”). After each model estimation was completed, we applied the model to a separate sub-

sample (“test data”), to measure how the model generalizes to new data. Estimation of the

models was performed at the minute level. When evaluating the models we only report perfor-

mance at the segment level. Note that S1 Table contains a comprehensive list of model perfor-

mance metrics at both the minute and segment level.
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For model evaluation and choosing hyperparameters we use the model accuracy. We calcu-

late overall model accuracy as the share of true labels assigned. For each specific transportation

mode we also measure accuracy with each of the following: recall (the share of true positive

labels assigned relative to the actual count of observations for the mode) and precision (the

share of true labels assigned relative to the predicted count of observations for the mode [80]).

We also use the F1 score which is defined as F1 ¼
2pr
pþr where p is precision and r is recall.

Since our dataset is limited in size, we use cross validation (CV) to estimate the perfor-

mance of our machine learning model on unseen data. In order to measure the uncertainty of

the model performance, we therefore apply “nested resampling” [81] which is a modification

of standard CV. In standard CV the data is split at random into a number of training and test

sets (folds). In nested resampling, the training data is further split into parts for training and

validation, which is called the inner CV step. This inner loop is used to select the optimal

hyperparameters based on out-of-sample model performance. The use of nested resampling—

where we draw the training data as a subsample of the original training fold of the data—pro-

vides a better estimate of generalization error than only performing the split once [81]. Com-

pared to drawing samples from the data for training the model using the bootstrap method,

subsampling, i.e. sampling without replacement, is less prone to model over-fitting since there

are no repeated observations [82].

An overview of the model building approach is found below. For each combination of clas-

sification model, feature set and target variable, the model building and validation consisted of

the following steps:

• Outer loop: subsampling: Split data randomly into training and test data sets of respectively

75% and 25%. We split the data 1000 times with each sample drawn independently. The split

into training and test data was performed at the segment level to ensure that no parts of a

segment were used in both training and test data. Our splits were balanced such that test and

training had the same proportion of each mode. Note that the split was performed for each

set of the set of transportation features we modelled, i.e. for 2, 3, and 5 modes since these

shared the same model target, i.e. predicted outcome.

• Inner loop: k-fold cross-validation: The training data was then (once more) split into four

(non-overlapping) folds of validation data, each with 25% of the data. This implies that

unlike the outer CV the inner CV is not drawn by resampling independently. Instead

the inner CV splits the data evenly into the four bins as in standard CV. For each fold the

remaining 75% was used for training data. Like the outer loop, the splitting of data was

balanced and split at the segment level. The model was estimated once for each combina-

tion of training fold in the inner CV and each hyperparameter.

• Optimal model: We selected the combination of hyperparameters that maximized the

mean out-of-sample overall recall on the inner CV validation data sets. Using the entire

training set from the outer loop the model was then re-estimated using the optimal

hyperparameters.

• Performance: We evaluated the optimal model by computing the F1 score, overall accuracy

as well as precision and recall out-of-sample on the test dataset (of the outer-loop).

We use the resampled model performances to compute tests of whether two models have

the same level of performance. Taking one of the two models as the null, we compute the p-

value using the corrected resampled t-test [83]. This allows the standard t-test to be computed

using a correction on the estimated variance.
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4 Data

4.1 Collection of data

Similar to other relevant and recent work, the ground truth data was collected by a select num-

ber of users, across a variety of modes, over an extended period of time [19, 68]. In our study,

four participants recorded their daily transportation behaviors for a combined 119 hours of

transportation and 527 trip segments spanning over 158 days. The data we analyze below has

been categorized into the following modes by the participants: self-powered (i.e. walk or bike),

bus, drive, train, and metro. An overview of the total data used by mode of transportation can

be found in Table 2. The study area was limited to Zealand, Denmark; see a map in Fig 2. Full

consent were provided by all participants for research purposes. The consent was provided

both for participants (oral) and students participating in Sensible DTU [71] (written).

Software. In order to acquire high quality ground truth data for fine-grained modes of

transportation (metro, train, bus, car, etc.), we used in-situ travel diaries. To improve upon the

accuracy of previous ground truth methods that relied on post-hoc self-report data subject to

recall bias, imprecision, and omission, we devised a mobile ‘transportation journal’ app that

permitted the participants to log their detailed transportation behaviors in real time on their

cell phone (see Fig 1A). To increase ease of use, we only required participants to log the transi-

tion points between modes (i.e. boarding a bus, parking a bike, exiting a train). Initial pilot

tests showed that the participants occasionally forgot to label all of their trips. We addressed

this issue by displaying the time when the latest entry was created. Furthermore, we added an

“invalid” button for the participants to label data for exclusion if they had forgotten to label

one or more previous mode changes.

Hardware and sensors. We employed Android phones using a custom app for data

collection. The app collected location, Bluetooth, and Wi-Fi as detailed in [71]. The location

data consisted of GPS coordinates as well as user and time information. The location data was

retrieved through the Google Location API which uses a mix of GPS, Wi-Fi, and nearby cell

phone towers [71]. The Wi-Fi and Bluetooth data consisted of the available names for scanned

routers or devices (SSID) as well as their unique identifiers known as MAC-addresses. Further-

more, these data contained information about the user ID as well as the timestamp and signal

strength of the scan. The relevant phone sensors, i.e. Bluetooth, location, and Wi-Fi, were set

to register a measurement at least every five minutes. Additionally, the app collected the results

of scans requested by all other 3rd party and system applications; this resulted in a median

scan interval of 15 seconds for Wi-Fi. Data from the phones’ accelerometers were not included

to minimize consumption of battery.

4.2 Pre-processing of data

The pre-processing of the data consisted of three steps. First, using raw data from Wi-Fi and

location traces we computed a measure of combined location data at 1 min. resolution.

Table 2. Data sample overview organized by transportation mode. “Self-powered” refers to walking, running, and

biking.

Count of segments Total data hours

Self-powered 346 65.4

Car 67 25.0

Bus 67 16.6

Metro 24 4.2

Train 23 7.4

Total 527 118.6

https://doi.org/10.1371/journal.pone.0234003.t002
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Second, we extracted trip segments, i.e. time intervals where the users were moving. Third, we

computed a number of features from the combined location data and raw Wi-Fi and Bluetooth

data. In what follows we review details about each of these steps.

Combined location data. The geolocation of the study participants was approximated

using a mixed approach in which we enriched low frequency location data from the Google

Location API with additional Wi-Fi based location point estimations. We compute the com-

bined location data by i) mapping out the location of routers (see below), ii) infer location

from Wi-Fi data as median location of nearby routers, iii) merge the two data sources and

resample as median location within every minute bin. After merging the location data from

Wi-Fi, the temporal resolution of the Wi-Fi location data was one location point per minute

Fig 2. Map over study area: Zealand, Denmark. The study area spans Zealand, the largest island of Denmark which measures

roughly 100 by 100 km. The light blue dot marks the Technical University of Denmark (DTU) and the area shaded in yellow

demarcates Copenhagen, the Capital of Denmark.

https://doi.org/10.1371/journal.pone.0234003.g002
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in places that were frequently visited. For seldom visited locations, the temporal resolution

approximated one location sample every five minutes. Note that this lower frequency in tem-

poral resolution is the result of missing Wi-Fi router location estimates in sparsely sampled

regions.

The process of mapping out the Wi-Fi routers consisted of three main steps outlined in the

following:

1. Estimate the locations of routers

1. First, we remove potentially erroneous location estimations from users’ traces using a

speed-based correction method (eliminating jumps with speeds over vmax = 180 km/h)

similar to a common approach for correcting oscillation between multiple cell towers in

CDR and sightings data research [84].

2. Next, we extract ‘stay periods’ (periods with location updates at least every tmax = 300

seconds and corresponding to location changes no larger than dmax = 30 meters). We

note that these thresholds were determined on the basis of the properties of the underly-

ing data: tmax = 300 s corresponds to the configured sampling period; dmax = 30 m

corresponds to the reported accuracy of location estimations from Google Location

API; rmax = 300 m corresponds to the maximum range of an off-the-shelf Wi-Fi router;

vmax = 180 km/h is a liberal limit of how fast one can move using the transportation

modes we investigated. Previous research using Wi-Fi data collected the same way

showed that mobility traces estimated using different thresholds do not differ signifi-

cantly [85].

3. Subsequently, we identify the approximate locations of scanned Wi-Fi routers by associ-

ating the Wi-Fi MAC-addresses to locations where they were scanned (both through a

‘strict’ approach where a location and a Wi-Fi scan happened simultaneously within the

same second, and through a ‘relaxed’ approach where Wi-Fi scans happened within the

previously extracted stay periods).

4. We then compute the geometric median of all sightings for a router as an estimation of

its location. During this step we also estimate noise (defined as the percentage of sight-

ings at a distance greater than rmax = 300 meters from the geo median).

5. Finally, we remove Wi-Fi routers with noise above nmax = 0.05 or with less than smin = 5

sightings.

2. Estimate the location of each scan by computing the geo-median location of all the scanned

routers with known corresponding locations.

3. Combine Google Location API data with our Wi-Fi based estimations and remove jumps

from the combined trace corresponding to speeds over 180 km/h or spatial precision

exceeding 150m.

This method is based on previous work [66], but introduces two modifications: (1) we use

all Google Location API data, not only GPS estimations, (2) we allow for sightings within stay

periods rather than only allowing for sightings where the Google Location API estimation hap-

pened at the same second as a Wi-Fi scan. In this way, we are able to estimate the location of a

larger fraction of routers without sacrificing the accuracy of the estimations.

Segmentation. When traveling from one location (home, work, etc.) to another, people

often use more than one mode of transportation. Segmentation approaches enable improved

estimates of transportation mode by breaking sequences of location points into smaller trip
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segments, each corresponding to a unique mode of transportation [86]. Our segmentation

strategy consists of two main steps, see Fig 3 for an overview of the process. We note that the

estimated trip length varies across the segments, however, they are not used for inferring the

mode.

First, we identify “long stops” (corresponding to home, work, etc.), where people dwell for

an extended period of time, i.e. for a minimum of 15 minutes. These are used as the basis for

initiating and completing sequential trips which may consist of multiple modes of transporta-

tion. In order to identify the long stops, we use the raw location data which is sampled at low

frequency (every 5 minutes). Then we apply the stop detection algorithm outlined by [87]. We

set the radius for categorizing a long stop to 200 m. By detecting when people stop at a particu-

lar location and dwell within the immediate vicinity for more than 15 minutes, and excluding

these long stops from the transportation classification, we are able to constrain the classifica-

tion to target people’s transportation behavior from one long stop to the next. Our choice of

15 minutes as the minimum stay threshold in stops was chosen to be consistent with research

on the stop location literature, see the review contained [88].

Second, we estimate “short stops”. These are locations where people pause during their

trips (e.g. waiting at a bus stop, grabbing a coffee to go, etc.) and may be transitioning between

transit modes. In the case of short stops we use merged Wi-Fi geolocation data which has

Fig 3. Trip segmentation and feature extraction. This figure highlights our segmentation and feature extraction strategy. In Step 1 the data collector app records

GPS + Wi-Fi location traces. Step 2 segments trips using long (blue) and short stops (dark grey) and extracts features for training the model with labelled trips. Step

3 applies model predictions to classify trips with transportation mode.

https://doi.org/10.1371/journal.pone.0234003.g003

PLOS ONE Inferring transportation mode from smartphone sensors: Evaluating the potential of Wi-Fi and Bluetooth

PLOS ONE | https://doi.org/10.1371/journal.pone.0234003 July 2, 2020 11 / 24

https://doi.org/10.1371/journal.pone.0234003.g003
https://doi.org/10.1371/journal.pone.0234003


higher temporal resolution (every 1 minute). Short stops are computed using the same proce-

dure as above but only require that a person remain in the same place for more than 5 minutes

(unlike the 15 minutes for long stops). This time length was chosen to accommodate the

higher frequency of our combined location data and enable the detection of shorter stays in

locations. The distinction between short and long stops prevented an issue with erroneously

inferred stop locations for shorter stops as some routers changed location over the sampling

period, likely because people moved homes.

After having estimated all stops we update the arrival and departure times of the long stops

using the merged Wi-Fi geolocation data (with 1min. frequency).

Extracted features. Here we outline which features/variables that were computed and

used as input in our transportation model. We describe the group of features associated with

each of our data types below. Note that the pre-processed dataset with extracted features is

available in S1 File and an overview of all the computed features is found in Table 3.

Spatial features. The first group of features are derived from using our combined mea-

sure of location data. The features are divided into “direct” and “indirect” where direct features

consisted of users’ speed and acceleration. We also computed indirect contextual measures for

each user location using geospatial information about the public infrastructure of Zealand,

which is the Danish island where the metropolitan area of Copenhagen is situated: i) we used

OpenStreetMap data regarding the railway network to compute the distance to the nearest rail-

way and metro line [89]; ii) we used transit feed data from “Rejseplanen”, which is a publicly

run travel planning site [90], to calculate the proximity to each bus route (within 5 km of the

segment).

Other features. We further used data from the mobile phone Wi-Fi and Bluetooth sensors

about recently scanned adjacent access points and Bluetooth-enabled devices to construct sev-

eral novel features. These features included the total number of scanned access points within a

minute, the number of scanned access points per scan, and the turnover in Wi-Fi APs/scanned

Bluetooth devices (measured using Jaccard similarity). Since Wi-Fi AP names often contain

useful information, we also collected the Wi-Fi SSIDs of nearby access points. Specifically, for

each minute we counted the average number of scans containing one or more SSIDs that cor-

responded to publicly available Wi-Fi APs from either buses or trains. The collected SSIDs

contained verified indicators of the associated mode of transportation, such as the previously

Table 3. List of features computed.

Sensor Feature

Bluetooth unique_ids

jaccard

Spatial velocity

acceleration

train_dist_min

metro_dist_min_cph

bus_dist_min

Wifi count_scans

unique_ids

empty_scans_share

unique_routers_scan_mean

jaccard

bus_ssid_share_max

train_ssid_share_max

https://doi.org/10.1371/journal.pone.0234003.t003
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mentioned ‘Bedrebustur’. Whenever one or more features were missing for a given minute,

e.g. missing a scan or when the accuracy was below the previously stated threshold, we used

linear interpolation to impute the values.

5 Results

5.1 Model performance

We now combine the elements discussed so far and apply machine learning to classify the col-

lected data. The main focus of our analysis is to model the choice of transportation where we

distinguish between {Car, Public, Self-powered}. To check whether the relative contribution of

Wi-Fi features is robust across alternative sets of transportation modes, we also conduct our

analysis on a larger set {Car, Train, Bus, Metro, Self-powered}. An overview of the perfor-

mance for all the models we have used is found in S1 Table. In this section we focus only on

results from Random Forest (RF) which performed the best of the considered models; see S2

Appendix for a detailed model comparison. Our random forest model yields a accuracy of

89% and F1 = 83%, see the overview of performance measures in Table 4.

During the model specification, we employed the RFE procedure to eliminate irrelevant

features. In our model setup the number of features to keep with RFE was entered as a hyper-

parameter for optimizing in each iteration, see Methods for details. After fixing the number of

features to use, the features with the lowest importance were excluded, see Section 3 for details.

Overall, few features were eliminated from the base RF model, which included all input fea-

tures; see S1 Fig. The plot shows that no features were eliminated in the majority of iterations

(> 80%) and two or more features were only removed in 2% of the iterations. S1 Fig also con-

tains measures of feature importance which show that the spatial-based features, i.e. velocity

and GIS, tend to rank highly. Some of the Wi-Fi and Bluetooth features, e.g. Wi-Fi context

information for buses (called bus_ssid_share_max) have higher feature importance than

the distance to nearest bus route (called bus_dist_min). For further inspection of the data

see the conditional distribution of each feature by each of the three transportation modes in S2

and S3 Figs.

We emphasize that feature importance should only be seen as an informal ranking rather

than a formal test of whether or not a certain group of features contribute to model accuracy at

the segment level. The reason is that feature importance measures rely on minute level predic-

tions where out-of-sample observations may be from the same trip segment, which means the

predictions are likely to be too accurate and thus not trustworthy.

Contribution of all Wi-Fi and Bluetooth features. In order to formally test whether Wi-

Fi and Bluetooth features contribute to the model, we computed the model performance at the

Table 4. Performance measures for random forest model under various feature sets.

GIS context Wi-Fi and Bluetooth features Accuracy F1 score Precision Recall

Included Included all 0.893 0.825 0.863 0.802

Excluded all 0.851 0.747 0.813 0.713

Excluded Wi-Fi context. 0.862 0.766 0.813 0.739

Excluded Included all 0.870 0.787 0.827 0.764

Excluded all 0.763 0.563 0.640 0.545

Excluded Wi-Fi context. 0.822 0.685 0.747 0.655

This table contains all the mean performance measures under various feature sets of including/excluding GIS features as well as including/excluding Wi-Fi and

Bluetooth based measures. The mean is computed using the performance measures associated with each of the 1,000 resamples of the data, see Methods for details.

https://doi.org/10.1371/journal.pone.0234003.t004
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segment level when the set of Wi-Fi and Bluetooth features was separately included and then

excluded. The inclusion of Wi-Fi and Bluetooth resulted in gains in F1 score of respectively

0.223 (p = 0.001) without GIS features and 0.079 (p = 0.006) with GIS features, see Fig 4. These

results demonstrate that the set of Wi-Fi and Bluetooth features contributes substantially to

the model performance.

Contribution of Wi-Fi context features. We move on to analyzing whether the gains in

model performance from Wi-Fi and Bluetooth features are driven by the Wi-Fi context fea-

tures for bus and train, i.e. bus_ssid_share_max and train_ssid_share_max.

Again, we evaluate how the inclusion and exclusion of these features affect the model perfor-

mance at the segment level. Fig 5 shows the difference and performance from adding the

Wi-Fi context features when the GIS features are included or not. The gains in F1 scores are,

respectively, 0.102 (p = 0.001) and 0.060 (p = 0.009) when GIS is excluded and included. Thus,

adding the Wi-Fi context features set provides a significant contribution to the random forest

model performance.

Fig 4. Contribution of Wi-Fi and Bluetooth features to model performance, overall. This figure shows the average model performance with and without all Wi-

Fi and Bluetooth features. This difference is computed with GIS features excluded and included, respectively. The target is “Car vs. Public vs. Self-powered” and the

performance measures are computed as mean across modes. The plots are created by resampling the data 1,000 times into test and training sets.

https://doi.org/10.1371/journal.pone.0234003.g004

Fig 5. Contribution of Wi-Fi context information to model performance, overall. This figure shows the average model performance with and without the Wi-Fi

contextual features for bus and train. This difference is computed with GIS features excluded and included, respectively The target is “Car vs. Public vs. Self-

powered” and the performance measures are computed as mean across modes. The plots are created by resampling the data 1,000 times into test and training sets.

https://doi.org/10.1371/journal.pone.0234003.g005
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Fig 6 shows a breakdown of differences with and without Wi-Fi context features. The figure

shows that Wi-Fi features contribute large increases in F1 for recognizing public transporta-

tion, marginal increases for cars and negligible changes for self-powered. The relative improve-

ments in accuracy for all of these modes are greater when GIS features are not available,

although a marginal increase in performance for detecting public transportation is still observ-

able even when GIS features are present. An overview of the mean gains in performance by

mode and associated p-values are found in S2 Table. The results show significant gains in

model performance for public transport from adding the Wi-Fi context features both when

GIS context features are included and when excluded. There are also modest gains for car and

self-powered transportation.

Robustness check: Increasing the number of modes. We also find a positive contribu-

tion of Wi-Fi and Bluetooth features to model performance when changing the model target

from 3 modes to 5 modes, see S2 Appendix. The gain in prediction performance relative to

the model where all Wi-Fi and Bluetooth are excluded is 0.372 (p = 0.001) when excluding GIS

features and 0.057 (p = 0.000) when GIS features are included. The gain relative to the model

where only Wi-Fi context features are excluded is 0.144 (p = 0.001) without GIS features and

0.042 (p = 0.09) with GIS features. These results provide strong evidence that Wi-Fi and Blue-

tooth features meaningfully contribute to model performance when predicting 5 transporta-

tion modes.

Robustness check: Lowering the sampling frequency. To gauge the importance of the

temporal resolution we ran an experiment where the models of three transportation modes

were estimated at the 5-minute level instead of the 1-minute level, as we have done until now.

The results are found in S2 Appendix. Compared with the main specification, the 5-minute

model yielded a slightly higher F1 score (0.85 up from 0.83) but slightly lower accuracy (0.88

down from 0.90) compared with the 1-minute model. Moreover, the results are qualitatively

the same.

5.2 Model application to student mobile trace data

In order to visually inspect the predictive validity of how our model scales to a larger popu-

lation, we apply our classification approach to mobile phone data collected from over 800

students who participated in the Copenhagen Networks Study (CNS) [71]. The CNS dataset

Fig 6. Contribution of Wi-Fi context information to model performance, by mode. This figure shows a breakdown of the model performance by mode. The

model performances are computed when GIS as well as Wi-Fi and Bluetooth features are included and when they are excluded. The target is “Car vs. Public vs Self-

powered”. The plots are made from resampling the data 1,000 times into training data for model building and test data for evaluating the model.

https://doi.org/10.1371/journal.pone.0234003.g006
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comprises both the geospatial traces and social interactions (calls, texts, Facebook, Blue-

tooth proximity) along with Wi-Fi scans for participating students enrolled at the Technical

University of Denmark over a span of multiple years, and mirrors the location data quality

and resolution collected in the current study. As mentioned earlier, the data collector app

used by students did not collect and store accelerometer data, further motivating the present

approach.

We filtered out users from CNS with less than two weeks of logged data. We then applied a

model which combined 50 iterations of resampling of the random forest model (resulting in

5000 trees in total) to the data from the students. Using this model, we inferred the modes of

transportation taken by 814 participants during a total of 669702 trips.

Analyzing trip level statistics for the inferred modes of transportation provides a “sanity-

check” of the validity of the model. Fig 7 shows segment level statistics by inferred segment

level transportation mode. The overall statistics reveal that the model generates plausible popu-

lation-level statistics. Firstly, the distribution of velocity is as expected: lower for self-powered

transportation and higher for car or public transport. Secondly, the travel time and distance

also follow our expectations for Copenhagen: motorized transport is used for trips that last

longer and cover longer distances, while the self-powered mode is primarily used for shorter

journeys. Note that although the effect of velocity is mechanical, the travel time, for instance, is

not a parameter in the classification.

We finish our analysis of student data by plotting inferred trips on maps. In Fig 8 there

are three subplots—one for each transportation mode. It is evident that inferred car trips

cover a greater variety of spatial trajectories throughout the study region than public and

self-powered transport. By comparison, predicted public transport trips exhibit more spa-

tially constrained and consistent trajectories, which match the public transport infrastruc-

ture around Copenhagen. Finally we note that self-powered trips demonstrate shorter spatial

displacements as expected.

6 Conclusions

Even though large private organizations use smartphones to map nearby Wi-Fi access points

and improve location positioning, see [91, 92], Wi-Fi and Bluetooth data have not been widely

used by city officials and public researchers to improve the detection of how we get around

in general and use public transportation modes in particular. In this paper we introduced a

Fig 7. Segment statistics for a large population. (left panel) The distribution of trip distances for the three modes of transportation: Car, Public transport, Self-

powered. (middle panel) Distribution of median trip velocity. (right panel) The distribution of trip durations. Taken together, the distributions reveal that applying

our model to real-world data generates plausible population level statistics; see main text for details.

https://doi.org/10.1371/journal.pone.0234003.g007
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method to leverage the contextual information embedded in now pervasive urban Wi-Fi and

Bluetooth traces to help infer individual-level transportation mode choice.

We found that abundant Wi-Fi traces in connected urban environments and semantic

clues embedded into public transportation Wi-Fi APs can directly disambiguate and help

identify many commonly confused mode categories, including public transportation (bus,

train, and metro) and cars. These novel features contribute considerably to model perfor-

mance. Despite the comparatively sparse temporal resolution of our GPS and Wi-Fi data col-

lection—and without the use of accelerometry—our random forest model yielded an overall

accuracy of 89% and precision of 87% for classifying 3 transportation categories and sepa-

rately, 5 different modes. This exceeds the performance of previous multi-mode classifiers

incorporating Wi-Fi features [19, 24], is comparable to the performance of more recent low-

power classification approaches [68, 70, 93], but performs worse than approaches that can

afford higher temporal resolution GPS and/or accelerometer data [25, 94]. We investigated the

predictive validity of our model using a large dataset which yielded predictions consistent with

expectations of the different transportation modes.

Unlike accelerometer-based classification, Wi-Fi traces can provide both semantic clues

about public transportation modes and the spatial position of the user. We showed that infor-

mation from nearby Wi-Fi APs and Bluetooth-enabled devices collectively performs well as a

viable substitute for computationally intensive GIS features, e.g. distance to bus routes. Check-

ing whether Wi-Fi names contain the contextual information associated with the mode of

transportation requires little computation and leverages mobile phones’ existing Wi-Fi scan-

ning activity. The gains in model performance from adding Wi-Fi context features for bus and

train were not evenly spread across transportation modes and mainly helped to distinguish

between car and public transportation. Public Wi-Fi continues to expand across both trans-

portation modes and infrastructure, for instance in the U.K. [95]. Thus, Wi-Fi features repre-

sent an underutilized resource for making location based services for smartphones and smart

cities that rely on accurate classifications of transportation mode.

Fig 8. Map of trips split by inferred mode for a large population. The maps show trips by inferred mode around Copenhagen, Denmark. (left panel) Trajectories

of students inferred to be using car; (middle panel) trajectories of student inferred to be using public transport; (right panel) trajectories of students inferred to be

using self-powered transport.

https://doi.org/10.1371/journal.pone.0234003.g008

PLOS ONE Inferring transportation mode from smartphone sensors: Evaluating the potential of Wi-Fi and Bluetooth

PLOS ONE | https://doi.org/10.1371/journal.pone.0234003 July 2, 2020 17 / 24

https://doi.org/10.1371/journal.pone.0234003.g008
https://doi.org/10.1371/journal.pone.0234003


Ours is the first study to demonstrate the viability of Wi-Fi features to contribute to the

classification of public transportation and five common urban transportation modes. Our

work is also the inaugural Wi-Fi feature-based classification study for the public transportation

modes of bus, train, and metro. These modes are especially relevant for cities seeking to evalu-

ate sustainable alternatives to car-based transportation and for transportation researchers

seeking to distinguish the use of commonly confused modes from automated travel diary data.

The ubiquity of smartphones that already collect proximate Wi-Fi access points at regular

intervals and the relatively lower energy consumption of such sampling compared to GPS sen-

sors [24, 67] support the viability of our method as an alternative, or supplement, to existing

transportation mode detection algorithms.

Limitations

Although our model has demonstrated promising initial performance, our study was limited

in several important ways. Our training data collection was conducted by a small number of

individuals from two different universities spanning the greater Copenhagen metropolitan

area, with the University of Copenhagen located near the city center and the Technical Univer-

sity of Denmark located in a northern suburb. The sample consisted primarily of young stu-

dents and researchers that represent a narrow temporal window over the human lifespan.

Since this group is non-representative of the population’s demographic diversity, self-powered

mode velocities may have been biased towards the younger sample demographic. Another pri-

mary limitation of this study was that we did not collect concurrent accelerometer data during

the training sessions and thus cannot conclude whether Wi-Fi features improve model perfor-

mance beyond what is possible with accelerometry.

Additionally, this method relies on a dense network of encompassing Wi-Fi APs, ideally

suited for urban areas. [53] and [96] have pointed out that the performance of network end-

point localization can diminish as the density of endpoints decrease towards recreational and/

or residential areas. Furthermore, another caveat of the current study is that contextual Wi-Fi

SSIDs are not consistent between cities and thus need to be added and maintained for each

desired urban context.

Future research

Taxies, ferries, planes, ride-hailing services, and emergent forms of public transportation

increasingly offer free Wi-Fi with transparent network names that provide public cues about

the mode being used. Future research may seek to employ latent semantic information embed-

ded into Wi-Fi APs in order to understand trip purposes, contexts and associated activities,

building on the work of [97]. Although our approach has only been demonstrated in Copenha-

gen, a related research agenda might consider training an unsupervised classifier across several

urban environments to identify mobile Wi-Fi APs that follow regular schedules and link these

with known public transportation routes and schedules.

Supporting information

S1 Appendix. Method details. This appendix contains information about our machine learn-

ing approach.

(PDF)

S2 Appendix. Auxiliary results. This appendix contains details of the analysis using other

classification models and other transportation modes.

(PDF)
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S1 Fig. Feature importance and number of selected features. These plots show the feature

importance and number of features chosen for the optimal selected models for the 1,000

resampled models. We consider the random forest model, with all features; the target is “Car

vs. Public vs. Self-powered”. The black lines in the feature importance plots denote 95% confi-

dence intervals based on resampled data. Feature importance values are computed for each

random forest model at the temporal unit of observation (i.e. minute level) using Gini Impu-

rity [79]. Note that feature importance is only for the random forest model with all features.

The plots are created by resampling the data 1,000 times into training data for model building

and test data for evaluating the model. Direct features are shown in blue, GIS features are

shown in gray, and features based on Wi-Fi are displayed in yellow.

(PDF)

S2 Fig. Geolocation features split by transportation mode. This figure presents box plots for

the geolocation based features. The plot contains both direct features, i.e. velocity and accelera-

tion, and features based on distance to various geopgrahic information.

(PDF)

S3 Fig. Wi-Fi and Bluetooth features split by transportation mode. This figure presents

box plots for the feature measured by Wi-Fi and Bluetooth features. The plot contains both

features computed by investigating SSID for bus and train context as well as feature measuring

the presence and change in Wi-Fi APs and Bluetooth devices.

(PDF)

S1 Table. Overview of model performances. This table contains all the mean performance

metrics across all model specifications and feature sets investigates. The mean is computed

using the resampled data 1,000 times into training data for model building and test data for

evaluating the model.

(PDF)

S2 Table. Overview of model performance gains. This table contains all the gain in model

performance broken down by mode when excluding either Wi-Fi context feature or all feature

based on Wi-Fi or Bluetooth. Associated with the gains we have computed the p-value. The F1

is a mean computed using the resampled data 1,000 times into training data for model building

and test data for evaluating the model.

(PDF)

S1 File. Files with dataset and code. This compressed folder of files contains the dataset, code

for training and evaluating models as well as model output.

(GZ)
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93. Shin D, Aliaga D, Tunçer B, Arisona SM, Kim S, Zünd D, et al. Urban sensing: Using smartphones for

transportation mode classification. Computers, Environment and Urban Systems. 2015; 53:76–86.

94. Shafique M, Hato E. Travel mode detection with varying smartphone data collection frequencies. Sen-

sors. 2016; 16(5):716.

95. Rail N. WiFi Facilities; 2020 (accessed May 21, 2020). Available from: https://www.nationalrail.co.uk/

stations_destinations/44866.aspx.

96. LaMarca A, Chawathe Y, Consolvo S, Hightower J, Smith I, Scott J, et al. Place lab: Device positioning

using radio beacons in the wild. In: International Conference on Pervasive Computing. Springer; 2005.

p. 116–133.

97. Kang JH, Welbourne W, Stewart B, Borriello G. Extracting places from traces of locations. ACM SIG-

MOBILE Mobile Computing and Communications Review. 2005; 9(3):58–68.

PLOS ONE Inferring transportation mode from smartphone sensors: Evaluating the potential of Wi-Fi and Bluetooth

PLOS ONE | https://doi.org/10.1371/journal.pone.0234003 July 2, 2020 24 / 24

https://www.nationalrail.co.uk/stations_destinations/44866.aspx
https://www.nationalrail.co.uk/stations_destinations/44866.aspx
https://doi.org/10.1371/journal.pone.0234003

