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Introduction
Patients suffering from metastatic disease may 
undergo several lines of palliative chemotherapy 
with the hope of prolonging survival and improv-
ing quality of life. Currently, the only tool for 
assessing the efficacy of therapy during treatment 
is the Response Evaluation Criteria in Solid 
Tumors (RECIST) which compares imaging 
measures of lesions at defined treatment intervals 
(three to four cycles) with baseline status.1 There 
is only a poor correlation between objective 
response by RECIST and oncologic outcome and 
response is not a valid surrogate endpoint for 
overall survival (OS).2 This was demonstrated in 
a recent meta-analysis, reporting that 91% of 32 
clinical trials showed a low correlation with OS.3 
Despite this knowledge, repeated imaging is still 
used as a key to treatment decisions by most clini-
cians, and response rates have been used for 
approval of several new drugs by the Food and 
Drug Administration.4

As RECIST is far from optimal, treatment deci-
sions made on this basis are not necessarily the 

best for the patient. Despite mall lesions, some 
metastases show highly aggressive behavior, while 
some patients have an indolent course of the dis-
ease despite a larger tumor burden. Better tools 
for evaluating efficacy are needed to spare the 
patient ineffective treatments with high toxicity, 
allowing for an early change in the treatment 
approach.

It is well known that small fractions of cell-free 
DNA circulate in the blood and other bodily flu-
ids.5–8 This is a mixture of DNA from both healthy 
and malignant cells, termed cfDNA. Measurement 
of circulating-free DNA from tumor cells [circu-
lating tumor DNA (ctDNA)] has gained interest 
during the past decade, as a less invasive and sen-
sitive method for detection of cancer after cura-
tive treatment, and for identification of timely 
molecular features of the disease, thereby over-
coming heterogeneity and the need for repeated 
tumor biopsies.9 Quantitative measures of ctDNA 
hold prognostic information, with high levels 
indicating a poor prognosis.10,11 However, despite 
the advantages, and the development over the 
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past decade, ctDNA monitoring has not been 
implemented in daily clinical practice. Current 
knowledge is mainly based on retrospective analy-
ses, and it is, therefore, urgent to facilitate pro-
gress of prospective clinical trials, and ultimately 
clinical implementation of ctDNA-guided treat-
ment. ctDNA is a pan-cancer concept12,13 and 
methods for ctDNA analysis have been developed 
and validated in many tumor types. These include 
either aberrant methylation assays or detection of 
tumor-specific genetic alterations by digital drop-
let PCR (ddPCR), or next generation sequencing 
(NGS) methods.14–16

Colorectal cancer (CRC) is the most investigated 
disease.11,17,18 This malignant tumor contains a 
high fraction of easily detectable tumor-specific 
mutations (KRAS, BRAF, NRAS) which are used 
as a target for ctDNA analysis. Methods can be 
described as either targeted assays or broad cover-
age assays, and the most frequently used in CRC 
are NGS-based platforms and ddPCR methods. 
Alternative technologies have been developed for 
quantification of epigenetic changes, most fre-
quently as analysis of aberrant methylations by 
sensitive ddPCR methods.

This allows for tumor agnostic approaches, with 
direct analysis of blood samples without any 
knowledge of the molecular features of the tumor 
tissue. It also allows for tumor-informed strategies, 
with primary analysis of the tumor tissue and sub-
sequent development of tailored assays for detec-
tion of the identified tumor-specific mutations in 
the liquid biopsy. Both approaches have advan-
tages and potentially a place in the clinical setting.

The clinical potential of ctDNA can be grouped 
into different categories, according to the clinical 
setting. These include ctDNA analysis prior to a 
given treatment modality, after curative treatment 
and during systemic palliative therapies. Multiple 
studies have documented that ctDNA analysis 
can provide information on pretreatment molecu-
lar characteristics and up front prognostic infor-
mation from ctDNA quantification.11,19 This has 
not yet been prospectively tested in randomized 
studies, and is, therefore, not established for clini-
cal use. Detection of ctDNA after surgery has 
been widely analyzed as a marker of minimal 
residual disease (MRD).18 ctDNA has potential 
as a tool for risk assessment and guidance of adju-
vant treatment. Recently, results from the 
DYNAMICS trial demonstrated that ctDNA-
guided adjuvant treatment reduced the use of 

adjuvant chemotherapy without compromising 
the recurrence-free survival.20 These results are 
likely to take the ctDNA development closer to 
clinical implementation within the near future, 
although many aspects still need elucidation. 
Multiple clinical trials have been initiated in this 
setting, as reported in a recent overview.21 
Furthermore, at least one prospective randomized 
trial investigates the value of ctDNA during fol-
low-up after curative surgery for CRC.22

In the incurable metastatic setting, ctDNA has 
potential as a tool for monitoring treatment effect 
by identifying new genetic alterations as a marker 
of treatment resistance or evaluation of response 
by quantitative ctDNA changes. Studies have 
prospectively investigated the utility of ctDNA-
based detection of mutations as markers of resist-
ance to epidermal growth factor receptor (EGFR) 
inhibition, and application as a re-treatment crite-
rion.23–27 ctDNA-based mutational testing is now 
available in many oncological centers,28 and 
although large-scale data are not available, 
approval as a tool for standard treatment is 
expected. However, there is an obvious need to 
establish the value of ctDNA beyond the use of 
anti-EGFR therapy, and ctDNA precision medi-
cine is on the horizon in other rare subtypes.

The analysis of quantitative ctDNA changes as a 
general response evaluation criterion during sys-
temic treatment is a fundamentally different sci-
entific approach, but with a potential of wide 
application. Results could be transferred to a pan-
cancer concept if relevantly investigated. The 
purpose of this overview is to discuss the current 
evidence for ctDNA as a marker of response in 
metastatic CRC (mCRC) and to propose criteria 
for definitions of response to systemic therapies 
applicable in prospective clinical trials.

Definitions of clinical utility and surrogate 
endpoints for ctDNA studies
Validation of a potential new biomarker, as a tool 
in clinical settings, must undergo a number of 
well-defined steps (Figure 1). The terminology 
described by the Evaluation of Genomic 
Applications in Practice and Prevention working 
group29 was refined into the ctDNA perspective 
in a joint review by American Society for Clinical 
Oncology and American Pathologists in 2018.14 
Analytical validity was defined as the ‘ability of an 
assay to detect and measure, with statistical sig-
nificance, the presence of a biomarker of interest 
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accurately, reproducibly, and reliably’. Although 
large-scale work is ongoing to establish optimal 
parameters for both pre- and post-analytical steps 
for ctDNA analysis,15 the literature clearly dem-
onstrates that analytical lockdown is rarely estab-
lished due to the constant development of new 
methodical platforms and high commercial inter-
ests. At present, it is mandatory to define the 
accepted analytical criteria of a proposed method 
together with the optimal fit to the current pur-
pose (i.e. broadness of assay versus sensitivity and 
reliable reproducible quantitative measures). 
Cross method validations and generalized multi-
laboratory setups will also become essential for 
large-scale clinical trials.

The optimal ctDNA analysis for ctDNA response 
evaluation is a method that allows for a reliable 
quantitative measure and covers the majority of 
cases. This is in contrast to the requirements for a 
test for say MRD, where an ultra-high sensitivity 
can be prioritized over quantification, and sug-
gests a quantitative ddPCR method, as discussed 
below.

Here the term ‘clinical validity’ refers to the accu-
racy with which ctDNA can predict different out-
comes.14,16 This implies analysis in relation to 
both efficacy by RECIST and survival. The clini-
cal utility can only be established when there is 
high-level evidence that ctDNA-guided treatment 
can improve outcome compared to non-ctDNA-
guided treatment. This indirectly implies a vali-
dation of ctDNA responses as a stronger surrogate 

endpoint than current imaging methods. 
According to the approach described by Buyse 
et  al.,30 validation of ctDNA as surrogate end-
point will need a demonstration of a clear correla-
tion between ctDNA response and survival, and 
ultimately to the effect of a given treatment. Thus, 
there are multiple steps to consider in the design 
of the optimal clinical trial to demonstrate clinical 
utility of ctDNA response criteria in the meta-
static setting. Encouragingly, the most recent 
development enables us to prepare for rand-
omized trials in the nearby future.

Clinical validity of ctDNA: response in 
studies with mCRC
Although there is an increasing number of obser-
vational studies analyzing the clinical potential of 
ctDNA in mCRC,11 surprisingly only a few stud-
ies have addressed the value of early quantitative 
changes of ctDNA in relation to outcome param-
eters. According to a systematic review and meta-
analysis performed by Callesen et al.,11 a total of 
22 CRC studies (reported until December 2020) 
on ctDNA changes in relation to any outcome 
parameter. Most studies provided a statistically 
significant relation between ctDNA changes and 
outcome despite multiple different methods and 
diversity in the reporting of the results. They gen-
erally agreed that a ctDNA decrease during treat-
ment implies a better survival compared to 
nondecreasing ctDNA but there is no agreement 
as to a quantitative definition of the decrease to 
qualify it as ctDNA response. The meta-analysis 

Figure 1. Illustration of the steps toward clinical utility for ctDNA.
ctDNA, circulating tumor DNA.
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also supports a correlation between unfavorable 
quantitative ctDNA increase and shorter progres-
sion-free survival (PFS) and OS, but again suffi-
cient data cannot be extracted for a consensus 
definition of ctDNA progression. Finally, 11 
studies also presented a statistically significant 
association to response according to RECIST, 
providing a relevant background for a prospective 
analysis. Several publications indicate a strong 
signal despite a considerable diversity of methods, 
clinical settings, and methods for the measure-
ment of ctDNA, but the broad approach hampers 
direct comparisons and consensus definitions for 
prospective validations. A tool for clinical deci-
sion-making, which is directly comparable to 
RECIST criteria, is warranted.

The current literature describes both absolute 
and relative changes. It can be argued that a sin-
gle measure of detectability, or elimination, is suf-
ficient for defining a favorable response.31 The 
material from the German AIO-KRK-0207 
ctDNA study was analyzed by qPCR (methyla-
tion of hyperplastic polyposis 1; N = 467). The 
results confirmed that early elimination of meth-
ylated cfDNA by 2–3 weeks after first administra-
tion of chemotherapy implied a significantly 
better prognosis compared to nonresponding 
cases. A later analysis of KRAS mutations with 
ddPCR in 151 patients from the cohort confirmed 
the prognostic value of ctDNA elimination.32 
These two studies are published sequentially, but 
a direct comparison between the two ctDNA tar-
gets and responses would have been a valuable 
contribution to the field, as detected levels are 
highly dependent on the performance of the indi-
vidual methods, the volume analyzed, and the 
pre-analytical factors. More recently, Kim et al.33 
described the prognostic value of any decrease in 
variant allele frequency (VAF) in patients treated 
with first-line chemotherapy for mCRC. In that 
study, the authors also analyzed ctDNA changes 
together with RECIST. A ctDNA decrease was 
independently significant when added to a multi-
variate analysis, also containing the RECIST 
groups. Furthermore, patients within the same 
RECIST group showed a different PFS according 
to ctDNA changes. Patients achieving a ctDNA 
clearance had a longer PFS.

Other studies have used relative changes, ranging 
between a 10-fold reduction after the first cycle of 
chemotherapy presented by Tie et  al.,34 a 30% 
reduction of mutant allele fraction by ddPCR 
analysis (N = 55),35 and a 80% variant frequency 

reduction by targeted sequencing.36 The latter 
was a small study cohort of 15 patients. More 
recently, Ye et al.37 presented a 50% reduction in 
BRAF VAF by sequencing, where a ctDNA clear-
ance was associated with a HR = 0.23 for PFS, 
but was not statistically significance for OS. 
Nakamura et  al.38 described a clear association 
between proportional changes in ctDNA frac-
tions and PFS in patients with rare subtypes har-
boring human epidermal growth factor receptor 2 
(HER2) amplifications, treated with HER2 inhi-
bition. Lim et al.39 used a definition of VAF < 1% 
as ctDNA clearance and reported a significant 
association with longer PFS in patients who 
obtained the ctDNA clearance. In that study, the 
authors also presented a combined analysis of 
ctDNA responses and RECIST evaluation, sug-
gesting that ctDNA response could add value to 
the current criteria. Nevertheless, the most rele-
vant clinical threshold for ctDNA response from 
each approach has not been defined, and simi-
larly, limited studies have focused on a definition 
of early ctDNA progression. The clinical need is a 
nuanced classification of both favorable response, 
stable condition, and progression, comparable to 
RECIST.

Recently, Thomsen et al.40 presented data with a 
novel approach to the quantitative changes based 
on the measured values with their inherently pro-
duced CIs from the ddPCR. The assay was 
designed to target aberrant methylations in plasma 
samples. This approach was based on the assump-
tions that the distribution of the measurements 
resembles a Gaussian distribution due to the high 
number of droplets analyzed (e.g. 20.000) in each 
sample. A ctDNA change can, therefore, be 
defined as a change of value where the 95% CI 
does not overlap the previous values CIs. Using 
the definition of undetectable ctDNA with the 
95% CIs overlapping zero, early responding 
patients with ctDNA elimination at the first treat-
ment cycle in a first-line setting had a median sur-
vival of 25.4 months compared to 13.5 months in 
the group with detectable ctDNA. Similarly, 
patients with ctDNA progression, defined as an 
increase above the 95% CIs of the previous sam-
ple, imply a poor prognosis. This was recently 
illustrated in a study on patients with ovarian can-
cer.41 Raunkilde et al.,42 used the same methyla-
tion assay in a cohort of patients treated for 
mCRC with first-line therapy. An early evalua-
tion of ctDNA response after the first cycle  
of chemotherapy revealed that PFS was 10.1  
and 7.6 months, in ctDNA responders and 
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nonresponders, respectively (p = 0.02, HR = 0.43). 
In comparison, the PFS rates were 10.1 and 
7.3 months, in responders and nonresponders, 
respectively, according to RECIST 1.1., but with 
a HR = 0.65 and p = 0.17. Finally, Jakobsen et al.43 
presented the combined analysis of ctDNA 
changes in five different cohorts including a total of 
420 patients with lung, ovarian, cholangiocarci-
noma, and CRC. The results revealed a strong cor-
relation between ctDNA response and long survival, 
which also support superiority in comparison to 
RECIST criteria. This classification was developed 
from the analysis of aberrant methylations by 
ddPCR. No such studies have been performed on 
ddPCR-based results of mutational detection, but 
could optimally be extracted from already analyzed 
samples and pooled into a meta-analysis.

Based on the literature, it is clear that there is a 
strong clinical perspective in validating ctDNA as 
a surrogate endpoint in mCRC and directly com-
paring ctDNA response criteria with the currently 
used surrogate endpoint by RECIST. The ctDNA 
development has passed the steps from discovery 
to analytical validity and several studies have 

clearly documented its clinical validity in this set-
ting. Prospective validation of the true clinical 
utility is, therefore, the next critical step, which 
cannot be initiated unless consensus on methodo-
logical aspects is reached and standardized crite-
ria for response are defined. Multiple definitions 
are used in the literature, of which validations are 
missing. The use of inherent 95% CI intervals 
from ddPCR results is a promising approach to 
define the ctDNA response evaluation criteria 
(ctDNA-RECIST) as we have recently dis-
cussed44 and presented in Figure 2.

CtDNA Response Evaluation Criteria  
in Solid Tumors
Based on the observed clinical validity of ctDNA 
response and progression in several diseases, we 
defined the criteria for ctDNA responses and pro-
gression. This allows for direct comparison with the 
RECIST evaluations. This was recently published 
elsewhere44 and illustrated in Figure 3.

A ctDNA-RECIST progression can be defined as 
an increase in ctDNA above the previous value 

Figure 2. Definitions of ctDNA-RECIST.
Source: Figure by Garm Spindler and Truelsen.
CR, complete response; ctDNA-RECIST, circulating tumor DNA Response Evaluation Criteria in Solid Tumors; MR, maximal 
response; NCR, near complete response; PD, progression; PR, partial response.
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with no overlap of the two CIs. Stable ctDNA-
RECIST is defined as a value within the CI of the 
previous value. This category also includes situa-
tions where both the previous and present values 
are 0 (undetectable). A ctDNA-RECIST partial 
response is a decrease in ctDNA below the previ-
ous value with no overlap of the two CIs, and the 
lower CI does not overlap 0. A ctDNA-RECIST 
complete response implies a decreasing value to an 
undetectable level, whereas a ‘near complete’ 

ctDNA-RECIST response can be defined as 
when the value is below the previous value with 
the lower CI overlapping 0. These can be com-
bined and termed ctDNA-RECIST maximal 
response. The ctDNA-RECIST criteria are com-
pared to objective RECIST in Table 1 of Jakobsen 
et al.44 The two classification systems are compli-
ant apart from the near complete response which 
is not included in the standard RECIST criteria. 
Although it is expected that the major part of this 

Figure 3. Illustration of a randomised trial design and relevant points for consideration.

Table 1. Presentations of the definitions of ctDNA-RECIST and corresponding RECIST.

Criteria Standard RECIST v1.1 (Imaging) ctDNA-RECIST

Progression At least a 20% increase in the sum 
of diameters of target lesions

An increase in ctDNA above the 
previous value with no overlap of the 
two CIs

Stable disease Neither sufficient shrinkage 
to qualify for PR nor sufficient 
increase to qualify for PD

A value within CI of the previous value. 
The category also includes samples 
with both previous and present values 
being 0 (undetectable)

Partial response At least a 30% decrease in the 
sum of diameters of target lesions

A decrease below the previous value 
with no overlap of the two CIs but the 
lower CI does not overlap 0

Complete response* Disappearance of all target 
lesions

Decreasing value to an undetectable 
level

Near complete response* Has no corresponding standard 
RECIST value

A decrease below the previous value 
with no overlap of the two CIs and with 
the lower CI overlapping 0*

*Complete and near complete response can be combined and classified as maximal responders.
ctDNA-RECIST, circulating tumor DNA Response Evaluation Criteria in Solid Tumors.
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small subgroup will biologically have no true 
ctDNA (and thus considered clinically complete 
responders), we find it semantically misleading to 
classify samples with a low signal as complete 
responders while acknowledging that the signal 
should be interpreted with caution in these cases. 
Consequently, we have defined a combined group 
of maximum responders.

Challenges in trial design to analyze the 
clinical utility of ctDNA-RECIST criteria
A randomized trial comparing ctDNA-RECIST-
guided treatment decisions with RECIST is nec-
essary if we aim to establish the true clinical utility 
of ctDNA response evaluation in mCRC. There 
are multiple challenging factors in such a trial 
design. Treatment of mCRC implies several 
choices in terms of first-line chemotherapy and 
optional addition of targeted treatment. 
International guidelines summarize the options 
for induction chemotherapy, maintenance, and 
treatment breaks.45 Re-induction of first-line and 
second-line regimens is widely used, and there is 
increasing availability for late-line systemic 
options. The concept of intensified treatment 
until progression with immediate shift of regimen 
is no longer a standard approach. Consequently, 
there are various clinical situations where ctDNA-
RECIST could improve treatment decisions.

Our first hypothesis is that ctDNA-guided treat-
ment decisions will prevent unnecessary ineffec-
tive therapy by identifying lack of response at an 
earlier timepoint than conventional strategies. It 
can also be hypothesized that ctDNA-guided 
decisions on treatment breaks will allow for a 
longer chemotherapy-free interval, and thereby 
better quality of life. The ultimate hypothesis is 
that ctDNA-guided treatment decisions will lead 
to improved survival by ensuring the most effec-
tive therapy at the earliest possible time during 
the course of the disease. Based on these hypoth-
eses, primary endpoints, such as a reduced num-
ber of cycles of chemotherapy in first line, 
chemotherapy-free interval, and PFS at a given 
timepoint, are all relevant endpoints. Finally, 
thorough considerations must be given to add a 
non-inferiority approach.

The most clinically relevant timepoint for ctDNA-
RECIST evaluations must also be defined. 
Studies have shown that ctDNA response can be 
evaluated already after a single cycle of treatment, 
but a higher fraction of responses may be expected 

with longer observation times.46 Therefore, it can 
be suggested that ctDNA response evaluation 
should be performed prior to each cycle, and with 
clinically relevant intervals during treatment 
breaks (e.g. monthly samplings).

Once the overall aims and trial design have been 
defined, the optimal laboratory strategy must be 
decided. A relevant quality assurance process for 
sampling and pre-analytical steps should be per-
formed at clinical sites. International consensus 
guidelines will be useful for providing the relevant 
standard operating procedure for volume, type of 
tubes, centrifugation, transportation, and stor-
age.47 It is important to know that degradation of 
the DNA due to time issues, as well as contami-
nation with normal DNA from lymphocytes dur-
ing sampling, can lead to falsely elevated total 
DNA levels and thereby difficulties in ctDNA 
detection and quantification. Commercially avail-
able DNA preserving tubes allow for storage and 
transportation for up to 48 h before processing at 
room temperature, and it is therefore a valuable 
option for multicenter trials with the need for 
central analysis and immediate results. The labo-
ratory setup must allow for a clinically relevant 
time to results, which must fit into the patient’s 
treatment schedules without major delays.

Finally, the choice of the ctDNA measuring 
method is essential. A high detection rate together 
with a reproducible quantitative measure is man-
datory. In CRC, data have shown that ctDNA 
analysis targeting a small number of different 
aberrant methylations is relevant48 and will detect 
ctDNA in up to 80% of cases in localized CRC49 
and >90% in the metastatic disease.32,50 This 
allows for a direct tumor agnostic approach. 
Another option is to analyze ctDNA for tumor-
specific mutations. The most common tumor-
specific mutations in this disease are the RAS 
mutations, which together with BRAF will repre-
sent up to approximately 60% of cases.51 The rate 
of ctDNA-positive samples prior to first-line ther-
apy depends on several factors including the 
tumor mutational status, sensitivity of the ctDNA 
test, and the amount of total DNA shedding into 
the blood stream. Shedding of ctDNA varies with 
the tissue of origin, for example, liver metastases 
leading to higher levels of ctDNA in the blood 
samples.52 Consequently, there will be a high but 
not complete concordance between mutations 
detected in the tumor tissue and blood samples, 
and analysis of the most commonly detected 
mutations will thus provide a ctDNA measure in 
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approximately 40–50% of cases51, but these will 
not provide the same degree of a reliable quantita-
tive measure. The panel of detected mutations can 
be broadened by, for example, mass array technol-
ogy, or targeted or multigene panel NGS-based 
ctDNA assays but this methodology needs further 
clarification with respect to precision. It is not 
clear how the CI of a given value should be calcu-
lated when using these methods, thus hampering 
the evaluation of relative changes. Alternatively, a 
tumor-informed approach can be added with 
identification of mutations in the tumor tissue and 
subsequent design of a tailored ddPCR. With this 
methodological strategy a similar detection rate 
can be expected in the metastatic setting, which 
will allow for a reliable quantification, but on the 
other hand, this approach is resource demanding 
and time-consuming.

Investigating the clinical utility of ctDNA-guided 
treatment can lead to a breakthrough in the way 
we monitor cancer. There are the obvious advan-
tages of less time spent in hospital for scans, more 
precise response evaluations, and avoidance of 
overinterpretation of measures on tumor lesions 
and the uncertainties. Omitting imaging proce-
dures will provide a more rational use of resources 
for imaging in the healthcare system, but it will be 
relevant to add prospective cost–benefit analysis 
to the first generation of these trials. Changing 
the paradigm for monitoring palliative treatment 
will demand changing the culture among oncolo-
gists. In addition, ctDNA as a pan-cancer con-
cept will be highly relevant in the education of 
younger oncologist and trainees. Finally, includ-
ing patients in the process of developing the trial 
design will provide valuable learning for physi-
cians as to the preferences and relevant commu-
nication necessary for a fruitful process.

Conclusion and perspectives
The current literature holds high hopes for the 
clinical utility of ctDNA. An obvious precondi-
tion is a sharper focus on quantitative monitoring 
of the treatment course. Another absolute condi-
tion is valid definitions of ctDNA progression and 
response. The latter may serve as a surrogate end-
point for OS but the final proof must come from 
randomized trials. A prospective validation will 
have crucial impact in clinical oncology, which 
may move away from imaging-based monitoring 
toward blood-based guidance. Such a shift of par-
adigm will also have a heavy impact on the devel-
opment of new drugs, thereby changing the 

measure of effect from dubious changes of tumor 
volume to an objective parameter in a blood 
sample.
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