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Abstract

Recent work has suggested that prefrontal cortex (PFC) plays a key role in context-dependent 

perceptual decision-making. Here we address that role using a new method for identifying task-

relevant dimensions of neural population activity. Specifically, we show that PFC has a multi-

dimensional code for context, decisions, and both relevant and irrelevant sensory information. 

Moreover, these representations evolve in time, with an early linear accumulation phase followed 

by a phase with rotational dynamics. We identify the dimensions of neural activity associated with 

these phases, and show that they do not arise from distinct populations, but of a single population 

with broad tuning characteristics. Finally, we use model-based decoding to show that the transition 

from linear to rotational dynamics coincides with a plateau in decoding accuracy, revealing that 

rotational dynamics in PFC preserve sensory choice information for the duration of the stimulus 

integration period.

Introduction

A large body of work has aimed to identify the precise computational roles of various brain 

regions during perceptual decision-making1–8. Recent interest has centered on prefrontal 

cortex (PFC), which has been shown to carry a wide range of sensory, cognitive, and motor 

signals relevant for integrating sensory information and making decisions1;4;6;7;9–12. A 

barrier to understanding PFC’s functional role, however, is that PFC neurons exhibit mixed 

selectivity, characterized by heterogeneous tuning to multiple task variables13. These 

idiosyncratic single-neuron responses make it difficult to gain insight into the population-

level representation of different sensory and cognitive variables.14–16.
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Here we analyze the population-level representation of information in PFC using model-
based targeted dimensionality reduction (mTDR), a general method for identifying the 

dimensions of population activity that encode information about different task variables over 

time. We applied this method to electrophysiology data recorded during a context-dependent 

perceptual decision-making task1, in which a context cue determined what kind of sensory 

information (color or motion) should be used for making a binary decision (Figure 1a,b). In 

contrast to previous findings, our analysis revealed that the encoding of decisions, context, 

and relevant as well as irrelevant stimulus variables exhibited rotational dynamics in a multi-

dimensional subspace, involving modulation of two or more orthogonal neural activity 

patterns over time.

We also introduce a new unsupervised method, sequential principal components analysis, for 

decomposing multidimensional representations into a sequence of axes that reflect the 

temporal order in which information about each variable becomes available. This method 

reveals that multi-dimensional trajectories can be decomposed into an early phase with 

linear dynamics, followed by a later phase with rotational dynamics. We used model-based 

decoding under the mTDR framework to show that the transition between these phases 

corresponded to a saturation in decoding accuracy for sensory as well as decision 

information, suggesting that the population did not continue to accumulate sensory 

information during the rotational phase.

Taken together, these results substantially extend the prevailing picture of decision encoding 

in PFC: rather than integrating evidence along a single dimension of population activity, 

with amplitude that reflects accumulated evidence17, neural population activity enters a 

phase of rotational dynamics that maintains information about the choice as well as relevant 

and irrelevant sensory information over the entire course of a single trial.18–20.

Results

Model-based targeted dimensionality reduction

To characterize population-level representations in PFC, we introduce a new method, model-
based targeted dimensionality reduction (mTDR), which seeks to identify a set of 

dimensions of population activity that carry information about distinct task variables. We 

illustrate the basic intuition for mTDR with a hypothetical 3-neuron population in a 

perceptual decision-making task (Figure 2). For this example, there are two task variables of 

interest: a sensory stimulus x s and a binary decision variable x c. These variables modulate 

the firing rates in different ways producing a diverse pattern of population responses across 

conditions (Figure 2a).

The population-level response can be described as trajectories in a 3-dimensional state 

space, where the coordinates of each axis correspond to the firing rates of each of the 

neurons (Figure 2b). Although the full space is 3-dimensional, the trajectories exhibit low-

dimensional structure that is not apparent from the firing rates alone. Specifically, the 

population activity is confined to a 2D plane defined by two axes: a 1D “stimulus axis” (blue 

arrow) captures information about the stimulus strength, while a 1D “decision axis” (red 

arrow) captures information about the choice. Projecting the population response onto each 
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of these axes reveals a timecourse of information about stimulus level and choice, 

respectively (Figure 2c).

The goal of mTDR is to identify these encoding subspaces from neural population data. For 

our three-neuron example, the mTDR model describes the time evolution of the population 

response y(t), a vector of 3 neural firing rates, as:

y(t) = xstim ⋅ wstim ⋅ sstim(t) + xchoice ⋅ wchoice ⋅ schoice(t) + noise, (1)

where x stim is the stimulus variable, which takes one of six values from [−3, −2, −1, +1, +2, 

+3] indicating the level of sensory evidence, and x choice denotes the decision variable, 

which takes on values of ±1, indicating a positive or negative choice. The activity vectors w 

stim and w choice are patterns of activity across the three neurons specifying the stimulus and 

choice axes (blue and red arrows in Figure 2b), and the time-varying functions sw stim(t) and 

s choice(t) are temporal profiles for the activity along stimulus and choice axes, respectively 

(Figure 2c). Noise is added to each firing rate to account for variability not due to variations 

in the trial type.

Although the choice and decision subspaces in this example are both 1-dimensional, the 

mTDR model easily generalizes to higher dimensionality and for an arbitrary number of task 

variables. Let Y denote a neurons × time matrix of firing rates for a single condition defined 

by task variables {x 1, … xP}. The mTDR model decomposes population activity as:

Y = x1W1S1
⊤ + ⋯ + xPWPSP

⊤ + noise (2)

where W p is neurons × rp matrix whose columns span a rp-dimensional encoding subspace 

for task variable xp, and S p is a time × rp matrix of temporal profiles that describe the 

timecourse of population activity within this subspace (Supplementary Math Note Figure 1). 

This model-based formalism represents a generalization of targeted dimensionality reduction 

(TDR)1, which allows us to identify both the number of activity patterns used to encode 

different variables and the timecourses with which these patterns are recruited. (For details 

see Methods and Supplementary Note 2).

Population coding of task variables in PFC

To investigate population-level coding in PFC, we applied mTDR to neural data recorded 

from an area in and around the frontal eye fields (FEF) of two monkeys performing a 

context-dependent decision-making task1 (see Methods, Experimental details) In this task, 

monkeys were presented with a visual stimulus that contained colored, moving dots on each 

trial (Figure 1a). A context cue (yellow square or blue cross) appeared before each trial and 

instructed the monkeys to attend either to the color (red vs. green) or the motion (left vs. 

right) of the dots. In the color context, the animal had to attend to color and ignore motion, 

making a saccade to the red (green) target if the majority of the dots were red (green). In the 

motion context, the animal had to attend to motion and ignore color, e.g. making a left 

(right) saccade if the dot motion was left (right).
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Task difficulty was controlled by varying the fraction of red vs. green (and coherently 

moving) dots, across 6 levels of coherence for each stimulus dimension (Figure 1b). 

Following a randomized delay the monkey was cued to indicate its decision by making a 

saccade to one of the two targets.

Classical approaches to analyzing data of this type involve analyzing average firing rates, or 

peristimulus time histograms, for different task conditions (conditional PSTH’s) such as “all 

trials with the strong rightward motion and a rightward choice”. For this dataset, the 

conditional PSTHs of individual neurons exhibited heterogeneous tuning to the different task 

variables1 (Figure 1c). This hetereogeneity, and the fact that each neuron encodes several 

task variables, makes it difficult to obtain a clear picture of the population-level 

representation of task variables from an examination of single-neuron PSTHs.

To overcome these limitations, we used mTDR to determine the dimensionality of 

population-level representations of the task variables. The mTDR model included a regressor 

for each of 6 task variables: color strength, motion strength, context, and choice, as well as 

two additional terms for the absolute values color and motion strength. Absolute value terms 

were included due to the observation that some neurons displayed nonlinear encoding of 

stimuli, consistent with observations of nonlinear mixed selectivity13. The model also 

included a term for the condition-independent firing rate, which reflects temporal 

modulation not due to the task variables (see Methods for details). To determine the 

dimensionality of the encoding of each task variable, we used a greedy selection method 

based on the Akaike information criterion21 (AIC) that added dimensions based on their 

contribution to the model prediction performance22. We validated this approach with 

simulation experiments and with cross validation on the real data, which we found to 

slightly underestimate dimensionality due to the need to divide data into training and test 

sets (Figure 3c).

We found that population-level representations of all task variables were at least two-

dimensional, and at least three-dimensional in monkey A (Figure 3; Supplementary Table 

Supplementary Table 1). Figure 3a shows the variable-specific components revealed by 

mTDR for an example neuron. The first three columns show the timecourse of this neuron’s 

activity within the first three dimensions of the corresponding variable’s encoding space. 

The timecourses represent the columns of the temporal component matrices Sp, scaled by 

the levels of each of the task variables xp (eq. 2). Thus, each trace represents the inferred 

contribution of each dimension to the neuron’s PSTH from the different settings of the 

associated task variable. The rightmost column of Figure Figure 3a shows the model-based 

estimate of the neuron’s net time-varying response to each task variable. Summing these 

responses gives the model-based reconstruction of the neuron’s PSTH (“model PSTH”) for 

each task condition; this matches the neuron’s true PSTH to high accuracy (bottom). 

Because each neuron weights each dimension independently, the fitted model collectively 

accounts for a wide variety of conditional PSTHs (Figure 3b). Note that the data were not 

temporally smoothed and no smoothness constraints were included in the model, indicating 

that the smoothness of the timecourses is a property of the data.
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To examine whether the model was flexible enough to capture the diverse response profiles 

observed across the population, we calculated the R 2 of the conditional PSTH for each 

condition using held-out data. We found that the R 2 of PSTH reconstructions increased with 

firing rate, with some neurons achieving R 2 greater than .9 (Figure 3d). The dependence of 

R 2 on firing rate likely reflects higher signal-to-noise ratio in higher firing-rate neurons.

We also measured how much of the variance from held-out trials could be explained by each 

of the learned subspaces alone (Figure 3e). We defined each subspace by a set of 

orthonormal vectors ordered by the amount of variance explained (for details see Methods 

and Supplementary Note 4.1). We found that all dimensions contributed to the variance of at 

least some neurons, but that different neurons had their variance distributed differently 

across components. For example, for the decomposition in Figure 3a, dimension 3 of the 

abs(motion) axis contributes more than dimension 1 despite the first dimension describing 

most of the variance across the population. These findings verify that the mTDR model 

captures high-variance dimensions and that the model describes a large fraction of the 

variance of the PSTHs for most neurons, despite the model being relatively low dimensional.

State-space trajectories reveal dynamic encoding

To explore the dynamics of population-level encoding during decision formation, we 

examined projections of neural activity from held-out trails onto the estimated subspaces 

(Figure 4a–d; Extended Data 1, Extended Data 3; Supplementary Videos). In contrast to 

previous findings1;8, we found that the encoding of the stimulus variables (motion and color) 

was not transient, but persisted throughout the recording epoch. Projections of population 

activity onto a single motion or color axis identified with classic TDR suggested that sensory 

axis projections decay rapidly after stimulus onset1. However, mTDR revealed that stimulus 

information persists by rotating within multi-dimensional motion and color subspaces 

(Figure 4a,b).

More generally, we observed that for nearly all subspaces, the neural trajectories on nearly 

all task conditions initially moved outward along a single axis and then began rotating in a 

consistent direction (Figure 4a–d). This observation prompted us to identify the precise 

orientation of this initial axis and when, or if, the trajectories curved into a second 

dimension. We therefore sought a procedure that would identify an orthogonal set of axes 

ordered by the times at which population activity first projects onto them. The resulting 

method, which we call “sequential principle components analysis” (seqPCA), identifies the 

direction the trajectories are moving and the time at which a change in direction occurs (see 

Methods, Supplementary Note 9). We used seqPCA to obtain an interpretable set of axes for 

the subspaces identified by mTDR.

Using seqPCA, we identified a orthonormal basis for each subspace, with axes that we 

labelled as “early,” “middle,” and “late”, based on the times at which they became active 

during the task period. (Figure 4a–d). By definition, the early axis accounted for the majority 

of the variance in neural trajectories during the time period immediately after stimulus onset. 

Variance that was not described by the early axis but emerges sometime after stimulus onset 

is captured by the middle axis. The late axis accounts for activity that is not accounted for by 

the early and middle axes, but is present as the epoch transitions from the stimulus 
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presentation to the delay period. Projections onto the seqPCA axes show clear times at 

which task variable information becomes available onto each axis (right-side panels in 

Figure 4a–d). For all subspaces, we found that the early epoch is characterized by loading of 

the projections almost exclusively onto a single axis. In contrast, the middle and late epochs 

were two dimensional, or higher.

We found that the transience of the early stimulus axes resembles that of the stimulus 

encodings using the TDR method1. Indeed, we found that our early axis was well correlated 

with the TDR axes (see Supplementary Note 10). It is therefore apparent that the middle and 

late seqPCA axes permit the stimulus information to persist. We compared projections onto 

the subspaces learned by mTDR with the 1D axes of TDR (see Supplementary Note 10) and 

found that while stimulus information appeared transient for TDR, the mTDR projections 

were both larger and more persistent (Figure 4e, Extended Data 4). Finally, the population-

level representation of choice, context, abs(motion), and abs(color) also exhibited multi-

dimensional structure (Figure 4c,d; Extended Data 1). We describe this structure and discuss 

its consequences in subsequent sections.

Trajectories exhibit rotational dynamics

The projections of neural population activity onto motion, color, choice, and context 

exhibited rotations after early-axis activity reached a peak and middle-axis activity began to 

increase (Figure 4a–d). This observation is supported by the fact that the trajectories are ≥ 2 

dimensional during this period (Figure 4a–d, right panels). While rotations are inherently 

≥2-dimensional, the fact that we found trajectories to be ≥2-dimensional need not imply 

rotations. We therefore identified the plane of greatest rotation of the trajectories using 

jPCA18 (Extended Data 2, Extended Data 6), and observed clear rotational structure. The 

two dimensions of the jPCA plane accounted for a relatively large amount of the variance 

for all task variables (Supplementary figure 1). Condition-shuffled projections yielded no 

apparent sequential or rotational structure (Supplementary Note 5, Supplementary figure 2, 

Supplementary figure 3).

In order to rigorously examine the presence of rotational dynamics, we examined the angle 

of rotation that the trajectories traversed from the beginning of the middle epoch to the end 

of stimulus viewing (Figure 4f). We reasoned that for trajectories to be consistent with 

rotational dynamics they would have to have monotonically changing angle of rotation. We 

compared the angle of rotation to samples from the null distribution corresponding to the 

maximum entropy distribution with the same second order moments as the data23 (Figure 4f, 

see Supplementary note 5 for details). We found evidence for rotational dynamics in motion, 

color, choice, and context subspaces, although rotations were less consistent with the 

trajectories of the color encoding for monkey F (Extended Data 3, Extended Data 6. These 

results indicate that rotational dynamics are not trivially present in these data and that we 

observe them in most of the linear subspaces examined.

Projections onto the subspaces for the absolute values of motion and color (abs(motion), 

abs(color)) were qualitatively different from those of the linear terms (Extended Data 1). 

While they clearly encoded the absolute values of the stimuli, evidence for rotational 

dynamics was not significant (Figure 4f, Extended Data 2, Extended Data 1).
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Characterizing neural selectivity across subspaces

We used the mTDR model and seqPCA to examine the how tuning properties of these cells 

changed over time and the relationships between tuning between cells. Individual neurons 

exhibited complex mixtures of early, middle and late responses (Figure 5a). While the 

population tuning of some task variables (abs(motion), abs(color)) were dominated by the 

early response none of the task variables were found to display clustering, but a continuous 

distribution of tuning across all three seqPCA axes. Late axes tended to explain less of the 

population variance, especially for color, choice, and abs(motion), but were responsible for 

explaining the majority of the variance for at least some neurons. This is evident from the 

dirth of units in the “late” vertices of Figure Figure 5a.

Also notable was the low density of cells near the early/late axis (i.e. left-arm of the ternary 

plots in Figure 5a). A low density of cells near the early/late edge of the plot indicates that 

there are few cells that encode a task variable at the beginning and end of stimulus viewing 

but lose sensitivity to a task variable in the middle of stimulus viewing. The lack of cells 

with a gap in the timing of encoding implies that individual cells tend to encode task 

variables in continuous epochs, even if only transiently.

The subspaces identified by mTDR for motion, color, and choice, were positively correlated 

(Figure 5b, c). More specifically, the weights defining the motion and color bases were 

correlated with the choice weights but not with one another, indicating that motion and color 

representations both contributed to the choice encoding but that there was little cross-

stimulus interference between representations.

Accurate stimulus decoding coincided with the onset of rotational dynamics

The mTDR model provides a framework for population decoding by maximum likelihood 

(see Supplementary Note 6). This framework allows our decoding analysis to be consistent 

with the results of dimensionality reduction. We can therefore investigate how and when the 

features of the low-dimensional trajectories translate into putatively perceived stimuli and 

behavior, and whether or not these features may be read out by downstream populations. 

While decoding of task variables does not imply a causal role for the encoded variables in 

PFC function, decoding analysis can provide a clearer picture of the dynamics and fidelity of 

task variable encoding.

For decoding analyses with monkey A, we used 4-fold cross validation in which the held out 

trials were used to produce 100 pseudosamples (with replacement) for decoding (for monkey 

F we used 2-fold cross validation with similar results). The resulting decoded values were 

averaged over pseudosamples and cross validation folds.

Stimuli could be accurately decoded within ≈150ms of stimulus onset for the motion 

stimulus and within ≈200ms for the color stimulus, roughly corresponding to the time of 

transition between the early and middle seqPCA axes (Figure 6a). The values of the decoded 

stimuli were constant by the start of the middle epoch for both contexts and the variance of 

the decoding decreased dramatically up to this time (Figure 6b). Thus, the change in 

population dynamics (early-to-middle transition) within the stimulus subspace was 

consistent with decoding accuracy and stability. The decoded values are slightly biased 
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toward zero in the irrelevant context, suggesting some gating of information across contexts. 

Moreover, we found that the decoded stimulus values of the same sign were more closely 

spaced than the true stimuli. This effect is consistent with observations of stimulus encoding 

in FOF6 (a rodent analogue for the FEF) where accumulated evidence was found to be 

nonlinearly encoded.

To examine the content of stimulus encoding it is often informative to examine error trials. 

We therefore examined the decoded stimulus for error trials using the weakest stimulus 

strengths (dashed lines, Figure 6c, Extended Data 7c). For these data only the weakest 

stimulus strengths had enough error trials to provide reliable statistical analysis1. For 

monkey A, we found that the decoded stimulus values on error trials were similar to correct-

trial decoding but were opposite in sign; suggesting that the origin of errors was (on average) 

an incorrect percept.

Choice Decoding

In order examine how the decision may have evolved over the course of stimulus viewing we 

next studied how and when decision information became available in PFC and the dynamics 

of choice encoding. While we encoded stimuli as continuous-valued variables in our model, 

choice was encoded as binary. Therefore, we examined the log likelihood ratio (LLR) (for 

details, see Supplementary Note 6.3) over time of pseudotrials sampled from held-out data 

between the likelihood of a preferred, versus an anti-preferred, choice (Figure 7a).

The magnitude of the LLRs increased monotonically over time indicating an increasing 

strength of the decision signal. However, the magnitude of the LLR did not differ strongly 

with respect to context, direction of decision, stimulus strength, or whether the trials were 

correct or error trials (dashed lines, Figure 7a). By transforming the LLRs into decision 

probabilities (Figure 7b, see Supplementary Note 6.3) we could examine a moment-by-

moment probability of the animal’s choice and estimate when the decisions were 

unequivocal. We found that the choices could be discriminated with better than 95% 

accuracy as early as 300-350ms following stimulus onset (Figure 7b). This timing 

corresponded to the time of transition between the early and middle seqPCA axes for choice. 

Similar results were observed for monkey F (Extended Data 8). These results suggest that on 

average the animals had made their decisions well before stimulus offset regardless of the 

stimulus coherence and that decisions were coincident with a change in dynamics from a 

linear to rotational within the choice subspace.

Restricting the choice subspace to only the early, middle, or late axes the LLRs displayed the 

same invariance to choice, stimulus strength, context, and correct/error trial identity as the 

full model. For both monkeys, the early axis provided the majority of the available 

information about the decision and early axis decoding alone is nearly as accurate as the full 

model (Figure 7d, Extended Data 8d). However, the middle and late axes also displayed 

information about the choice later during stimulus viewing.

Because we can decode the animals’ decisions with the early axis alone, it would seem as 

though the middle and late axis information is redundant and it is unclear what the purpose 
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of these axes are. Similar multidimensional encoding of decision has been observed 

previously in premotor cortex24.

Context Decoding

We examined the context signal using the same LLR method as our analysis of choice 

(Extended Data 9a, Extended Data 10a). The context evidence did not differ strongly across 

decision, stimulus strength, or whether the animal provided a correct or incorrect response. 

Transforming the LLRs into a probability of the perceived context (Extended Data 9b, 

Extended Data 10b) showed that the correct context could be identified for both monkeys on 

the majority of pseudotrials from the first time point, which is consistent with the fact that 

the context cue was presented 650 ms before stimulus onset1. These patterns hold for LLRs 

of error pseudotrials as well as for decoding restricted to only the early, middle, or late 

subspaces (Extended Data 9c,d, Extended Data 10c,d). These findings demonstrate that 

accurate context information was available in PFC for the vast majority of both correct and 

error trials, suggesting that confusion about context was not a significant source of errors.

Discussion

Our analyses have shown that PFC encodes individual task variables in distinct 

multidimensional subspaces within which the representation changes over time. The 

population activity patterns representing each task variable tended to follow a stereotyped 

pattern of 1D/linear encoding, followed by rotational dynamics. Our ability to make these 

observations was enabled by a new method of dimensionality reduction that is based on a 

generative model of the data.

We found that the dynamic nature of encodings in PFC requires multiple dimensions of 

neural population activity for accurate characterization. In particular, only multidimensional 

encoding, as opposed to 1D encoding, captures the persistence of stimulus information in 

PFC throughout the stimulus-viewing epoch (Figure 4a,b). This finding complements the 

original report of these data1, suggesting that previously reported transient stimulus 

encoding in PFC is only consistent with the early encoding axis (Figure 4e). While the 

mechanisms of selection and integration proposed in Mante et al.1 are consistent with the 

early evolution of trajectories revealed here, by themselves they cannot readily explain the 

following rotational dynamics. Our observations resemble multi-dimensional stimulus 

coding that mixes transient and persistent components24 as well as population code 

“morphing”16, where the optimal weights for decoding from population activity change over 

time, although the results shown here are on a time scale that is nearly an order of magnitude 

faster than previously reported.

While we validated our method for identifying the “true” dimensionality of the data using 

simulation experiments, it is unclear if the dimensionality would differ under different 

experimental conditions. Specifically, the dimensionalities we learned are likely to be 

influenced by a variety of factors25 including the sample size, the fraction of neurons 

observed, the intrinsic model dynamics, and the task complexity. Some of these factors may 

explain the differences in dimensionality between the two animals in the present study, 

where the dimensionalities of monkey F were lower than monkey A in correspondence with 
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smaller sample sizes and fewer recorded cells. However, we emphasize that during the early 

encoding, nearly all trajectories are 1D and only afterward are ≥2D. The fact that trajectories 

are multidimensional after the first transition may be a reflection of their rotational nature 

during this epoch. Rotations are inherently ≥2D since they require both sine and cosine parts 

for each axis of rotation.

The mTDR method is distinct from unsupervised dimensionality reduction methods like 

PCA or factor analysis in that it uses information about the experimental variables of interest 

on each trial. The method is also distinct from previously proposed supervised 

methods1;26–29 in its use of an explicit generative model to describe the transformation from 

task variables to neural activity patterns. This distinction not only allows us to make 

predictions of population responses to experimental contingencies not observed in the data 

(something not possible for methods based on the conditional PSTHs like dPCA without 

model-based interpolations27) but it allows us to apply the tools of probabilistic modeling 

and inference to estimate both the model parameters and the dimensionality of the encoding.

Our approach (eq. 5) is similar in principle to that used by Mante et al.1 and other linear 

regression models used previously (see examples30–33). However, ours is distinguished in its 

explicit specification of low-rank regression parameters and neuron-specific noise variance. 

Future iterations of our model may be improved by accounting for nonlinear mapping of 

stimuli onto neuronal responses30, by modeling of noise correlations between 

simultaneously recorded neurons, and accounting for variable trial lengths.

Much theoretical development has rested on the notion that single-neuron spike rates map 

onto an evidence accumulator but recent evidence in the frontal orienting field (FOF, a 

rodent analogue of the FEF) has challenged this view6, suggesting that this region can be 

better described as maintaining a running motor plan (saccade for FEF, orienting for FOF) 

based on the evidence accumulated6;7. While our analysis does not aim to suggest a causal 

role of FEF, the results of the present study could be interpreted as supporting this view, 

where the early dynamics represent an evolving decision and the rotational dynamics 

indicate an evolving motor plan, but more work is needed to determine the precise role of 

FEF, and PFC more generally.

Functional significance of sequential subspaces

Our analysis revealed temporally segregated dynamics with early-axis activity transitioning 

to middle-and late-axes, with rotations dominating at around 200–400 ms after stimulus 

onset (Figure 4, Fig. Extended Data 2). The temporal separation of the early/linear and 

rotational subspaces suggest that these are subspaces within which distinct computations are 

evolving18;20;34 or have independent sets of downstream targets19.

With the present data we can only speculate about what the nature of these different 

computations must be but the present analysis indicates the possibility that the early-epochs 

are concomitant with the temporal window that decision making is performed. For example, 

the timing of transition between early and middle epochs is consistent with the timing of 

accurate decoding of the animals’ decisions from single pseudotrials (Figure 7, Extended 

Data 8). This time frame is consistent with the timing of saturation of the chronometric 
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curve for the traditional kinematogram task35–37, with the distribution of step times in the 

stepping model of evidence accumulation38, and with early weighting of evidence in visual 

discrimination tasks39. This evidence suggests that the transition from linear to rotational 

dynamics is a correlate of decision commitment.

A similar sequence of dynamics has been observed in population activity from premotor 

cortex that corresponds to distinct “preparatory” and “movement” epochs18–20;34. However, 

in these studies the transitions in dynamics could be linked directly to an overt action (arm 

movement) while our animals would not have made an overt action (saccade to target) until 

300-1,500 ms after the end of our analysis window1. Therefore, if the animal has made its 

decision then it would have done so only covertly.

These distinctions, however, may be superficial. The qualitative features of our results reflect 

those in motor cortex strikingly well18–20;34 suggesting that common mechanisms may be at 

work in both motor execution and decision making. Indeed, FEF is defined as a region that 

elicits eye movement under stimulation40;41 and has been implicated as a region important 

for visual decision making1;4;6;9–12;14;15, oculomotor planning42, and covert visuospatial 

attention43;44. Thus, we may think of FEF as itself a premotor area responsible for 

visuospatial attention and motor planning associated with decision making4;6;7;9. The 

dynamic transitions in our analysis could be interpreted as signaling decision commitment6, 

or as signaling a covert action (saccade preparation), in analogy with the transitions 

observed between preparatory and movement periods seen in premotor cortex18;19;34. 

Single-trial population analysis and analysis of delay and saccade epochs of these 

experiments may shed light on how the dynamics we observe reflect the animals’ decisions.

Some subspaces lacked a distinct late component (eg. color and choice subspaces for 

Monkey A, Figure 4a,c). However, it is possible that the middle seqPC for some task 

variables served a similar role as the late seqPC for others; preparing the network for a new 

set of targets or storing the memory of the stimuli as persistent activity over the course of the 

delay period. The number of seqPC’s needed to describe the population activity may reflect 

the rate that trajectories rotate into new encoding directions, and therefore correspond to a 

quantitative rather than a qualitative difference in encoding. Future work should be aimed at 

identifying the significance of the dimensionality of the encoding relative to the sequential 

dynamics.

The nature of dynamic encoding for the context variable remains mysterious. Context 

encoding for both animals displayed clear and consistent dynamics (Figure 4d, Extended 

Data 3d) including rotations (Figure 4f). Furthermore, while most of the predictive capacity 

of the context encoding lies in the early subspace (Extended Data 9, Extended Data 10), 

where context is encoded throughout the stimulus viewing period, context encoding at the 

single-neuron level is broadly distributed across the early, middle, and late axes (Figure 5b, 

Extended Data 5), indicating that some neurons do not encode context until well after 

stimulus onset. Further work is needed to determine what, if any, function these dynamics 

serve in decision making and memory. The uniqueness of these phenomena to the present 

setting is an active area of research.
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Differences in encoding between animals

The two monkeys in this study displayed similar, but not identical, encoding properties. For 

example, the encodng trajectories for motion are similar (Figure 4a, Extended Data 3a) but 

we found obvious differences between the encoding trajectories for color (Figure 4b versus 

Extended Data 3b). For monkey A the color trajectories closely resemble the trajectories for 

motion (Figure 4a,b) while for monkey F the color trajectories do not display obvious 

rotations (Extended Data 3b). Choice and context trajectories in monkey F appear to be 

similar to those of monkey A (Figure 4e,g and Extended Data 3e,g) but display less 

pronounced rotations, (Extended Data 2, Extended Data 6). These across-animal differences 

verify that rotational dynamics are not trivially present in these data and while it is unclear 

precisely what function they serve they are a potentially important feature of encoding in 

PFC.

While the reason for differing dynamics between the color encoding for monkey F and the 

other stimulus encodings is unclear we do have some behavioral clues as to its effect. For 

example, the color-context psychometric curve for monkey F was somewhat more shallow 

than for motion as well as for both motion or color for monkey A (Extended data Fig. 2d 

in1), and motion served as more of a distraction during the color task for monkey F than for 

monkey A, suggesting that color discrimination task was more difficult for monkey F. 

Furthermore, we found that the decoding accuracy for color in monkey F was worse than for 

monkey A (Figure 6, Extended Data 7) suggesting that color information was more poorly 

represented in PFC for monkey F. Although not definitive, together these results suggest that 

monkey F may have had more difficulty with color coherence perception and that indistinct 

encoding features are a correlate of perceptual uncertainty. Future experiments could be 

aimed at examining this hypothesis.

Decoding of error trials suggests sources of errors

There are three ways that the animals may commit an error: the animal perceived the wrong 

stimulus (e.g. perceived left motion on a right-motion trial); the animal was confused about 

the context (e.g., made its decision using the color information in the motion context); or the 

animal made a random choice (i.e., a “lapse” trial). The results of this analysis for monkey A 

at the weakest stimulus strengths, indicate that the animal perceived the wrong stimulus. The 

decoded context on average was the correct context, (Extended Data 9), ruling out whether 

or not the animal was confused about which stimulus it was supposed to attend. Lapse errors 

are also unlikely to contribute significantly to the animal’s behavior. The psychophysical 

curves of monkey A suggest a small lapse rate, if any1, and stimulus decoding indicates that 

the perceived relevant stimulus on error trials was of the opposite sign as the stimulus that 

was presented (Figure 6c). Together, these observations indicate that most error trials are 

based on an incorrect perception of the relevant stimulus. A more direct trial-by-trial 

analysis of simultaneously recorded neurons would be useful in confirming this hypothesis.

The results for monkey F are more difficult to interpret. The decoded stimuli for error trials 

appear to be close to 0, indicating an ambiguous stimulus (Extended Data 7b). Furthermore, 

the choice signal on error trials appears to be present earlier on average than on correct trials 

and is present on some trials as early as the first time point (Extended Data 8b) suggesting 
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that the animal may have made its decision before even viewing the stimulus, and that a 

significant source of errors for monkey F were lapses.

Given the present data, it may be impossible to distinguish the neural correlates of decision 

making from those of planning for the eventual saccade. Recent work has shown that there 

may be independent cortical signals for evidence accumulation and decision commitment in 

other cortical areas39. It may be unlikely using these data to distinguish between a deliberate 

effort to make a stimulus discrimination and the formation of a motor plan31.

Nevertheless, the results presented here demonstrate the utility of mTDR for the analysis of 

neuronal population data and provide a description of PFC dynamics that should serve as 

important constraints on future models of the mechanisms of PFC function.

Methods

Detailed description of model

High-dimensional description of observations—Our model describes trial-by-trial 

neuronal activity with a linear regression with respect to the task variables. We assume that 

the activity of the i th neuron yi,k(t) at time t on trial k can be described by a linear 

combination of P task variables xk
(p), p = 1, …, P (eg. stimulus variables, behavioral 

outcomes, and nonlinear combinations thereof), such that

yi, k(t) = xk
(1)βi, 1(t) + xk

(2)βi, 2(t) + ⋯ + xk
(P)βi, P(t) + ϵi, k(t) . (3)

where the P values of the task variables xk
(p) are known, the βi,p(t) are unknown coefficients, 

and ϵi,k(t) is noise. This basic model structure is identical to that of the regression model 

used in1 and has been successfully employed in characterizing neuronal activity of single 

neurons in other studies of perceptual decision making4746. In cases where we include a 

time-varying mean rate that is independent of the task variables, we define xk
(P) ≡ 1 for all k, 

and the Pth component becomes the time-varying mean.

To represent all neurons simultaneously, we concatenate the responses into a vector yk(t) and 

write

yk(t) = xk
(1) β1 (t) + xk

(2) β2 (t) + ⋯ + xk
(P) βP (t) + ϵk (t), (4)

where y k(t) = (y 1,k(t), …, yn,k(t))⊤, βp(t) = (β 1,p(t), …, βn,p(t))⊤, and ϵk(t) = (ϵ 1,k(t), …, 

ϵn,k(t))⊤.

For trial epochs of duration T we can regard all observations on a given trial to be a matrix, 

Yk = (yk(1), …, yk(T)), giving the observation model

Yk = xk
(1)B1 + xk

(2)B2 + ⋯ + xk
(P)BP + Ek, (5)
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where E k = (ϵk(1), …, ϵk(T)), and B p = (βp(1), …, βp(T)). For the present study, we 

assume the noise is normally distributed ϵk(t) ~  (0, D −1) for all trials k and times t, 
where D = diag(λ1, …, λn) is a n × n diagonal matrix of noise precisions.

Low-dimensional description of observations—With no additional constraints our 

observation model (5) is extremely high dimensional and is effectively a separate linear 

regression for each neuron at every time point. This would only be a sensible model if we 

believed that neurons were not in fact coordinating activity between each other or across 

time. To define our low-dimensional model we can describe each B p by a low-rank 

factorization, i.e. B p = W p S p, where W p and S p are n × rp and rp × T respectively, where 

rp = rank(B p). Equivalently, we can say that rp is the dimensionality of the encoding of task 

variable p. This is equivalent to saying that the characteristic response of each neuron to the 

p th task variable can be expressed as a linear combination of rp weighted basis functions 

βi
p(t) = ∑j = 1

rp wi, j
(p)sj

(p)(t), where rp is the dimensionality of the encoding, {sj
(p)(t)}j = 1

rp
 are a 

common set of time-varying basis functions, and {wi, j
(p)}j = 1

rp
 are neuron-dependent mixing 

weights.

The mTDR model does not impose any orthogonality between task variables or task variable 

subspaces. This permits accurate recovery of subspaces even when the encoding dimensions 

are correlated, which can result in correlations between task variable representations, as we 

demonstrate in Supplementary Note 8. It is desirable therefore to be able to visualize the part 

of the encoding of each task variable that is unmixed. We therefore orthogonalize the 

subspaces with respect to correlated subspaces for visualization in Figure Figure 4.

Marginal estimation of model parameters

The goal of inference is to estimate the factors of B p and the ranks rp. Our proposed 

estimation strategy, for computational and statistical efficiency, is to estimate only one set of 

factors ({W p} or {S p}). This is possible when we integrate out one set of factors. For 

example, if we define a prior probability density over the mixing weights p(W), then for data 

likelihood p(Y|W, S) the marginal likelihood of the matrix of time-varying basis functions S 
can be obtained by

p(Y ∣ S, λ ) = ∫−∞
∞ p(Y ∣ W, S, λ )p(W)dW . (6)

In principle, either set of factors may be selected for marginalization. In practice however 

the set of factors with lowest dimension should be selected to keep computational costs low. 

In this paper we focus on the case where T ≪ n and we therefore will estimate the set of 

weights {S p} while integrating over {W p}. The fact that either set of factors may be 

determined in this way means that there is a duality between rows and columns imposed by 

this model that is similar in principle to the duality between factors and latent states for 

probabilistic principle components analysis48.
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If we let the noise distribution and prior distribution of W both be Gaussian then we can use 

standard Gaussian identities to derive the marginal density p(Y|S,λ) and the corresponding 

posterior density p(W|Y, S, λ). A simple starting assumption would be to let all elements of 

W to be independent standard normal, (i.e., w ~  (0, I r̃n) where r = ∑prank(Bp)). We 

therefore assume that the weights are a priori independent and that the noise variance is 

independent across both neurons and time. In principle, our framework supports the 

application of more structured priors and noise covariances, but we will not explore more 

elaborate models in this paper. Further details are developed in Supplemental Section 2

Experimental details

A detailed description of these data have been published previously1. Briefly, two adult male 

rhesus monkeys were trained to perform a context-dependent 2-alternative forced-choice 

visual discrimination task. At the beginning of each trial the monkeys were cued (Figure 1a) 

to respond to either the motion or the color parts of the stimulus. After the context-cue 

presentation two targets appear for 350 ms, followed by 750 ms presentation of the stimulus. 

The stimulus was then followed by a randomized 300–1500 ms delay after which the 

monkey was cued to indicate its decision with a saccade to either of the two targets. The 

position of red and green targets was randomized on each trial.

Electrophysiological data were recorded from tungsten electrodes implanted in the arcuate 

sulcus in and around the frontal eye field (FEF). Electrodes were lowered two at a time into 

adjacent grid holes and were advanced until at least one single-unit could be isolated, 

although some trials yielded multiunit activity. Data were recorded using the MAP data–

acquisition system (Plexon Inc., Dallas, TX). All recorded units were included in the 

analysis. Spike sorting was conducted by clustering based on principle components analysis 

using the Plexon offline sorter (Plexon Inc., Dallas, TX). Each isolated cluster was 

functionally treated as a unit. Some clusters did not correspond to well discriminated, single-

unit activity and were therefor deemed multi-unit activity.

All analyses presented in this paper used spike counts binned at 50ms (for model fitting and 

decoding) or 12.5 ms (for display of projections, jPCA, and PSTHs). Analysis windows for 

both monkeys started 100 ms after stimulus onset and continued for 100 ms after stimulus 

onset1. Color coherence was transformed into position evidence based on the location of the 

red and green target. All data were analyzed with custom scripts written in MATLAB (The 

MathWorks, Inc., Natick, MA).

Model structure

Inclusion of linear terms for color, motion, choice, and context were substantiated by prior 

work1. Examination of the PSTHs revealed that stimulus encoding was asymmetric (eg. unit 

2 in Figure 1c), such that the encoding of the stimulus strength was stronger in one direction 

than the other. This suggested that the absolute value of the stimulus strengths should be 

jointly modeled with the linear encoding of the stimuli. Model fits using terms for the 

absolute value of the stimuli resulted in smaller AIC than model fits with only linear terms 

(Monkey A: AIClinear = 9.79 × 107, AICabs = 7.33 × 107, Monkey F: AIClinear = 8.065 × 

107, AICabs = 8.0628 × 107).
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In general, we suggest that investigators proceed with task variable inclusion in the same 

way that one would when performing traditional linear regression. This process should 

include careful consideration of the phenomenology of encoding in the population they are 

studying and principled model selection metrics. For large numbers of putative task 

variables investigators should consider model selection via sparse priors on regression 

coefficients.

Cross validated variance explained

To asses the variance in the population responses that is explained by our method we 

conducted 4-fold cross-validation (CV) where, on each fold of CV, we used a randomly 

selected sample of 75% of the trials as training data to estimate the parameters of the model. 

Using the remaining 25% of the trials as test data, we made PSTHs for every possible task 

variable contingency for correct trials (total of 144 conditions). The reported variance 

explained was averaged over the four CV folds.

When assessing variance explained, the population PSTH’s for each condition was averaged 

over all extraneous task variables. For example, to assess the variance explained by the 

motion subspaces we averaged the PSTHs over all task variables except motion. We 

therefore had 6 sets of PSTHs for each neuron that were projected onto the motion subspace.

To determine if the variance that was explained by the estimated subspaces was greater than 

chance we compared the observed variance explained to the distribution of variance 

explained obtained by random projections. As a serrogate null distribution we generated 500 

samples for each task variable of random projection weights from a normal distribution and 

calculated the explained variance for each sample. We then asked what the probability was 

of the observed explained variance being larger than the explained variance of the random 

projections for each neuron. We found that many neurons exceeded the 95% Bonferroni-

corrected significance threshold across nearly all dimensions.

Sequential PCA (seqPCA)

The seqPCA algorithm identifies an orthogonal basis on which variance of a D-dimensional 

trajectory is sequentially explained. The algorithm starts by calculating the variance 

explained by the first singular vector of a sequence of D × t data matrices Y t, where t 
indicates the number of time points included in the data. As the number of data points 

increases, the first singular vector explains a larger proportion of the variance, p 1,t, until 

trajectories change direction, after which p 1,t decreases. The t at which p 1,t reaches its peak 

is considered a transition time and the left singular vector at this time is considered the first 

seqPC. Variability explained by this axis is subtracted from the data and the procedure is 

repeated to identify the 2nd seqPC, and so on. For details, see Supplementary Math Note 9.

The seqPCA algorithm displays some sensitivity to noise by making peaks in p 1,t, difficult 

to identify. However, moderate smoothing (Gaussian window, 50ms width) of the 

trajectories appeared to mitigate this effect. Greater robustness may be offered by translation 

of this algorithm into an optimization framework49. A related method has been developed 

for identification of sequential motifs of spike rasters50.
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Statistics

No statistical methods were used to pre-determine sample sizes but our sample sizes are 

similar to those reported in previous publications1. Data collection and analysis were not 

performed blind to the conditions of the experiments.

Tests for rotational dynamics by the method of Elsayed & Cunningham23 depend on the 

distribution coming from a special form of tensor-variate normal distribution that 

corresponds to the maximum entropy distribution for tensor-valued data with independent 

tensor dimensions. Data distribution was assumed to be normal but this was not formally 

tested.

Significance of the magnitude of inner products (Figures Figure 5, Extended Data 5) was 

determined by a null distribution based on the positive half-Gaussian with zero-mean and 

standard deviation σ 0 = 1/n, where n is the number of neurons (n = 762 for monkey A, n = 

640 for monkey F), and controlled by the positive false discovery rate45. We conducted the 

same procedure using standard deviations from bootstrap samples but found that the 

asymptotic formula (σ 0 = 1/n) was slightly more conservative as the σ 0 was a few percent 

larger. The null distribution was used following Kobak et al.27 and validated by the 1-sample 

Kolmogorov-Smirnov test with 1000 permutations of the weight indices as samples from the 

surrogate null distribution (P = 0.78, Dn = 0.0207).

Permutation tests for canonical correlations (Supplementary Math Note Math Note Figure 3) 

were performed with 200 uniformly randomized permutations.

Extended Data

Extended Data Fig. 1. Projections of population PSTH’s onto the first, second, and third PC-axes 
for monkey A
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a) The abs(motion) and b) abs(color) subspaces. Subspaces have been orthogonalized with 

respect to the first dimension of the choice subspace. The monkey gave the correct response 

for all trials used. Colored axes indicate dominant axes in the early, middle, and late periods 

of the stimulus epoch, as determined by the methods described in Supplementary section 9. 

Purple vertical lines indicate transition from the early to middle epochs. Yellow vertical lines 

indicate transition from the middle to late epochs as in Figure Figure 4. Plotting colors are 

the same as those in Figure 4. Units of the ordinate are arbitrary but all axes are on the same 

scale.

Extended Data Fig. 2. Projections of population PSTH’s onto jPCA axes for monkey A.
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Projections are onto the first two jPCA axes identified by the trajectories shown in Figure 4. 

The jPCA axes reveal strongly rotational dynamics for motion, color, choice, and context 

subspaces.

Extended Data Fig. 3. Projections of population PSTH’s for monkey F onto the first, second, and 
third PC-axes of all task variables subspaces.
Plotting conventions and analyses are the same as those for Figure 4. Projected data is 

averaged over 2-folds of cross validated projections where a random sampling of half of the 

data was used to estimate parameters and the remaining half used to make projections.
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Extended Data Fig. 4. Encoding strength of population pseudosamples for monkey F onto the 
first three axes of all task variables subspaces.
Plotting conventions and analyses are the same as those for Figure 4. Projected data is 

averaged over 2-folds of cross validated projections where pseudosamples were drawn from 

held-out trials. Grey bars at y = 0 indicate time points where the mTDR projections had 

significantly stronger encoding across all stimulus levels than the 1D projections (left-tailed 

Wilcoxon signed-rank test, pFDR45 controlled at .01).
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Extended Data Fig. 5. Distribution of variance among seqPCA axes. Monkey F
Plotting conventions are the same as for Figure 5. (a) Proportion of variance among seqPCA 

axes. Each marker corresponds to one neuron. The position of each neuron indicates the 

distribution of variance from PSTHs across corresponding early, middle, and late axes. e.g. a 

point that lies closer to the “early” vertex of the motion plot has more of its motion-specific 

variance explained by the early axis while a point in the middle of the simplex has variance 

equally distributed across all axes. Darker regions indicate higher density of points. Colored 

dots correspond to cells displayed in Figure Figure 3. (b) Weights of the top (in terms of 

variance explained) 3 axes for all cells for motion, color, and choice subspaces. Cell indexes 

are sorted according to the choice weights from most positive to most negative. (c) 

Magnitude of the Pearson correlation between top 3 subspace axes. The magnitude is used 

because the axes are only identifiable up to a sign. Markers indicate significant correlations 

controlled by the positive false discovery rate45)(* Q < .01, +Q < .01). Null distribution is 

based on the positive half-Gaussian with zero-mean and standard deviation σ0 = 1/n, where 

n = 640 is the number of neurons. Significant correlations are most consistent between 

color-choice and motion-choice pairs.
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Extended Data Fig. 6. Rotational dynamics of subspace projections for Monkey F.
(a)Projections of population PSTH’s for monkey F onto the jPC-axes of all task variables 

subspaces. Plotting conventions and analyses are the same as those for Figure 4. Projected 

data is averaged over 2-folds of cross validated projections where a random sampling of half 

of the data was used to estimate parameters and the remaining half used to make projections. 

(b)Angle of rotation over time for low-D trajectories of monkey F. Rotation angle traversed 

through rotational projection using jPCA. Angle was calculated starting from time when the 

projection transitions between the early and middle epochs. Coherent traversal across 

stimulus strengths that is consistent and monotonically increasing is an indication of 

rotation. Shaded areas are 95% confidence regions calculated using a maximum entropy 

method23 (n = 100 samples) under the null hypothesis of no population structure other than 

the empirical means and covariances across time, neurons, and task conditions.
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Extended Data Fig. 7. Instantaneous decoding of stimulus for monkey F.
Plotting conventions and analyses are the same as for Figure 6 a) Top: Decoded motion 

coherence by mTDR model in both contexts. Bottom: Mean squared error (MSE) over time 

of motion coherence decoding across stimulus levels and context. MSE decreases 

precipitously, and then stabilize around the time of the first transition. b) Same as a) for 

color coherence decoding. Shaded regions indicate 50% confidence intervals. Dashed lines 

indicate error trials from the corresponding context for the lowest stimulus strengths. 100 

pseudotrials for each of 2-fold cross validation used for each analysis. Solid vertical lines 

indicate the time of early/middle axis transition for the corresponding stimulus subspace 

projections. Dashed vertical lines indicate the time of middle/late transition.

Aoi et al. Page 23

Nat Neurosci. Author manuscript; available in PMC 2021 April 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Fig. 8. Instantaneous decoding of decision for monkey F.
Plotting conventions and analyses are the same as for Figure 6 a) Log-likelihood ratios 

(LLR’s) in favor of a preferred choice using single pseudotrials from color - context (gold-

blue, sorted by color coherence) and motion - context (red-violet, sorted by motion 

coherence) trials. Shaded regions indicate 95% quantile intervals for each stimulus strength. 

Solid lines indicate the median of correct trials. Dashed lines indicate median of error trials. 

b) Probability of a preferred choice based on corresponding LLRs combined over all 

stimulus strengths (see section 6.3 for details). Solid lines indicate median of correct trials. 

Dashed lines indicate median of error trials. Shaded regions indicate quantile coverage 

intervals of correct trials (light-to-dark: 95%,75%,50%). 100 pseudotrials for each of 2-fold 

cross validation folds used for all analyses. c) LLRs for in favor of a preferred choice where 

the choice subspace has been restricted to only the early, middle, or late axes. d) Probability 

of a preferred choice based on LLRs from (c).

Aoi et al. Page 24

Nat Neurosci. Author manuscript; available in PMC 2021 April 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Extended Data Fig. 9. Instantaneous decoding of context for monkey A.
a) LLRs for monkey A in favor of the motion context using single pseudotrials, sorted by 

color coherence. Shaded regions indicate 95% quantile intervals for each stimulus strength. 

Solid lines indicate the median over correct trials. Dashed lines indicate median of error 

trials. b) Probability of the motion context based on corresponding LLRs combined over all 

stimulus strengths. Solid lines indicate median of correct trials. Dashed lines indicate 

median of error trials. Shaded regions indicate quantile intervals of correct trials (light-to-

dark: 50%, 75%, 95%). Color conventions are the same as in Figure 4. 100 pseudotrials for 

each of 4-fold cross validation folds used for all analyses.
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Extended Data Fig. 10. Instantaneous decoding of context for monkey F.
Plotting conventions are the same as in Extended Data 9. 100 pseudotrials for each of 2-fold 

cross validation folds used for all analyses.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Context-dependent decision-making task and neural responses.
a) On each trial, the animal was presented with a context cue (yellow dot or blue cross) 

indicating which dimension of the stimulus the animal is to attend to, followed by a stimulus 

of colored, moving dots. On motion context trials the animal is cued to respond to the 

dominant dot motion direction. In color context trials the animal is cued to respond to the 

dominant color of the dots. b) The strength of both the color (red / green) and motion (left / 

right) stimulus was displayed with one of six possible degrees of coherence, making for 

many possible task contingencies (2 choices × 2 contexts × 6 motion strengths × 6 color 

strengths = 144 possible combinations). c) PSTHs of representative neurons for monkey A. 

Motion context PSTHs were sorted by motion coherence and averaged over color coherence. 

Color context PSTH’s were sorted by color coherence and averaged over motion coherence. 

Red–indigo color scale indicates motion coherence where red indicates the preferred motion 

direction. Gold–blue color scale indicates color coherence where gold indicates the preferred 

color direction. Bolder colors indicate stronger coherence.
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Figure 2. Schematic illustrating low-dimensional population-level encoding in a binary sensory 
decision-making task.
(a). Conditional PSTHs for three neurons that exhibit mixed selectivity to a stimulus variable 

(taking on six different values) and a choice variable (taking on two values). (b) Modulations 

of the PSTHs by the task variables span a 2-dimensional “encoding subspace”, which is low-

dimensional relative to the 3-dimensional space of firing rates. In this case, a 1D stimulus-

encoding subspace (blue arrow) captures all information about the stimulus value, while a 

1D choice-encoding subspace (red arrow) captures all information about the decision. Note, 

for example, that the neuron 2 firing rate axis is nearly orthogonal to the choice axis, 

meaning that neuron 2 carries almost no information about choice. (c). Projections onto the 

stimulus and choice subspaces reveal the time-course of information about stimulus and 

choice, respectively. These timecourses can be seen as temporal basis functions for the 

single-neuron PSTHs shown in (a). mTDR aims to recover these encoding subspaces even in 

the presence of additional components that take neural activity outside the plane spanned by 

these two axes, and is not restricted to 1D subspaces.
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Figure 3. Model fit for monkey A.
a) Example of a neuron’s fitted responses composed of a set of weighted basis functions 

(same as neuron 1 from Figure 1c). These basis functions are shared by the whole 

population but are weighted differently for each neuron. Weighted basis functions are 

summed to form the neuron’s response to each task variable. The responses for each task 

variable are then added together to give the model reconstructed PSTHs (model PSTH). The 

conditional PSTHs of this neuron are shown for comparison. b) Summed responses for three 

additional example neurons (same as neurons 2–4, from Figure 1c) which display a diversity 
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of dynamics. c) Dimension estimation based on 5x 4-fold (20 estimates) cross validation. 

Dimensionality is slightly smaller than estimated using all data but is tightly distributed 

around a single estimate. d) R 2 of the model reconstructions for the PSTHs as a function of 

mean firing rate for each neuron. e) Percent variance explained for PSTHs of each neuron (n 
= 762) by projection onto each subspace dimension. Red horizontal bars indicate the 

median. Box edges indicate 25th and 75th percentiles. Whiskers indicate positions of 

furthest points from median not considered outliers. Red dots indicate outliers with respect 

to a normal distribution. Dots have been horizontally jittered to aid with visualization. 

Results have been averaged for each neuron over 4 CV folds. Colors in title text for (a) and 

(b) correspond to colors of markers in Figure 5.
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Figure 4. Projections of population PSTH’s onto latent encoding subspaces.
Projections onto the first, second, and third principle-axes of the (a) motion, (b) color, (c) 

choice, and (d) context subspaces. Motion, color, and context subspaces have been 

orthogonalized with respect to the first dimension of the choice subspace. The choice 

subspace has been orthogonalized with respect to the context subspace. The context 

subspace has also been orthogonalized with respect to the motion and color subspaces. 

Details of orthogonalization are presented in Supplementary note 4.2. Color conventions are 

the same as those described in Figure Figure 1. Red dots indicate the origin. Projected 
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PSTH’s made from held-out data not used during parameter estimation. a) Projections of 

PSTHs onto the motion subspace, sorted by motion coherence and averaged over color 

coherence for trials where the motion stimulus was the active context. b) Projections onto 

the color subspace sorted by color coherence and averaged over motion coherence for trials 

where the color stimulus was the active context. c) Projections onto the choice subspace. 

Motion context trials are displayed with the same sorting and color conventions as displayed 

in (a). Color context trials are displayed with the same sorting and color conventions as 

displayed in (b). Only correct trials are displayed. d) Projections onto the context subspace 

using the same conventions as displayed in (c). Only correct trials are displayed. Colored 

axes in 3D plots indicate seqPCA axes. Solid vertical lines accompanying time traces 

indicate the time points where middle-axis variance starts to increase. Dashed vertical lines 

indicate the time points where late-axis variance starts to increase. Units of the ordinate are 

arbitrary but all time-trace axes are on the same scale. PSTHs were generated with ≈ 13 ms 

time bins and smoothed with a Gaussian window with standard deviation of ≈ 50 ms. e) 

Median encoding strength of pseudotrials onto the first three encoding axes of mTDR 

compared with the 1D subspace estimated by the max-norm method used by Mante et al.1 

(see Supplementary note 10 for details). For clarity, only trials with the strongest stimulus 

strengths are shown. Grey bars at y = 0 indicate time points where the mTDR projections 

had significantly stronger encoding across all stimulus levels than the 1D projections (left-

tailed Wilcoxon signed-rank test, pFDR45 controlled at .01). Multidimensional mTDR 

projections are larger than 1D projections at nearly all times for all task variables. f) 
Rotation angle traversed through rotational projection using jPCA. Angle was calculated 

starting from time when the projection transitions between the early and middle epochs. 

Coherent traversal across stimulus strengths that is consistent and monotonically increasing 

is an indication of rotation. Shaded areas are 95% confidence regions calculated using a 

maximum entropy method23 (n = 100 samples) under the null hypothesis of no population 

structure other than the empirical means and covariances across time, neurons, and task 

conditions.
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Figure 5. Distribution of variance within and between subspaces.
(a) Proportion of variance among seqPCA axes. Each marker corresponds to one neuron. 

The position of each neuron indicates the distribution of variance from PSTHs across 

corresponding early, middle, and late axes. e.g. a point that lies closer to the “early” vertex 

of the motion plot has more of its motion-specific variance explained by the early axis while 

a point in the middle of the simplex has variance equally distributed across all axes. Darker 

regions indicate higher density of points. Colored dots correspond to cells displayed in 

Figure Figure 3. (b) Weights of the top (in terms of variance explained) 3 axes for all cells 

for motion, color, and choice subspaces. Cell indexes are sorted according to the choice 

weights from most positive to most negative. (c) Magnitude of the Pearson correlation 

between top 3 subspace axes. The magnitude is used because the axes are only identifiable 

up to a sign. Markers indicate significant correlations controlled by the positive false 

discovery rate45)(* Q < .01, +Q < .01). Null distribution is based on the positive half-

Gaussian with zero-mean and standard deviation σ 0 = 1/n, where n = 762 is the number of 

neurons. Significant correlations are most consistent between color-choice and motion-

choice pairs. All tests were 1-sided.
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Figure 6. Instantaneous decoding of stimulus for monkey A.
a) Top: Decoded motion coherence by mTDR model in both contexts. Bottom: Mean 

squared error (MSE) over time of motion coherence decoding across stimulus levels and 

context. MSE decreases precipitously, and then stabilize around the time of the first 

transition. b) Same as a) for color coherence decoding. Color conventions are the same as in 

Figure 4. Shaded regions indicate 50% confidence intervals. Dashed lines indicate error 

trials from the corresponding context for the lowest stimulus strengths. 100 pseudotrials for 

each of 4-fold cross validation (n = 400) used for all analyses. Solid vertical lines indicate 

the time of early/middle axis transition for the corresponding stimulus subspace projections. 

Dashed vertical lines indicate the time of middle/late transition.

Aoi et al. Page 37

Nat Neurosci. Author manuscript; available in PMC 2021 April 23.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 7. Instantaneous decoding of choice.
a) Log-likelihood ratios (LLR’s) for monkey A in favor of a preferred choice using single 

pseudotrials from color - context (gold-blue, sorted by color coherence) and motion - context 

(red-violet, sorted by motion coherence) trials. Shaded regions indicate 95% quantile 

intervals for each stimulus strength. Solid lines indicate the median of correct trials. Dashed 

lines indicate median of error trials. b) Probability of a preferred choice based on 

corresponding LLRs combined over all stimulus strengths (see section 6.3 for details). Solid 

lines indicate median of correct trials. Dashed lines indicate median of error trials. Shaded 

regions indicate quantile coverage intervals of correct trials (light-to-dark: 95%,75%,50%). 

Color conventions are the same as in Figure Figure 4. 100 pseudotrials for each of 4-fold 

cross validation folds used for all analyses. c) LLRs for in favor of a preferred choice where 

the choice subspace has been restricted to only the early, middle, or late axes. d) Probability 

of a preferred choice based on LLRs from (c).
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