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Continuous efforts on pursuit of effective drug delivery systems for engineering hydrogel
scaffolds is considered a promising strategy for the bone-related diseases. Here, we
developed a kind of acetylsalicylic acid (aspirin, ASA)–based double-network (DN)
hydrogel containing the positively charged natural chitosan (CS) and methacrylated
gelatin (GelMA) polymers. Combination of physical chain-entanglement, electrostatic
interactions, and a chemically cross-linked methacrylated gelatin (GelMA) network led
to the formation of a DN hydrogel, which had a suitable porous structure and favorable
mechanical properties. After in situ encapsulation of aspirin agents, the resulting hydrogels
were investigated as culturingmatrices for adipose tissue–derived stromal cells (ADSCs) to
evaluate their excellent biocompatibility and biological capacities on modulation of cell
proliferation and differentiation. We further found that the long-term sustained ASA in the
DN hydrogels could contribute to the anti-inflammation and osteoinductive properties,
demonstrating a new strategy for bone tissue regeneration.
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INTRODUCTION

Bone defects from the congenital bone diseases, limb trauma, tumors, and infectious diseases can
cause many severe problems and reduce the life quality of humans (Service, 2000; Kun Zhang et al.,
2019; Wang et al., 2019; Cheng et al., 2021). The conventional surgical operations for bone therapy
are generally limited because of the insufficient transplantation materials (Dimitriou et al., 2011). As
a gold standard method, autologous transplantation has still been hindered due to the lack of
autologous bone sources and potential risks of postoperative infection and nerve injury (Langer and
Vacanti, 1993; da Silva et al., 2007; Schmitt et al., 2012; Miller and Chiodo, 2016; Chiodo et al., 2010).
To address these troubles, a designable strategy of bionic hydrogel scaffolds based on advance
exogenous progenitor cells and controllable release of bioactive drugs or factors within the networks
is significantly important for effective therapy of bone defect (Stratton et al., 2016; Armiento et al.,
2020;Wang et al., 2020; Shang et al., 2021; Tang et al., 2021). The hydrogel scaffolds mainly comprise
synthetic hydrogels or naturally derived hydrogels, which have been widely utilized to exploit the
bone regenerative capacities on biocompatibility, biodegradability, network architecture, and
mechanical properties to emulate extracellular matrices for cell viability, adhesion, growth,
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proliferation, and differentiation in bone regeneration fields
(Malafaya et al., 2007; Seliktar, 2012; Sun et al., 2012; Dou
et al., 2020; Yu et al., 2020). Synthetic hydrogels including the
typical polyethylene glycol (PEG), poly(vinyl alcohol) (PVA),
poly(ε-caprolactone) (PCL), poly(acrylic acid) (PAA), poly(lactic
acid) (PLA), and polycarbonate urethane (PU) possess designable
structures and tunable properties (e.g., degradation time,
mechanics, and machinability) for fabrication of various
multifunctional scaffold products. However, the suspected
residues such as contaminants, unreacted reagents, surplus
monomers, catalysts, and other byproducts are difficult to
completely remove during the preparation process, thus
jeopardizing biosafety (Athanasiou et al., 1996; Zhang et al.,
2012; Sennakesavan et al., 2020; Zhou et al., 2020; Zhu et al.,
2022). In comparison, naturally derived hydrogels inherently
possess excellent biocompatibility and biodegradability for cell
growth to construct biological scaffolds. Chitosan, gelatin,
alginate, collagen, hyaluronan, and agarose are naturally
derived biopolymers, with easy availability of renewable
resources from the animals, plants, marine organisms, and
microorganisms (Kashirina et al., 2019; Ranganathan et al.,
2019; Zhai et al., 2019; Tang et al., 2020; Zou et al., 2021),
wherein the biocompatible gelatin with a peptide sequence
(Arg–Gly–Asp, RGD) and similar collagen composition has
been widely used in the fabrication of tissue engineering
scaffolds for cell adhesion, proliferation, and differentiation
(Moreira et al., 2019). However, the physical gelatin hydrogel
itself or extensively used chemical cross-linked methacrylated
gelatin (GelMA) hydrogels are often weak and brittle in
mechanical properties, precluding their bioapplications as
load-bearing scaffolds. Another representative chitosan (CS) is a
cationic polysaccharide widely used in the construction of drug
carriers and tissue engineering scaffolds. This sole alkaline CS
polymer is enzymatically degradable for satisfying the implanted
scaffolds, and its physical chain-entanglement network, rigid
backbone, and a number of natural amino groups could provide
the obvious electrostatic interactions with carboxyl-modified drugs
or bioactive factors; in this case, the CS-based hydrogels can be
used as an intelligent carrier to tailor the drug loading and delivery
behaviors (Yang et al., 2018; Abadi et al., 2021; Feng and Wang,
2022; Jiang et al., 2022; Peers et al., 2022; Yang et al., 2022; Zhang
et al., 2022). However, CS-based physical hydrogels are also poor in
mechanical property. Therefore, development of the naturally
derived composite hydrogels is an effective method for meeting
cell support and mechanical stability in the regenerative medicine.
Although many progresses had been made in the past few decades,
appropriate incorporation of therapeutics into hydrogels to
efficiently promote bone regeneration is still challenging.

Acetylsalicylic acid (ASA) is a widely used nonsteroidal anti-
inflammatory drug that can affect multiple biological processes
and the local microenvironment of mesenchymal stem cells in
MSC-mediated bone regeneration. It can elevate the osteogenic
differentiation through activation of osteoblasts and inhibition of
osteoclasts (Yamaza et al., 2008), but its rapid dissolution nature
and short half-life greatly limit its clinical applications (Bliden
et al., 2016), which urgently require a suitable scaffold and drug
delivery system to achieve sustainable transportation at the site of

bone repair. A recent study reported an aspirin-based tetra-PEG
hydrogel with a sustained release system to promote the
osteogenesis performance, but simultaneously satisfying
mechanics and cell proliferation is necessarily improved in
bone regeneration (Yunfan Zhang et al., 2019).

Here in this study, we designed and prepared an ASA-
encapsulated GelMA-CS DN hydrogel with therapeutic effect
on bone regeneration. Both naturally derived gelatin and CS
polymers exhibited strong biocompatibility associated with the
extracellular matrix for facilitating cell viability, adhesion,
growth, and proliferation. This DN hydrogel possessed suitable
network pores and moderate mechanical properties for the
construction of smart drug scaffolds. By means of the
electrostatic interactions between the oppositely charged
groups, the drug agents of carboxyl-modified ASA were in situ
encapsulated and well-distributed within the amine-abundant
DN hydrogels, which endowed the biocompatible and
biodegradable hydrogel with sustained aspirin delivery locally
and elucidated the dose-dependent therapeutic efficiency by
promoting anti-inflammation, osteogenic differentiation, and
bone regeneration. The resulting hydrogels have been broadly
utilized as scaffolds for therapeutic agents in tissue engineering.

MATERIALS AND METHODS

Materials
Aspirin (99%, J&K), gelatin (80–100 kDa, J&K), and CS (ca.
10 kDa, degree of deacetylation >90%, viscosity: 45mPa s) was
purchased from Shandong Jinhu Company. All other reagents
were purchased from Sigma-Aldrich and used as received without
further purification. Adipose tissue–derived stromal cells (ADSCs)
were supplied by China Infrastructure of Cell Line Resource.

Preparation of GelMA-CS and ASA-Loaded
GelMA-CS DN Hydrogels
The GelMA-CS DN hydrogel was simply prepared by adding the
stock solution of CS (3 wt%, 1 ml) to the stock solution of GelMA
(15 wt%, 1 ml) containing the photoinitiator followed by UV
irradiation. The ASA-loaded GelMA-CS DN hydrogel was
obtained by simultaneously mixing the appropriate amount of
ASA (10 or 100 µg/ml) into the aforementioned hydrogel
solutions under UV irradiation at room temperature.

Scanning Electron Microscopy (SEM)
Observation
SEM images of DN hydrogels were obtained at an acceleration
voltage of 5 kV on a JSM-6700F microscope (JEOL, Japan). The
freeze-dried samples were sputter-coated with a thin layer of Pt
for 90 s to prepare the conductive sample before testing.

Rheology of DN Hydrogels
Rheological characteristics of GelMA-CS and GelMA-CS@
ASA DN hydrogels were conducted on a rheometer (Thermo
Haake Rheometer, Newington, NH, United States). During
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the experiments, the hydrogels were spread on a parallel plate
(25 mm) and sealed with silicone oil to prevent solvent
evaporation. Frequency scan: 0.1–100 rad/s.
Temperature: 25°C.

Compressive Property
The compressive profiles of GelMA-CS and GelMA-CS@ASA
DN hydrogels were measured using an Instron 3365 testing
machine (Instron Co., Norwood, MA, United States). The
hydrogel samples were cut into cylinders for compressive
testing with a beam velocity of 1 mm/min.

In Vitro ASA Release From the Hydrogels
After preparation of the GelMA-CS@ASA hydrogels with a
diameter of 20 mm and height of 4 mm in a container, the
ASA-contained hydrogel was immersed into PBS solutions at
37°C, which were collected at appointed intervals of time. The
collected solutions at various times were tested using UV–visible
spectroscopy.

Cytotoxicity Assay
Cytotoxicity was carried out using the Cell Counting Kit-8 assay.
The ADSCs (2 × 103/100 µl/well) were first seeded in 96-well
microplates and incubated at 37°C in 5% CO2 for 12 h to obtain a
monolayer of cells. Then, hydrogel samples were added to each
well and incubated for the predetermined time. After 1, 2, 3, 4
,and 5 days of incubation, the cell culture medium was removed
and then 100 µl of fresh culture medium and 10 µl of CCK-8 were
added to the 96 wells and incubated for 2 h. Finally, the
absorbance was read at 450 nm on a microplate reader
(Thermo Fisher Scientific, Waltham, MA, United States). Cell
viability (%) was calculated using the following equation:

Cell viability(%) � [(Asample − Ablank)/(Acontrol − Ablank)] × 100%.

The data represented the mean of five independent experiments
and were expressed as mean ± SD.

Live/Dead Staining Assay
Cell live and dead viability was determined by using a live/dead
viability assay, according to the manufacturer’s instruction. The
staining reagent mixture, a red fluorescent propidium iodide (PI)
stain and a green fluorescent (AM) stain, was added to the
reaction mixture and incubated in the dark at a room
temperature for 15 min. The corresponding fluorescence
emission of ADSCs was then assessed using confocal laser
scanning microscopy (CLSM).

Alizarin Red S (ARS) Staining
After 14 days of osteogenic induction, ADSCs were fixed and
rinsed in the same way as ALP staining by 1% of the ARS (Sigma-
Aldrich) dye for 15 min at room temperature, which were then
rinsed by PBS solutions three times. Finally, the stained ADSCs
were dried and photographed. ImageJ2 (NIH, United States) was
utilized to measure the stained areas for semi-quantitative
analysis (n = 3).

Semi-Quantitative RT-PCR
The total RNA was extracted using TRIzol reagent (Invitrogen),
and cDNA was prepared from 200 ng of total RNA by using the
RevertAid™ HMinus First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific,Waltham, MA). Template PCRs were performed
after 33 cycles of amplification with the adjusted annealing
temperature. The primers sequences are listed in Table 1.

Statistical Analysis
All results were presented as mean and standard deviation
(mean ± S.D.) of 3–6 independent experiments. The statistics
were analyzed using SPSS software (ver. 13.0; SPSS Inc.,
United States). P < 0.05 was considered to be statistically
significant.

RESULTS AND DISCUSSION

Preparation and Characterization of
GelMA-CS and GelMA-CS@ASA DN
Hydrogels
The schematic illustration of GelMA-CS@ASA DN hydrogels is
demonstrated in Figure 1. Under UV irradiation, the cross-
linking gelatin network was first rapidly formed in situ to
facilitate gel formation. In view of the intrinsic properties of
physically electrostatic interactions and chain-entanglement
effects between the gelatin and CS chains, a second
noncovalent robust network was gradually formed to enhance
the mechanical stiffness. Meanwhile, the therapeutic ASA agents
could be well-encapsulated and distributed around the gelatin
and CS chains by electrostatic interactions within the hydrogels,
which presented a sustained release behavior to prolong the
maintenance time of effective drug concentration in situ for
bone regeneration. As a sole alkaline polysaccharide, CS
possessed a number of natural amino groups that could
generate electrostatic interactions with carboxyl-modified ASA
drugs to guide the controlled drug release. In addition, gelatin had
a peptide sequence (Arg–Gly–Asp, RGD) with excellent gelling
performance and favorable advantages in terms of cell
attachment, proliferation, and differentiation for application in
tissue engineering.

Figure 2A showed the 1H NMR spectrum of GelMA with a
simple and effective anhydride reaction of gelatin in solutions.
The morphologies of DN hydrogels were observed by SEM
images in Figure 2B, which showed the similar inner porous
networks of GelMA–CS and GelMA–CS@ASA DN hydrogels.
No significant difference was found between these two groups
(Figure 2B). Hydrogel scaffolds with suitable pore size and
porosity could allow host cell infiltration and the exchange of
nutrition and metabolic waste, which provided more chance to
enable the sustained release of the encapsulated ASA drugs, cell
entry, and substance exchange intra–extra of the hydrogels.
Similar to the previous literatures, we encapsulated ASA in the
GelMA-CS hydrogel without changing its morphological
architecture, indicating that the introduction of electrostatic
interaction between the carrier and drug molecules can
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significantly improve drug release kinetics (Mauri et al., 2017).
We then carried out rheological experiments to confirm the
formation of the GelMA-CS@ASA hydrogel and investigate its
mechanical property. As shown in Figure 2C, the storage
modulus (G′) obviously surpassed the loss modulus (G″)
throughout the whole frequency range, confirming the
formation of a hydrogel even with the addition of ASA drug
molecules. In addition, these hydrogels also possessed the similar

compressive stress in Figure 2D that was beyond the traditional
gelatin hydrogels, revealing the importance of the rigid CS
backbone on improving the mechanical strength of the DN
hydrogel. These results indicated that ASA loading did not
alter and affect the microarchitectures and mechanical
performances of DN hydrogel scaffolds.

Furthermore, we detected the release profile of ASA loaded
in the GelMA-CS@ASA DN hydrogel in vitro. As shown in
Figure 3, a constant and sustained release of the ASA drug was
observed up to 14 days, which was due to the electrostatic
interactions of CS with carboxyl-modified ASA drugs to
control drug release. In the first 2 days, a cumulative release
of the ASA drug quickly reached round 33%. This initial burst
ASA release could afford sufficient stimuli to meet the
requirement of the defect areas. Then, the release rates of
ASA approached its plateaus on the 6th day, and the
cumulative release rate of ASA reached nearly 80% on the
14th day, which indicated a sustained ASA release profile from
the DN hydrogel.

TABLE 1 | Sequences of quantitative polymerase chain reaction primers.

Gene Forward Primer (59-39) Reverse Primer (39-59)

Runx2 ATGCTTCATTCGCCTCACAAAC CCAAAAGAAGTTTTGCTGACATGG
ALP CCCAAAGGCTTCTTCTTG CTGGTAGTTGTTGTGAGC
GAPDH ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA

RUNX2, runt-related transcription factor 2; ALP, alkaline phosphatase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

FIGURE 1 | Schematic illustration of the fabricated ASA-encapsulated
GelMA-CS DN hydrogels.

FIGURE 2 | (A) 1H NMR spectrum of GelMA. (B) SEM images of (a)GelMA-CS and (b)GelMA-CS@ASA hydrogels. (C) Rheological profile of the GelMA-CS@ASA
hydrogel. (D) Compressive curves of GelMA-CS hydrogels with or without ASA loaded.
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Cell Viability and Proliferation
Cell live–dead staining is a green fluorescent labeling technique
using Calcein-AM as a dye for the identification of cell death/live
status, which was used to intuitively assess the biocompatibility.

After coculturing with the hydrogel scaffolds for 24 h, most cells
could crawl along the 3D printed implant pillars to form a three-
dimensional solid adhesive morphology. Figure 4A confirmed that
hydrogels exerted low cytotoxicity on ADSCs and ADSCs
maintained a good survival status. Particularly, there were even
fewer dead cells stained with PI than in the TS group in some areas,
manifesting the high viability in the early stages of 24 h.
Quantitatively, the GelMA-CS@ASA DN hydrogel could also
promote cell viability and cell growth. To investigate if this
hydrogel was able to support cell growth and proliferation, a
long-term proliferation of the CCK-8 assay was conducted after
culture with the GelMA-CS@ASA hydrogel for 5 days. Figure 4B
further testified the excellent biocompatibility of hydrogel scaffolds
at these time points with no significant difference among the
groups. The cell proliferation rate was slightly increased in the
initial 3 days after coculturing with the DN hydrogel and showed a
significant increase on the 5th day of incubation, as observed in
Figure 4C, revealing favorable cell viability, growth, and
proliferation capacity of this kind of DN hydrogel.

Osteogenic Differentiation of ADSCs in the
DN Hydrogel Scaffolds In Vitro
Ideal engineering bone repair scaffolds should enhance the
osteogenic differentiation of ADSCs. To reveal the effect of

FIGURE 3 | Release behavior of aspirin from the GelMA-CS@ASA DN
hydrogel.

FIGURE 4 | Cytotoxicity of GelMA-CS@ASA hydrogels in vitro. (A) Live/dead staining of ADSCs. Cells in green manifest living ADSCs, while cells in red manifest
dead ones. (B) Cell viability and (C) proliferation was detected by using the Cell Counting Kit-8 after cultivation for various time periods.
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hydrogel scaffolds on the osteogenic differentiation in vitro, we seeded
the ADSC cells on the control, GelMA-CS, GelMA-CS@ASA (10 μg/
ml), and GelMA-CS@ASA (100 μg/ml) DN hydrogels. ARS staining
and qPCR assay were used to examine their osteoinduction abilities.
As shown in Figure 5A, the GelMA-CS@ASA DN hydrogel could
significantly increase the calcification nodule formation capacity of
ADSCs after 14 days of osteogenic induction. Real-time PCR showed
that the expression of osteogenesis-related genes in the GelMA-CS,
GelMA-CS@ASA (10 μg/ml), and GelMA-CS@ASA (100 μg/ml)
DN hydrogels was higher than that in the control group (Figures
5B,C). The mRNA levels of osteogenic markers of typical ALP and
Runx2 on the cell inoculated in the GelMA-CS@ASA DN hydrogels
were higher than those in the GelMA-CS groups, suggesting that the
ASA agents could effectively promote osteogenic differentiation of
ADSCs for a long period. With the increase in ASA concentration
from 10 to 100 μg/ml (Zhang et al., 2022), mRNA expression levels of
osteogenic markers were significantly increased compared with those
of the control group, further demonstrating its osteoinductive effects
on osteogenic differentiation in vitro.

CONCLUSION

In summary, we developed an aspirin-basedGelMA-CSDNhydrogel
with sustained drug release behavior in solutions, which could not
only regulate the microenvironment for supporting cell viability but
also promote cell growth and proliferation to facilitate bone
regeneration. This GelMA-CS@ASA DN hydrogel possessed
porous structures, good stability, and satisfactory biological and
mechanical properties. The cytotoxicity assay indicated excellent

cell proliferation capacity, while the sustained ASA release in situ
could regulate the microenvironment to promote osteoblast
differentiation. In vitro results further verified that this kind of
hydrogel was capable of facilitating bone regeneration. We believe
this finding may provide a promising option for developing
translational ASA formulation and construction of multifunctional
tissue engineering scaffolds with controlled drug delivery in future.
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FIGURE 5 | Effects of GelMA-CS@ASADN hydrogels on the ADSC osteogenesis. (A)Osteogenic differentiation detection based on Alizarin Red. (B)Quantification
of calcification depositions. (C) mRNA analysis of osteogenic markers of ALP and Runx2. Statistically significant differences in comparison with (a) control untreated
cells, (b) GelMA-CS hydrogel, (c) GelMA-CS@ASA (ASA, 10 μg/ml) hydrogel, and (d) GelMA-CS@ASA (ASA, 100 μg/ml) hydrogel. ***p < 0.001, **p < 0.01, *p < 0.05.
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